/* * Compaq Hot Plug Controller Driver * * Copyright (c) 1995,2001 Compaq Computer Corporation * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (c) 2001 IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * */ #include #include #include #include #include #include #include #include #include #include #include "cpqphp.h" #include "cpqphp_nvram.h" #include "../../arch/i386/kernel/pci-i386.h" /* horrible hack showing how processor dependant we are... */ /* Global variables */ int cpqhp_debug; struct controller *cpqhp_ctrl_list; /* = NULL */ struct pci_func *cpqhp_slot_list[256]; /* local variables */ static void *smbios_table; static void *smbios_start; static void *cpqhp_rom_start; static u8 power_mode; static int debug; #define DRIVER_VERSION "0.9.6" #define DRIVER_AUTHOR "Dan Zink , Greg Kroah-Hartman " #define DRIVER_DESC "Compaq Hot Plug PCI Controller Driver" MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); MODULE_PARM(power_mode, "b"); MODULE_PARM_DESC(power_mode, "Power mode enabled or not"); MODULE_PARM(debug, "i"); MODULE_PARM_DESC(debug, "Debugging mode enabled or not"); #define CPQHPC_MODULE_MINOR 208 static int one_time_init (void); static int set_attention_status (struct hotplug_slot *slot, u8 value); static int process_SI (struct hotplug_slot *slot); static int process_SS (struct hotplug_slot *slot); static int hardware_test (struct hotplug_slot *slot, u32 value); static int get_power_status (struct hotplug_slot *slot, u8 *value); static int get_attention_status (struct hotplug_slot *slot, u8 *value); static int get_latch_status (struct hotplug_slot *slot, u8 *value); static int get_adapter_status (struct hotplug_slot *slot, u8 *value); static struct hotplug_slot_ops cpqphp_hotplug_slot_ops = { owner: THIS_MODULE, set_attention_status: set_attention_status, enable_slot: process_SI, disable_slot: process_SS, hardware_test: hardware_test, get_power_status: get_power_status, get_attention_status: get_attention_status, get_latch_status: get_latch_status, get_adapter_status: get_adapter_status, }; static inline int is_slot64bit (struct slot *slot) { if (!slot || !slot->p_sm_slot) return 0; if (readb(slot->p_sm_slot + SMBIOS_SLOT_WIDTH) == 0x06) return 1; return 0; } static inline int is_slot66mhz (struct slot *slot) { if (!slot || !slot->p_sm_slot) return 0; if (readb(slot->p_sm_slot + SMBIOS_SLOT_TYPE) == 0x0E) return 1; return 0; } /** * detect_SMBIOS_pointer - find the system Management BIOS Table in the specified region of memory. * * @begin: begin pointer for region to be scanned. * @end: end pointer for region to be scanned. * * Returns pointer to the head of the SMBIOS tables (or NULL) * */ static void * detect_SMBIOS_pointer(void *begin, void *end) { void *fp; void *endp; u8 temp1, temp2, temp3, temp4; int status = 0; endp = (end - sizeof(u32) + 1); for (fp = begin; fp <= endp; fp += 16) { temp1 = readb(fp); temp2 = readb(fp+1); temp3 = readb(fp+2); temp4 = readb(fp+3); if (temp1 == '_' && temp2 == 'S' && temp3 == 'M' && temp4 == '_') { status = 1; break; } } if (!status) fp = NULL; dbg("Discovered SMBIOS Entry point at %p\n", fp); return fp; } /** * init_SERR - Initializes the per slot SERR generation. * * For unexpected switch opens * */ static int init_SERR(struct controller * ctrl) { u32 tempdword; u32 number_of_slots; u8 physical_slot; if (!ctrl) return 1; tempdword = ctrl->first_slot; number_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; // Loop through slots while (number_of_slots) { physical_slot = tempdword; writeb(0, ctrl->hpc_reg + SLOT_SERR); tempdword++; number_of_slots--; } return 0; } /* nice debugging output */ static int pci_print_IRQ_route (void) { struct irq_routing_table *routing_table; int len; int loop; u8 tbus, tdevice, tslot; routing_table = pcibios_get_irq_routing_table(); if (routing_table == NULL) { err("No BIOS Routing Table??? Not good\n"); return -ENOMEM; } len = (routing_table->size - sizeof(struct irq_routing_table)) / sizeof(struct irq_info); // Make sure I got at least one entry if (len == 0) { kfree(routing_table); return -1; } dbg("bus dev func slot\n"); for (loop = 0; loop < len; ++loop) { tbus = routing_table->slots[loop].bus; tdevice = routing_table->slots[loop].devfn; tslot = routing_table->slots[loop].slot; dbg("%d %d %d %d\n", tbus, tdevice >> 3, tdevice & 0x7, tslot); } kfree(routing_table); return 0; } /* * get_subsequent_smbios_entry * * Gets the first entry if previous == NULL * Otherwise, returns the next entry * Uses global SMBIOS Table pointer * * @curr: %NULL or pointer to previously returned structure * * returns a pointer to an SMBIOS structure or NULL if none found */ static void * get_subsequent_smbios_entry(void *smbios_start, void *smbios_table, void *curr) { u8 bail = 0; u8 previous_byte = 1; void *p_temp; void *p_max; if (!smbios_table || !curr) return(NULL); // set p_max to the end of the table p_max = smbios_start + readw(smbios_table + ST_LENGTH); p_temp = curr; p_temp += readb(curr + SMBIOS_GENERIC_LENGTH); while ((p_temp < p_max) && !bail) { // Look for the double NULL terminator // The first condition is the previous byte and the second is the curr if (!previous_byte && !(readb(p_temp))) { bail = 1; } previous_byte = readb(p_temp); p_temp++; } if (p_temp < p_max) { return p_temp; } else { return NULL; } } /** * get_SMBIOS_entry * * @type:SMBIOS structure type to be returned * @previous: %NULL or pointer to previously returned structure * * Gets the first entry of the specified type if previous == NULL * Otherwise, returns the next entry of the given type. * Uses global SMBIOS Table pointer * Uses get_subsequent_smbios_entry * * returns a pointer to an SMBIOS structure or %NULL if none found */ static void *get_SMBIOS_entry (void *smbios_start, void *smbios_table, u8 type, void * previous) { if (!smbios_table) return NULL; if (!previous) { previous = smbios_start; } else { previous = get_subsequent_smbios_entry(smbios_start, smbios_table, previous); } while (previous) { if (readb(previous + SMBIOS_GENERIC_TYPE) != type) { previous = get_subsequent_smbios_entry(smbios_start, smbios_table, previous); } else { break; } } return previous; } static int ctrl_slot_setup (struct controller * ctrl, void *smbios_start, void *smbios_table) { struct slot *new_slot; u8 number_of_slots; u8 slot_device; u8 slot_number; u8 ctrl_slot; u32 tempdword; void *slot_entry= NULL; int result; dbg(__FUNCTION__"\n"); tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); number_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; slot_device = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; slot_number = ctrl->first_slot; while (number_of_slots) { new_slot = (struct slot *) kmalloc(sizeof(struct slot), GFP_KERNEL); if (!new_slot) return -ENOMEM; memset(new_slot, 0, sizeof(struct slot)); new_slot->hotplug_slot = kmalloc (sizeof (struct hotplug_slot), GFP_KERNEL); if (!new_slot->hotplug_slot) { kfree (new_slot); return -ENOMEM; } memset(new_slot->hotplug_slot, 0, sizeof (struct hotplug_slot)); new_slot->hotplug_slot->info = kmalloc (sizeof (struct hotplug_slot_info), GFP_KERNEL); if (!new_slot->hotplug_slot->info) { kfree (new_slot->hotplug_slot); kfree (new_slot); return -ENOMEM; } memset(new_slot->hotplug_slot->info, 0, sizeof (struct hotplug_slot_info)); new_slot->hotplug_slot->name = kmalloc (SLOT_NAME_SIZE, GFP_KERNEL); if (!new_slot->hotplug_slot->name) { kfree (new_slot->hotplug_slot->info); kfree (new_slot->hotplug_slot); kfree (new_slot); return -ENOMEM; } new_slot->magic = SLOT_MAGIC; new_slot->ctrl = ctrl; new_slot->bus = ctrl->bus; new_slot->device = slot_device; new_slot->number = slot_number; dbg("slot->number = %d\n",new_slot->number); slot_entry = get_SMBIOS_entry(smbios_start, smbios_table, 9, slot_entry); while (slot_entry && (readw(slot_entry + SMBIOS_SLOT_NUMBER) != new_slot->number)) { slot_entry = get_SMBIOS_entry(smbios_start, smbios_table, 9, slot_entry); } new_slot->p_sm_slot = slot_entry; init_timer(&new_slot->task_event); new_slot->task_event.expires = jiffies + 5 * HZ; new_slot->task_event.function = cpqhp_pushbutton_thread; //FIXME: these capabilities aren't used but if they are // they need to be correctly implemented new_slot->capabilities |= PCISLOT_REPLACE_SUPPORTED; new_slot->capabilities |= PCISLOT_INTERLOCK_SUPPORTED; if (is_slot64bit(new_slot)) new_slot->capabilities |= PCISLOT_64_BIT_SUPPORTED; if (is_slot66mhz(new_slot)) new_slot->capabilities |= PCISLOT_66_MHZ_SUPPORTED; if (ctrl->speed == 1) new_slot->capabilities |= PCISLOT_66_MHZ_OPERATION; ctrl_slot = slot_device - (readb(ctrl->hpc_reg + SLOT_MASK) >> 4); // Check presence new_slot->capabilities |= ((((~tempdword) >> 23) | ((~tempdword) >> 15)) >> ctrl_slot) & 0x02; // Check the switch state new_slot->capabilities |= ((~tempdword & 0xFF) >> ctrl_slot) & 0x01; // Check the slot enable new_slot->capabilities |= ((read_slot_enable(ctrl) << 2) >> ctrl_slot) & 0x04; /* register this slot with the hotplug pci core */ new_slot->hotplug_slot->private = new_slot; make_slot_name (new_slot->hotplug_slot->name, SLOT_NAME_SIZE, new_slot); new_slot->hotplug_slot->ops = &cpqphp_hotplug_slot_ops; new_slot->hotplug_slot->info->power_status = get_slot_enabled(ctrl, new_slot); new_slot->hotplug_slot->info->attention_status = cpq_get_attention_status(ctrl, new_slot); new_slot->hotplug_slot->info->latch_status = cpq_get_latch_status(ctrl, new_slot); new_slot->hotplug_slot->info->adapter_status = get_presence_status(ctrl, new_slot); dbg ("registering bus %d, dev %d, number %d, ctrl->slot_device_offset %d, slot %d\n", new_slot->bus, new_slot->device, new_slot->number, ctrl->slot_device_offset, slot_number); result = pci_hp_register (new_slot->hotplug_slot); if (result) { err ("pci_hp_register failed with error %d\n", result); kfree (new_slot->hotplug_slot->info); kfree (new_slot->hotplug_slot->name); kfree (new_slot->hotplug_slot); kfree (new_slot); return result; } new_slot->next = ctrl->slot; ctrl->slot = new_slot; number_of_slots--; slot_device++; slot_number++; } return(0); } static int ctrl_slot_cleanup (struct controller * ctrl) { struct slot *old_slot, *next_slot; old_slot = ctrl->slot; ctrl->slot = NULL; while (old_slot) { next_slot = old_slot->next; pci_hp_deregister (old_slot->hotplug_slot); kfree(old_slot->hotplug_slot->info); kfree(old_slot->hotplug_slot->name); kfree(old_slot->hotplug_slot); kfree(old_slot); old_slot = next_slot; } //Free IRQ associated with hot plug device free_irq(ctrl->interrupt, ctrl); //Unmap the memory iounmap(ctrl->hpc_reg); //Finally reclaim PCI mem release_mem_region(pci_resource_start(ctrl->pci_dev, 0), pci_resource_len(ctrl->pci_dev, 0)); return(0); } //============================================================================ // function: get_slot_mapping // // Description: Attempts to determine a logical slot mapping for a PCI // device. Won't work for more than one PCI-PCI bridge // in a slot. // // Input: u8 bus_num - bus number of PCI device // u8 dev_num - device number of PCI device // u8 *slot - Pointer to u8 where slot number will // be returned // // Output: SUCCESS or FAILURE //============================================================================= static int get_slot_mapping (struct pci_ops *ops, u8 bus_num, u8 dev_num, u8 *slot) { struct irq_routing_table *PCIIRQRoutingInfoLength; u32 work; long len; long loop; u8 tbus, tdevice, tslot, bridgeSlot; dbg(__FUNCTION__" %p, %d, %d, %p\n", ops, bus_num, dev_num, slot); bridgeSlot = 0xFF; PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table(); len = (PCIIRQRoutingInfoLength->size - sizeof(struct irq_routing_table)) / sizeof(struct irq_info); // Make sure I got at least one entry if (len == 0) { if (PCIIRQRoutingInfoLength != NULL) kfree(PCIIRQRoutingInfoLength ); return -1; } for (loop = 0; loop < len; ++loop) { tbus = PCIIRQRoutingInfoLength->slots[loop].bus; tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn >> 3; tslot = PCIIRQRoutingInfoLength->slots[loop].slot; if ((tbus == bus_num) && (tdevice == dev_num)) { *slot = tslot; if (PCIIRQRoutingInfoLength != NULL) kfree(PCIIRQRoutingInfoLength ); return 0; } else { // Didn't get a match on the target PCI device. Check if the // current IRQ table entry is a PCI-to-PCI bridge device. If so, // and it's secondary bus matches the bus number for the target // device, I need to save the bridge's slot number. If I can't // find an entry for the target device, I will have to assume it's // on the other side of the bridge, and assign it the bridge's slot. pci_read_config_dword_nodev (ops, tbus, tdevice, 0, PCI_REVISION_ID, &work); if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { pci_read_config_dword_nodev (ops, tbus, tdevice, 0, PCI_PRIMARY_BUS, &work); // See if bridge's secondary bus matches target bus. if (((work >> 8) & 0x000000FF) == (long) bus_num) { bridgeSlot = tslot; } } } } // If we got here, we didn't find an entry in the IRQ mapping table // for the target PCI device. If we did determine that the target // device is on the other side of a PCI-to-PCI bridge, return the // slot number for the bridge. if (bridgeSlot != 0xFF) { *slot = bridgeSlot; if (PCIIRQRoutingInfoLength != NULL) kfree(PCIIRQRoutingInfoLength ); return 0; } if (PCIIRQRoutingInfoLength != NULL) kfree(PCIIRQRoutingInfoLength ); // Couldn't find an entry in the routing table for this PCI device return -1; } /** * cpqhp_set_attention_status - Turns the Amber LED for a slot on or off * */ static int cpqhp_set_attention_status (struct controller *ctrl, struct pci_func *func, u32 status) { u8 hp_slot; hp_slot = func->device - ctrl->slot_device_offset; if (func == NULL) return(1); // Wait for exclusive access to hardware down(&ctrl->crit_sect); if (status == 1) { amber_LED_on (ctrl, hp_slot); } else if (status == 0) { amber_LED_off (ctrl, hp_slot); } else { // Done with exclusive hardware access up(&ctrl->crit_sect); return(1); } set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); return(0); } /** * set_attention_status - Turns the Amber LED for a slot on or off * */ static int set_attention_status (struct hotplug_slot *hotplug_slot, u8 status) { struct pci_func *slot_func; struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; u8 bus; u8 devfn; u8 device; u8 function; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) { return -ENODEV; } return cpqhp_set_attention_status(ctrl, slot_func, status); } static int process_SI (struct hotplug_slot *hotplug_slot) { struct pci_func *slot_func; struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; u8 bus; u8 devfn; u8 device; u8 function; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) { return -ENODEV; } slot_func->bus = bus; slot_func->device = device; slot_func->function = function; slot_func->configured = 0; dbg("board_added(%p, %p)\n", slot_func, ctrl); return cpqhp_process_SI(ctrl, slot_func); } static int process_SS (struct hotplug_slot *hotplug_slot) { struct pci_func *slot_func; struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; u8 bus; u8 devfn; u8 device; u8 function; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) { return -ENODEV; } dbg("In power_down_board, slot_func = %p, ctrl = %p\n", slot_func, ctrl); return cpqhp_process_SS(ctrl, slot_func); } static int hardware_test (struct hotplug_slot *hotplug_slot, u32 value) { struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; dbg(__FUNCTION__"\n"); if (slot == NULL) return -ENODEV; ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; return cpqhp_hardware_test (ctrl, value); } static int get_power_status (struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; *value = get_slot_enabled(ctrl, slot); return 0; } static int get_attention_status (struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; *value = cpq_get_attention_status(ctrl, slot); return 0; } static int get_latch_status (struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; *value = cpq_get_latch_status (ctrl, slot); return 0; } static int get_adapter_status (struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = get_slot (hotplug_slot, __FUNCTION__); struct controller *ctrl; if (slot == NULL) return -ENODEV; dbg(__FUNCTION__" - physical_slot = %s\n", hotplug_slot->name); ctrl = slot->ctrl; if (ctrl == NULL) return -ENODEV; *value = get_presence_status (ctrl, slot); return 0; } static int cpqhpc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { u8 num_of_slots = 0; u8 hp_slot = 0; u8 device; u8 rev; u16 temp_word; u16 vendor_id; u16 subsystem_vid; u16 subsystem_deviceid; u32 rc; struct controller *ctrl; struct pci_func *func; // Need to read VID early b/c it's used to differentiate CPQ and INTC discovery rc = pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id); if (rc || ((vendor_id != PCI_VENDOR_ID_COMPAQ) && (vendor_id != PCI_VENDOR_ID_INTEL))) { err(msg_HPC_non_compaq_or_intel); return -ENODEV; } dbg("Vendor ID: %x\n", vendor_id); rc = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); dbg("revision: %d\n", rev); if (rc || ((vendor_id == PCI_VENDOR_ID_COMPAQ) && (!rev))) { err(msg_HPC_rev_error); return -ENODEV; } /* Check for the proper subsytem ID's * Intel uses a different SSID programming model than Compaq. * For Intel, each SSID bit identifies a PHP capability. * Also Intel HPC's may have RID=0. */ if ((rev > 2) || (vendor_id == PCI_VENDOR_ID_INTEL)) { // TODO: This code can be made to support non-Compaq or Intel subsystem IDs rc = pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vid); if (rc) { err(__FUNCTION__" : pci_read_config_word failed\n"); return rc; } dbg("Subsystem Vendor ID: %x\n", subsystem_vid); if ((subsystem_vid != PCI_VENDOR_ID_COMPAQ) && (subsystem_vid != PCI_VENDOR_ID_INTEL)) { err(msg_HPC_non_compaq_or_intel); return -ENODEV; } ctrl = (struct controller *) kmalloc(sizeof(struct controller), GFP_KERNEL); if (!ctrl) { err(__FUNCTION__" : out of memory\n"); return -ENOMEM; } memset(ctrl, 0, sizeof(struct controller)); rc = pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &subsystem_deviceid); if (rc) { err(__FUNCTION__" : pci_read_config_word failed\n"); goto err_free_ctrl; } info("Hot Plug Subsystem Device ID: %x\n", subsystem_deviceid); /* Set Vendor ID, so it can be accessed later from other functions */ ctrl->vendor_id = vendor_id; switch (subsystem_vid) { case PCI_VENDOR_ID_COMPAQ: switch (subsystem_deviceid) { case PCI_SUB_HPC_ID: /* Original 6500/7000 implementation */ ctrl->slot_switch_type = 1; // Switch is present ctrl->speed_capability = CTRL_SPEED_33MHz; ctrl->push_button = 0; // No pushbutton ctrl->pci_config_space = 1; // Index/data access to working registers 0 = not supported, 1 = supported ctrl->defeature_PHP = 1; // PHP is supported ctrl->pcix_support = 0; // PCI-X not supported ctrl->pcix_speed_capability = 0; // N/A since PCI-X not supported break; case PCI_SUB_HPC_ID2: /* First Pushbutton implementation */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; // Switch is present ctrl->speed_capability = CTRL_SPEED_33MHz; ctrl->push_button = 1; // Pushbutton is present ctrl->pci_config_space = 1; // Index/data access to working registers 0 = not supported, 1 = supported ctrl->defeature_PHP = 1; // PHP is supported ctrl->pcix_support = 0; // PCI-X not supported ctrl->pcix_speed_capability = 0; // N/A since PCI-X not supported break; case PCI_SUB_HPC_ID_INTC: /* Third party (6500/7000) */ ctrl->slot_switch_type = 1; // Switch is present ctrl->speed_capability = CTRL_SPEED_33MHz; ctrl->push_button = 0; // No pushbutton ctrl->pci_config_space = 1; // Index/data access to working registers 0 = not supported, 1 = supported ctrl->defeature_PHP = 1; // PHP is supported ctrl->pcix_support = 0; // PCI-X not supported ctrl->pcix_speed_capability = 0; // N/A since PCI-X not supported break; case PCI_SUB_HPC_ID3: /* First 66 Mhz implementation */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; // Switch is present ctrl->speed_capability = CTRL_SPEED_66MHz; ctrl->push_button = 1; // Pushbutton is present ctrl->pci_config_space = 1; // Index/data access to working registers 0 = not supported, 1 = supported ctrl->defeature_PHP = 1; // PHP is supported ctrl->pcix_support = 0; // PCI-X not supported ctrl->pcix_speed_capability = 0; // N/A since PCI-X not supported break; default: // TODO: Add SSIDs for CPQ systems that support PCI-X err(msg_HPC_not_supported); rc = -ENODEV; goto err_free_ctrl; } break; case PCI_VENDOR_ID_INTEL: /* Check for speed capability (0=33, 1=66) */ if (subsystem_deviceid & 0x0001) { ctrl->speed_capability = CTRL_SPEED_66MHz; } else { ctrl->speed_capability = CTRL_SPEED_33MHz; } /* Check for push button */ if (subsystem_deviceid & 0x0002) { /* no push button */ ctrl->push_button = 0; } else { /* push button supported */ ctrl->push_button = 1; } /* Check for slot switch type (0=mechanical, 1=not mechanical) */ if (subsystem_deviceid & 0x0004) { /* no switch */ ctrl->slot_switch_type = 0; } else { /* switch */ ctrl->slot_switch_type = 1; } /* PHP Status (0=De-feature PHP, 1=Normal operation) */ if (subsystem_deviceid & 0x0008) { ctrl->defeature_PHP = 1; // PHP supported } else { ctrl->defeature_PHP = 0; // PHP not supported } /* Alternate Base Address Register Interface (0=not supported, 1=supported) */ if (subsystem_deviceid & 0x0010) { ctrl->alternate_base_address = 1; // supported } else { ctrl->alternate_base_address = 0; // not supported } /* PCI Config Space Index (0=not supported, 1=supported) */ if (subsystem_deviceid & 0x0020) { ctrl->pci_config_space = 1; // supported } else { ctrl->pci_config_space = 0; // not supported } /* PCI-X support */ if (subsystem_deviceid & 0x0080) { /* PCI-X capable */ ctrl->pcix_support = 1; /* Frequency of operation in PCI-X mode */ if (subsystem_deviceid & 0x0040) { /* 133MHz PCI-X if bit 7 is 1 */ ctrl->pcix_speed_capability = 1; } else { /* 100MHz PCI-X if bit 7 is 1 and bit 0 is 0, */ /* 66MHz PCI-X if bit 7 is 1 and bit 0 is 1 */ ctrl->pcix_speed_capability = 0; } } else { /* Conventional PCI */ ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; } break; default: err(msg_HPC_not_supported); rc = -ENODEV; goto err_free_ctrl; } } else { err(msg_HPC_not_supported); return -ENODEV; } // Tell the user that we found one. info("Initializing the PCI hot plug controller residing on PCI bus %d\n", pdev->bus->number); dbg ("Hotplug controller capabilities:\n"); dbg (" speed_capability %s\n", ctrl->speed_capability == CTRL_SPEED_33MHz ? "33MHz" : "66Mhz"); dbg (" slot_switch_type %s\n", ctrl->slot_switch_type == 0 ? "no switch" : "switch present"); dbg (" defeature_PHP %s\n", ctrl->defeature_PHP == 0 ? "PHP not supported" : "PHP supported"); dbg (" alternate_base_address %s\n", ctrl->alternate_base_address == 0 ? "not supported" : "supported"); dbg (" pci_config_space %s\n", ctrl->pci_config_space == 0 ? "not supported" : "supported"); dbg (" pcix_speed_capability %s\n", ctrl->pcix_speed_capability == 0 ? "not supported" : "supported"); dbg (" pcix_support %s\n", ctrl->pcix_support == 0 ? "not supported" : "supported"); ctrl->pci_dev = pdev; ctrl->pci_ops = pdev->bus->ops; ctrl->bus = pdev->bus->number; ctrl->device = PCI_SLOT(pdev->devfn); ctrl->function = PCI_FUNC(pdev->devfn); ctrl->rev = rev; dbg("bus device function rev: %d %d %d %d\n", ctrl->bus, ctrl->device, ctrl->function, ctrl->rev); init_MUTEX(&ctrl->crit_sect); init_waitqueue_head(&ctrl->queue); /* initialize our threads if they haven't already been started up */ rc = one_time_init(); if (rc) { goto err_free_ctrl; } dbg("pdev = %p\n", pdev); dbg("pci resource start %lx\n", pci_resource_start(pdev, 0)); dbg("pci resource len %lx\n", pci_resource_len(pdev, 0)); if (!request_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0), MY_NAME)) { err("cannot reserve MMIO region\n"); rc = -ENOMEM; goto err_free_ctrl; } ctrl->hpc_reg = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!ctrl->hpc_reg) { err("cannot remap MMIO region %lx @ %lx\n", pci_resource_len(pdev, 0), pci_resource_start(pdev, 0)); rc = -ENODEV; goto err_free_mem_region; } // Check for 66Mhz operation // TODO: Add PCI-X support ctrl->speed = get_controller_speed(ctrl); //************************************************** // // Save configuration headers for this and // subordinate PCI buses // //************************************************** // find the physical slot number of the first hot plug slot // Get slot won't work for devices behind bridges, but // in this case it will always be called for the "base" // bus/dev/func of a slot. // CS: this is leveraging the PCIIRQ routing code from the kernel (pci-pc.c: get_irq_routing_table) rc = get_slot_mapping(ctrl->pci_ops, pdev->bus->number, (readb(ctrl->hpc_reg + SLOT_MASK) >> 4), &(ctrl->first_slot)); dbg("get_slot_mapping: first_slot = %d, returned = %d\n", ctrl->first_slot, rc); if (rc) { err(msg_initialization_err, rc); goto err_iounmap; } // Store PCI Config Space for all devices on this bus rc = cpqhp_save_config(ctrl, ctrl->bus, readb(ctrl->hpc_reg + SLOT_MASK)); if (rc) { err(__FUNCTION__": unable to save PCI configuration data, error %d\n", rc); goto err_iounmap; } /* * Get IO, memory, and IRQ resources for new devices */ rc = cpqhp_find_available_resources(ctrl, cpqhp_rom_start); ctrl->add_support = !rc; if (rc) { dbg("cpqhp_find_available_resources = 0x%x\n", rc); err("unable to locate PCI configuration resources for hot plug add.\n"); goto err_iounmap; } /* * Finish setting up the hot plug ctrl device */ ctrl->slot_device_offset = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; dbg("NumSlots %d \n", ctrl->slot_device_offset); ctrl->next_event = 0; /* Setup the slot information structures */ rc = ctrl_slot_setup(ctrl, smbios_start, smbios_table); if (rc) { err(msg_initialization_err, 6); err(__FUNCTION__": unable to save PCI configuration data, error %d\n", rc); goto err_iounmap; } /* Mask all general input interrupts */ writel(0xFFFFFFFFL, ctrl->hpc_reg + INT_MASK); /* set up the interrupt */ ctrl->interrupt = pdev->irq; dbg("HPC interrupt = %d \n", ctrl->interrupt); if (request_irq(ctrl->interrupt, (void (*)(int, void *, struct pt_regs *)) &cpqhp_ctrl_intr, SA_SHIRQ, MY_NAME, ctrl)) { err("Can't get irq %d for the hotplug pci controller\n", ctrl->interrupt); rc = -ENODEV; goto err_iounmap; } /* Enable Shift Out interrupt and clear it, also enable SERR on power fault */ temp_word = readw(ctrl->hpc_reg + MISC); temp_word |= 0x4006; writew(temp_word, ctrl->hpc_reg + MISC); // Changed 05/05/97 to clear all interrupts at start writel(0xFFFFFFFFL, ctrl->hpc_reg + INT_INPUT_CLEAR); ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); writel(0x0L, ctrl->hpc_reg + INT_MASK); if (!cpqhp_ctrl_list) { cpqhp_ctrl_list = ctrl; ctrl->next = NULL; } else { ctrl->next = cpqhp_ctrl_list; cpqhp_ctrl_list = ctrl; } // turn off empty slots here unless command line option "ON" set // Wait for exclusive access to hardware down(&ctrl->crit_sect); num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; // find first device number for the ctrl device = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; while (num_of_slots) { dbg("num_of_slots: %d\n", num_of_slots); func = cpqhp_slot_find(ctrl->bus, device, 0); if (!func) break; hp_slot = func->device - ctrl->slot_device_offset; dbg("hp_slot: %d\n", hp_slot); // We have to save the presence info for these slots temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } if (!power_mode) { if (!func->is_a_board) { green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); } } device++; num_of_slots--; } if (!power_mode) { set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); } rc = init_SERR(ctrl); if (rc) { err("init_SERR failed\n"); up(&ctrl->crit_sect); goto err_free_irq; } // Done with exclusive hardware access up(&ctrl->crit_sect); rc = cpqhp_proc_create_ctrl (ctrl); if (rc) { err("cpqhp_proc_create_ctrl failed\n"); goto err_free_irq; } return 0; err_free_irq: free_irq(ctrl->interrupt, ctrl); err_iounmap: iounmap(ctrl->hpc_reg); err_free_mem_region: release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); err_free_ctrl: kfree(ctrl); return rc; } static int one_time_init(void) { int loop; int retval = 0; static int initialized = 0; if (initialized) return 0; power_mode = 0; retval = pci_print_IRQ_route(); if (retval) goto error; dbg("Initialize + Start the notification mechanism \n"); retval = cpqhp_event_start_thread(); if (retval) goto error; dbg("Initialize slot lists\n"); for (loop = 0; loop < 256; loop++) { cpqhp_slot_list[loop] = NULL; } // FIXME: We also need to hook the NMI handler eventually. // this also needs to be worked with Christoph // register_NMI_handler(); // Map rom address cpqhp_rom_start = ioremap(ROM_PHY_ADDR, ROM_PHY_LEN); if (!cpqhp_rom_start) { err ("Could not ioremap memory region for ROM\n"); retval = -EIO;; goto error; } /* Now, map the int15 entry point if we are on compaq specific hardware */ compaq_nvram_init(cpqhp_rom_start); /* Map smbios table entry point structure */ smbios_table = detect_SMBIOS_pointer(cpqhp_rom_start, cpqhp_rom_start + ROM_PHY_LEN); if (!smbios_table) { err ("Could not find the SMBIOS pointer in memory\n"); retval = -EIO;; goto error; } smbios_start = ioremap(readl(smbios_table + ST_ADDRESS), readw(smbios_table + ST_LENGTH)); if (!smbios_start) { err ("Could not ioremap memory region taken from SMBIOS values\n"); retval = -EIO;; goto error; } retval = cpqhp_proc_init_ctrl(); if (retval) goto error; initialized = 1; return retval; error: if (cpqhp_rom_start) iounmap(cpqhp_rom_start); if (smbios_start) iounmap(smbios_start); return retval; } static void unload_cpqphpd(void) { struct pci_func *next; struct pci_func *TempSlot; int loop; u32 rc; struct controller *ctrl; struct controller *tctrl; struct pci_resource *res; struct pci_resource *tres; rc = compaq_nvram_store(cpqhp_rom_start); ctrl = cpqhp_ctrl_list; while (ctrl) { cpqhp_proc_remove_ctrl (ctrl); if (ctrl->hpc_reg) { u16 misc; rc = read_slot_enable (ctrl); writeb(0, ctrl->hpc_reg + SLOT_SERR); writel(0xFFFFFFC0L | ~rc, ctrl->hpc_reg + INT_MASK); misc = readw(ctrl->hpc_reg + MISC); misc &= 0xFFFD; writew(misc, ctrl->hpc_reg + MISC); } ctrl_slot_cleanup(ctrl); res = ctrl->io_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->p_mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->bus_head; while (res) { tres = res; res = res->next; kfree(tres); } tctrl = ctrl; ctrl = ctrl->next; kfree(tctrl); } for (loop = 0; loop < 256; loop++) { next = cpqhp_slot_list[loop]; while (next != NULL) { res = next->io_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->p_mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->bus_head; while (res) { tres = res; res = res->next; kfree(tres); } TempSlot = next; next = next->next; kfree(TempSlot); } } remove_proc_entry("hpc", 0); // Stop the notification mechanism cpqhp_event_stop_thread(); //unmap the rom address if (cpqhp_rom_start) iounmap(cpqhp_rom_start); if (smbios_start) iounmap(smbios_start); } static struct pci_device_id hpcd_pci_tbl[] __devinitdata = { { /* handle any PCI Hotplug controller */ class: ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00), class_mask: ~0, /* no matter who makes it */ vendor: PCI_ANY_ID, device: PCI_ANY_ID, subvendor: PCI_ANY_ID, subdevice: PCI_ANY_ID, }, { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(pci, hpcd_pci_tbl); static struct pci_driver cpqhpc_driver = { name: "pci_hotplug", id_table: hpcd_pci_tbl, probe: cpqhpc_probe, /* remove: cpqhpc_remove_one, */ }; static int __init cpqhpc_init(void) { int result; cpqhp_debug = debug; result = pci_module_init(&cpqhpc_driver); dbg("pci_module_init = %d\n", result); if (result) return result; info (DRIVER_DESC " version: " DRIVER_VERSION "\n"); return 0; } static void __exit cpqhpc_cleanup(void) { dbg("cleaning up proc entries\n"); cpqhp_proc_destroy_ctrl(); dbg("unload_cpqphpd()\n"); unload_cpqphpd(); dbg("pci_unregister_driver\n"); pci_unregister_driver(&cpqhpc_driver); } module_init(cpqhpc_init); module_exit(cpqhpc_cleanup);