pin_init/lib.rs
1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
4//!
5//! [Pinning][pinning] is Rust's way of ensuring data does not move.
6//!
7//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
8//! overflow.
9//!
10//! This library's main use-case is in [Rust-for-Linux]. Although this version can be used
11//! standalone.
12//!
13//! There are cases when you want to in-place initialize a struct. For example when it is very big
14//! and moving it from the stack is not an option, because it is bigger than the stack itself.
15//! Another reason would be that you need the address of the object to initialize it. This stands
16//! in direct conflict with Rust's normal process of first initializing an object and then moving
17//! it into it's final memory location. For more information, see
18//! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
19//!
20//! This library allows you to do in-place initialization safely.
21//!
22//! ## Nightly Needed for `alloc` feature
23//!
24//! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
25//! enabled and thus this feature can only be used with a nightly compiler. When enabling the
26//! `alloc` feature, the user will be required to activate `allocator_api` as well.
27//!
28//! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
29//!
30//! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
31//! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
32//! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
33//! mode.
34//!
35//! ## Nightly needed for `unsafe-pinned` feature
36//!
37//! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type.
38//! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735)
39//! and therefore a nightly compiler. Note that this feature is not enabled by default.
40//!
41//! # Overview
42//!
43//! To initialize a `struct` with an in-place constructor you will need two things:
44//! - an in-place constructor,
45//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
46//! [`Box<T>`] or any other smart pointer that supports this library).
47//!
48//! To get an in-place constructor there are generally three options:
49//! - directly creating an in-place constructor using the [`pin_init!`] macro,
50//! - a custom function/macro returning an in-place constructor provided by someone else,
51//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
52//!
53//! Aside from pinned initialization, this library also supports in-place construction without
54//! pinning, the macros/types/functions are generally named like the pinned variants without the
55//! `pin_` prefix.
56//!
57//! # Examples
58//!
59//! Throughout the examples we will often make use of the `CMutex` type which can be found in
60//! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
61//! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
62//! requires it to be pinned to be locked and thus is a prime candidate for using this library.
63//!
64//! ## Using the [`pin_init!`] macro
65//!
66//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
67//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
68//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
69//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
70//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
71//!
72//! ```rust
73//! # #![expect(clippy::disallowed_names)]
74//! # #![feature(allocator_api)]
75//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
76//! # use core::pin::Pin;
77//! use pin_init::{pin_data, pin_init, InPlaceInit};
78//!
79//! #[pin_data]
80//! struct Foo {
81//! #[pin]
82//! a: CMutex<usize>,
83//! b: u32,
84//! }
85//!
86//! let foo = pin_init!(Foo {
87//! a <- CMutex::new(42),
88//! b: 24,
89//! });
90//! # let _ = Box::pin_init(foo);
91//! ```
92//!
93//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
94//! (or just the stack) to actually initialize a `Foo`:
95//!
96//! ```rust
97//! # #![expect(clippy::disallowed_names)]
98//! # #![feature(allocator_api)]
99//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
100//! # use core::{alloc::AllocError, pin::Pin};
101//! # use pin_init::*;
102//! #
103//! # #[pin_data]
104//! # struct Foo {
105//! # #[pin]
106//! # a: CMutex<usize>,
107//! # b: u32,
108//! # }
109//! #
110//! # let foo = pin_init!(Foo {
111//! # a <- CMutex::new(42),
112//! # b: 24,
113//! # });
114//! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
115//! ```
116//!
117//! For more information see the [`pin_init!`] macro.
118//!
119//! ## Using a custom function/macro that returns an initializer
120//!
121//! Many types that use this library supply a function/macro that returns an initializer, because
122//! the above method only works for types where you can access the fields.
123//!
124//! ```rust
125//! # #![feature(allocator_api)]
126//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
127//! # use pin_init::*;
128//! # use std::sync::Arc;
129//! # use core::pin::Pin;
130//! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
131//! ```
132//!
133//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
134//!
135//! ```rust
136//! # #![feature(allocator_api)]
137//! # use pin_init::*;
138//! # #[path = "../examples/error.rs"] mod error; use error::Error;
139//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
140//! #[pin_data]
141//! struct DriverData {
142//! #[pin]
143//! status: CMutex<i32>,
144//! buffer: Box<[u8; 1_000_000]>,
145//! }
146//!
147//! impl DriverData {
148//! fn new() -> impl PinInit<Self, Error> {
149//! try_pin_init!(Self {
150//! status <- CMutex::new(0),
151//! buffer: Box::init(pin_init::init_zeroed())?,
152//! }? Error)
153//! }
154//! }
155//! ```
156//!
157//! ## Manual creation of an initializer
158//!
159//! Often when working with primitives the previous approaches are not sufficient. That is where
160//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
161//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
162//! actually does the initialization in the correct way. Here are the things to look out for
163//! (we are calling the parameter to the closure `slot`):
164//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
165//! `slot` now contains a valid bit pattern for the type `T`,
166//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
167//! you need to take care to clean up anything if your initialization fails mid-way,
168//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
169//! `slot` gets called.
170//!
171//! ```rust
172//! # #![feature(extern_types)]
173//! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
174//! use core::{
175//! ptr::addr_of_mut,
176//! marker::PhantomPinned,
177//! cell::UnsafeCell,
178//! pin::Pin,
179//! mem::MaybeUninit,
180//! };
181//! mod bindings {
182//! #[repr(C)]
183//! pub struct foo {
184//! /* fields from C ... */
185//! }
186//! extern "C" {
187//! pub fn init_foo(ptr: *mut foo);
188//! pub fn destroy_foo(ptr: *mut foo);
189//! #[must_use = "you must check the error return code"]
190//! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
191//! }
192//! }
193//!
194//! /// # Invariants
195//! ///
196//! /// `foo` is always initialized
197//! #[pin_data(PinnedDrop)]
198//! pub struct RawFoo {
199//! #[pin]
200//! _p: PhantomPinned,
201//! #[pin]
202//! foo: UnsafeCell<MaybeUninit<bindings::foo>>,
203//! }
204//!
205//! impl RawFoo {
206//! pub fn new(flags: u32) -> impl PinInit<Self, i32> {
207//! // SAFETY:
208//! // - when the closure returns `Ok(())`, then it has successfully initialized and
209//! // enabled `foo`,
210//! // - when it returns `Err(e)`, then it has cleaned up before
211//! unsafe {
212//! pin_init_from_closure(move |slot: *mut Self| {
213//! // `slot` contains uninit memory, avoid creating a reference.
214//! let foo = addr_of_mut!((*slot).foo);
215//! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
216//!
217//! // Initialize the `foo`
218//! bindings::init_foo(foo);
219//!
220//! // Try to enable it.
221//! let err = bindings::enable_foo(foo, flags);
222//! if err != 0 {
223//! // Enabling has failed, first clean up the foo and then return the error.
224//! bindings::destroy_foo(foo);
225//! Err(err)
226//! } else {
227//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
228//! Ok(())
229//! }
230//! })
231//! }
232//! }
233//! }
234//!
235//! #[pinned_drop]
236//! impl PinnedDrop for RawFoo {
237//! fn drop(self: Pin<&mut Self>) {
238//! // SAFETY: Since `foo` is initialized, destroying is safe.
239//! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
240//! }
241//! }
242//! ```
243//!
244//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
245//! the `kernel` crate. The [`sync`] module is a good starting point.
246//!
247//! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
248//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
249//! [structurally pinned fields]:
250//! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
251//! [stack]: crate::stack_pin_init
252#![cfg_attr(
253 kernel,
254 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
255)]
256#![cfg_attr(
257 kernel,
258 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
259)]
260#![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
261#![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
262//! [`impl PinInit<Foo>`]: crate::PinInit
263//! [`impl PinInit<T, E>`]: crate::PinInit
264//! [`impl Init<T, E>`]: crate::Init
265//! [Rust-for-Linux]: https://rust-for-linux.com/
266
267#![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))]
268#![cfg_attr(
269 all(
270 any(feature = "alloc", feature = "std"),
271 not(RUSTC_NEW_UNINIT_IS_STABLE)
272 ),
273 feature(new_uninit)
274)]
275#![forbid(missing_docs, unsafe_op_in_unsafe_fn)]
276#![cfg_attr(not(feature = "std"), no_std)]
277#![cfg_attr(feature = "alloc", feature(allocator_api))]
278#![cfg_attr(
279 all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED),
280 feature(unsafe_pinned)
281)]
282
283use core::{
284 cell::UnsafeCell,
285 convert::Infallible,
286 marker::PhantomData,
287 mem::MaybeUninit,
288 num::*,
289 pin::Pin,
290 ptr::{self, NonNull},
291};
292
293#[doc(hidden)]
294pub mod __internal;
295#[doc(hidden)]
296pub mod macros;
297
298#[cfg(any(feature = "std", feature = "alloc"))]
299mod alloc;
300#[cfg(any(feature = "std", feature = "alloc"))]
301pub use alloc::InPlaceInit;
302
303/// Used to specify the pinning information of the fields of a struct.
304///
305/// This is somewhat similar in purpose as
306/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
307/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
308/// field you want to structurally pin.
309///
310/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
311/// then `#[pin]` directs the type of initializer that is required.
312///
313/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
314/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
315/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
316///
317/// # Examples
318///
319/// ```
320/// # #![feature(allocator_api)]
321/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
322/// use pin_init::pin_data;
323///
324/// enum Command {
325/// /* ... */
326/// }
327///
328/// #[pin_data]
329/// struct DriverData {
330/// #[pin]
331/// queue: CMutex<Vec<Command>>,
332/// buf: Box<[u8; 1024 * 1024]>,
333/// }
334/// ```
335///
336/// ```
337/// # #![feature(allocator_api)]
338/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
339/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
340/// use core::pin::Pin;
341/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
342///
343/// enum Command {
344/// /* ... */
345/// }
346///
347/// #[pin_data(PinnedDrop)]
348/// struct DriverData {
349/// #[pin]
350/// queue: CMutex<Vec<Command>>,
351/// buf: Box<[u8; 1024 * 1024]>,
352/// raw_info: *mut bindings::info,
353/// }
354///
355/// #[pinned_drop]
356/// impl PinnedDrop for DriverData {
357/// fn drop(self: Pin<&mut Self>) {
358/// unsafe { bindings::destroy_info(self.raw_info) };
359/// }
360/// }
361/// ```
362pub use ::pin_init_internal::pin_data;
363
364/// Used to implement `PinnedDrop` safely.
365///
366/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
367///
368/// # Examples
369///
370/// ```
371/// # #![feature(allocator_api)]
372/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
373/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
374/// use core::pin::Pin;
375/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
376///
377/// enum Command {
378/// /* ... */
379/// }
380///
381/// #[pin_data(PinnedDrop)]
382/// struct DriverData {
383/// #[pin]
384/// queue: CMutex<Vec<Command>>,
385/// buf: Box<[u8; 1024 * 1024]>,
386/// raw_info: *mut bindings::info,
387/// }
388///
389/// #[pinned_drop]
390/// impl PinnedDrop for DriverData {
391/// fn drop(self: Pin<&mut Self>) {
392/// unsafe { bindings::destroy_info(self.raw_info) };
393/// }
394/// }
395/// ```
396pub use ::pin_init_internal::pinned_drop;
397
398/// Derives the [`Zeroable`] trait for the given `struct` or `union`.
399///
400/// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`]
401/// trait.
402///
403/// # Examples
404///
405/// ```
406/// use pin_init::Zeroable;
407///
408/// #[derive(Zeroable)]
409/// pub struct DriverData {
410/// pub(crate) id: i64,
411/// buf_ptr: *mut u8,
412/// len: usize,
413/// }
414/// ```
415///
416/// ```
417/// use pin_init::Zeroable;
418///
419/// #[derive(Zeroable)]
420/// pub union SignCast {
421/// signed: i64,
422/// unsigned: u64,
423/// }
424/// ```
425pub use ::pin_init_internal::Zeroable;
426
427/// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement
428/// [`Zeroable`].
429///
430/// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field
431/// doesn't implement [`Zeroable`].
432///
433/// # Examples
434///
435/// ```
436/// use pin_init::MaybeZeroable;
437///
438/// // implmements `Zeroable`
439/// #[derive(MaybeZeroable)]
440/// pub struct DriverData {
441/// pub(crate) id: i64,
442/// buf_ptr: *mut u8,
443/// len: usize,
444/// }
445///
446/// // does not implmement `Zeroable`
447/// #[derive(MaybeZeroable)]
448/// pub struct DriverData2 {
449/// pub(crate) id: i64,
450/// buf_ptr: *mut u8,
451/// len: usize,
452/// // this field doesn't implement `Zeroable`
453/// other_data: &'static i32,
454/// }
455/// ```
456pub use ::pin_init_internal::MaybeZeroable;
457
458/// Initialize and pin a type directly on the stack.
459///
460/// # Examples
461///
462/// ```rust
463/// # #![expect(clippy::disallowed_names)]
464/// # #![feature(allocator_api)]
465/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
466/// # use pin_init::*;
467/// # use core::pin::Pin;
468/// #[pin_data]
469/// struct Foo {
470/// #[pin]
471/// a: CMutex<usize>,
472/// b: Bar,
473/// }
474///
475/// #[pin_data]
476/// struct Bar {
477/// x: u32,
478/// }
479///
480/// stack_pin_init!(let foo = pin_init!(Foo {
481/// a <- CMutex::new(42),
482/// b: Bar {
483/// x: 64,
484/// },
485/// }));
486/// let foo: Pin<&mut Foo> = foo;
487/// println!("a: {}", &*foo.a.lock());
488/// ```
489///
490/// # Syntax
491///
492/// A normal `let` binding with optional type annotation. The expression is expected to implement
493/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
494/// type, then use [`stack_try_pin_init!`].
495#[macro_export]
496macro_rules! stack_pin_init {
497 (let $var:ident $(: $t:ty)? = $val:expr) => {
498 let val = $val;
499 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
500 let mut $var = match $crate::__internal::StackInit::init($var, val) {
501 Ok(res) => res,
502 Err(x) => {
503 let x: ::core::convert::Infallible = x;
504 match x {}
505 }
506 };
507 };
508}
509
510/// Initialize and pin a type directly on the stack.
511///
512/// # Examples
513///
514/// ```rust
515/// # #![expect(clippy::disallowed_names)]
516/// # #![feature(allocator_api)]
517/// # #[path = "../examples/error.rs"] mod error; use error::Error;
518/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
519/// # use pin_init::*;
520/// #[pin_data]
521/// struct Foo {
522/// #[pin]
523/// a: CMutex<usize>,
524/// b: Box<Bar>,
525/// }
526///
527/// struct Bar {
528/// x: u32,
529/// }
530///
531/// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
532/// a <- CMutex::new(42),
533/// b: Box::try_new(Bar {
534/// x: 64,
535/// })?,
536/// }? Error));
537/// let foo = foo.unwrap();
538/// println!("a: {}", &*foo.a.lock());
539/// ```
540///
541/// ```rust
542/// # #![expect(clippy::disallowed_names)]
543/// # #![feature(allocator_api)]
544/// # #[path = "../examples/error.rs"] mod error; use error::Error;
545/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
546/// # use pin_init::*;
547/// #[pin_data]
548/// struct Foo {
549/// #[pin]
550/// a: CMutex<usize>,
551/// b: Box<Bar>,
552/// }
553///
554/// struct Bar {
555/// x: u32,
556/// }
557///
558/// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
559/// a <- CMutex::new(42),
560/// b: Box::try_new(Bar {
561/// x: 64,
562/// })?,
563/// }? Error));
564/// println!("a: {}", &*foo.a.lock());
565/// # Ok::<_, Error>(())
566/// ```
567///
568/// # Syntax
569///
570/// A normal `let` binding with optional type annotation. The expression is expected to implement
571/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
572/// `=` will propagate this error.
573#[macro_export]
574macro_rules! stack_try_pin_init {
575 (let $var:ident $(: $t:ty)? = $val:expr) => {
576 let val = $val;
577 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
578 let mut $var = $crate::__internal::StackInit::init($var, val);
579 };
580 (let $var:ident $(: $t:ty)? =? $val:expr) => {
581 let val = $val;
582 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
583 let mut $var = $crate::__internal::StackInit::init($var, val)?;
584 };
585}
586
587/// Construct an in-place, pinned initializer for `struct`s.
588///
589/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
590/// [`try_pin_init!`].
591///
592/// The syntax is almost identical to that of a normal `struct` initializer:
593///
594/// ```rust
595/// # use pin_init::*;
596/// # use core::pin::Pin;
597/// #[pin_data]
598/// struct Foo {
599/// a: usize,
600/// b: Bar,
601/// }
602///
603/// #[pin_data]
604/// struct Bar {
605/// x: u32,
606/// }
607///
608/// # fn demo() -> impl PinInit<Foo> {
609/// let a = 42;
610///
611/// let initializer = pin_init!(Foo {
612/// a,
613/// b: Bar {
614/// x: 64,
615/// },
616/// });
617/// # initializer }
618/// # Box::pin_init(demo()).unwrap();
619/// ```
620///
621/// Arbitrary Rust expressions can be used to set the value of a variable.
622///
623/// The fields are initialized in the order that they appear in the initializer. So it is possible
624/// to read already initialized fields using raw pointers.
625///
626/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
627/// initializer.
628///
629/// # Init-functions
630///
631/// When working with this library it is often desired to let others construct your types without
632/// giving access to all fields. This is where you would normally write a plain function `new` that
633/// would return a new instance of your type. With this library that is also possible. However,
634/// there are a few extra things to keep in mind.
635///
636/// To create an initializer function, simply declare it like this:
637///
638/// ```rust
639/// # use pin_init::*;
640/// # use core::pin::Pin;
641/// # #[pin_data]
642/// # struct Foo {
643/// # a: usize,
644/// # b: Bar,
645/// # }
646/// # #[pin_data]
647/// # struct Bar {
648/// # x: u32,
649/// # }
650/// impl Foo {
651/// fn new() -> impl PinInit<Self> {
652/// pin_init!(Self {
653/// a: 42,
654/// b: Bar {
655/// x: 64,
656/// },
657/// })
658/// }
659/// }
660/// ```
661///
662/// Users of `Foo` can now create it like this:
663///
664/// ```rust
665/// # #![expect(clippy::disallowed_names)]
666/// # use pin_init::*;
667/// # use core::pin::Pin;
668/// # #[pin_data]
669/// # struct Foo {
670/// # a: usize,
671/// # b: Bar,
672/// # }
673/// # #[pin_data]
674/// # struct Bar {
675/// # x: u32,
676/// # }
677/// # impl Foo {
678/// # fn new() -> impl PinInit<Self> {
679/// # pin_init!(Self {
680/// # a: 42,
681/// # b: Bar {
682/// # x: 64,
683/// # },
684/// # })
685/// # }
686/// # }
687/// let foo = Box::pin_init(Foo::new());
688/// ```
689///
690/// They can also easily embed it into their own `struct`s:
691///
692/// ```rust
693/// # use pin_init::*;
694/// # use core::pin::Pin;
695/// # #[pin_data]
696/// # struct Foo {
697/// # a: usize,
698/// # b: Bar,
699/// # }
700/// # #[pin_data]
701/// # struct Bar {
702/// # x: u32,
703/// # }
704/// # impl Foo {
705/// # fn new() -> impl PinInit<Self> {
706/// # pin_init!(Self {
707/// # a: 42,
708/// # b: Bar {
709/// # x: 64,
710/// # },
711/// # })
712/// # }
713/// # }
714/// #[pin_data]
715/// struct FooContainer {
716/// #[pin]
717/// foo1: Foo,
718/// #[pin]
719/// foo2: Foo,
720/// other: u32,
721/// }
722///
723/// impl FooContainer {
724/// fn new(other: u32) -> impl PinInit<Self> {
725/// pin_init!(Self {
726/// foo1 <- Foo::new(),
727/// foo2 <- Foo::new(),
728/// other,
729/// })
730/// }
731/// }
732/// ```
733///
734/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
735/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
736/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
737///
738/// # Syntax
739///
740/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
741/// the following modifications is expected:
742/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
743/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
744/// pointer named `this` inside of the initializer.
745/// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the
746/// struct, this initializes every field with 0 and then runs all initializers specified in the
747/// body. This can only be done if [`Zeroable`] is implemented for the struct.
748///
749/// For instance:
750///
751/// ```rust
752/// # use pin_init::*;
753/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
754/// #[pin_data]
755/// #[derive(Zeroable)]
756/// struct Buf {
757/// // `ptr` points into `buf`.
758/// ptr: *mut u8,
759/// buf: [u8; 64],
760/// #[pin]
761/// pin: PhantomPinned,
762/// }
763///
764/// let init = pin_init!(&this in Buf {
765/// buf: [0; 64],
766/// // SAFETY: TODO.
767/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
768/// pin: PhantomPinned,
769/// });
770/// let init = pin_init!(Buf {
771/// buf: [1; 64],
772/// ..Zeroable::init_zeroed()
773/// });
774/// ```
775///
776/// [`NonNull<Self>`]: core::ptr::NonNull
777// For a detailed example of how this macro works, see the module documentation of the hidden
778// module `macros` inside of `macros.rs`.
779#[macro_export]
780macro_rules! pin_init {
781 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
782 $($fields:tt)*
783 }) => {
784 $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
785 $($fields)*
786 }? ::core::convert::Infallible)
787 };
788}
789
790/// Construct an in-place, fallible pinned initializer for `struct`s.
791///
792/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
793///
794/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
795/// initialization and return the error.
796///
797/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
798/// initialization fails, the memory can be safely deallocated without any further modifications.
799///
800/// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type`
801/// after the `struct` initializer to specify the error type you want to use.
802///
803/// # Examples
804///
805/// ```rust
806/// # #![feature(allocator_api)]
807/// # #[path = "../examples/error.rs"] mod error; use error::Error;
808/// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, init_zeroed};
809///
810/// #[pin_data]
811/// struct BigBuf {
812/// big: Box<[u8; 1024 * 1024 * 1024]>,
813/// small: [u8; 1024 * 1024],
814/// ptr: *mut u8,
815/// }
816///
817/// impl BigBuf {
818/// fn new() -> impl PinInit<Self, Error> {
819/// try_pin_init!(Self {
820/// big: Box::init(init_zeroed())?,
821/// small: [0; 1024 * 1024],
822/// ptr: core::ptr::null_mut(),
823/// }? Error)
824/// }
825/// }
826/// # let _ = Box::pin_init(BigBuf::new());
827/// ```
828// For a detailed example of how this macro works, see the module documentation of the hidden
829// module `macros` inside of `macros.rs`.
830#[macro_export]
831macro_rules! try_pin_init {
832 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
833 $($fields:tt)*
834 }? $err:ty) => {
835 $crate::__init_internal!(
836 @this($($this)?),
837 @typ($t $(::<$($generics),*>)? ),
838 @fields($($fields)*),
839 @error($err),
840 @data(PinData, use_data),
841 @has_data(HasPinData, __pin_data),
842 @construct_closure(pin_init_from_closure),
843 @munch_fields($($fields)*),
844 )
845 }
846}
847
848/// Construct an in-place initializer for `struct`s.
849///
850/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
851/// [`try_init!`].
852///
853/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
854/// - `unsafe` code must guarantee either full initialization or return an error and allow
855/// deallocation of the memory.
856/// - the fields are initialized in the order given in the initializer.
857/// - no references to fields are allowed to be created inside of the initializer.
858///
859/// This initializer is for initializing data in-place that might later be moved. If you want to
860/// pin-initialize, use [`pin_init!`].
861///
862/// # Examples
863///
864/// ```rust
865/// # #![feature(allocator_api)]
866/// # #[path = "../examples/error.rs"] mod error; use error::Error;
867/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
868/// # use pin_init::InPlaceInit;
869/// use pin_init::{init, Init, init_zeroed};
870///
871/// struct BigBuf {
872/// small: [u8; 1024 * 1024],
873/// }
874///
875/// impl BigBuf {
876/// fn new() -> impl Init<Self> {
877/// init!(Self {
878/// small <- init_zeroed(),
879/// })
880/// }
881/// }
882/// # let _ = Box::init(BigBuf::new());
883/// ```
884// For a detailed example of how this macro works, see the module documentation of the hidden
885// module `macros` inside of `macros.rs`.
886#[macro_export]
887macro_rules! init {
888 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
889 $($fields:tt)*
890 }) => {
891 $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? {
892 $($fields)*
893 }? ::core::convert::Infallible)
894 }
895}
896
897/// Construct an in-place fallible initializer for `struct`s.
898///
899/// If the initialization can complete without error (or [`Infallible`]), then use
900/// [`init!`].
901///
902/// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error
903/// via `? $type` after the `struct` initializer.
904/// The safety caveats from [`try_pin_init!`] also apply:
905/// - `unsafe` code must guarantee either full initialization or return an error and allow
906/// deallocation of the memory.
907/// - the fields are initialized in the order given in the initializer.
908/// - no references to fields are allowed to be created inside of the initializer.
909///
910/// # Examples
911///
912/// ```rust
913/// # #![feature(allocator_api)]
914/// # use core::alloc::AllocError;
915/// # use pin_init::InPlaceInit;
916/// use pin_init::{try_init, Init, init_zeroed};
917///
918/// struct BigBuf {
919/// big: Box<[u8; 1024 * 1024 * 1024]>,
920/// small: [u8; 1024 * 1024],
921/// }
922///
923/// impl BigBuf {
924/// fn new() -> impl Init<Self, AllocError> {
925/// try_init!(Self {
926/// big: Box::init(init_zeroed())?,
927/// small: [0; 1024 * 1024],
928/// }? AllocError)
929/// }
930/// }
931/// # let _ = Box::init(BigBuf::new());
932/// ```
933// For a detailed example of how this macro works, see the module documentation of the hidden
934// module `macros` inside of `macros.rs`.
935#[macro_export]
936macro_rules! try_init {
937 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
938 $($fields:tt)*
939 }? $err:ty) => {
940 $crate::__init_internal!(
941 @this($($this)?),
942 @typ($t $(::<$($generics),*>)?),
943 @fields($($fields)*),
944 @error($err),
945 @data(InitData, /*no use_data*/),
946 @has_data(HasInitData, __init_data),
947 @construct_closure(init_from_closure),
948 @munch_fields($($fields)*),
949 )
950 }
951}
952
953/// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
954/// structurally pinned.
955///
956/// # Example
957///
958/// This will succeed:
959/// ```
960/// use pin_init::{pin_data, assert_pinned};
961///
962/// #[pin_data]
963/// struct MyStruct {
964/// #[pin]
965/// some_field: u64,
966/// }
967///
968/// assert_pinned!(MyStruct, some_field, u64);
969/// ```
970///
971/// This will fail:
972/// ```compile_fail
973/// use pin_init::{pin_data, assert_pinned};
974///
975/// #[pin_data]
976/// struct MyStruct {
977/// some_field: u64,
978/// }
979///
980/// assert_pinned!(MyStruct, some_field, u64);
981/// ```
982///
983/// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
984/// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
985/// only be used when the macro is invoked from a function body.
986/// ```
987/// # use core::pin::Pin;
988/// use pin_init::{pin_data, assert_pinned};
989///
990/// #[pin_data]
991/// struct Foo<T> {
992/// #[pin]
993/// elem: T,
994/// }
995///
996/// impl<T> Foo<T> {
997/// fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
998/// assert_pinned!(Foo<T>, elem, T, inline);
999///
1000/// // SAFETY: The field is structurally pinned.
1001/// unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
1002/// }
1003/// }
1004/// ```
1005#[macro_export]
1006macro_rules! assert_pinned {
1007 ($ty:ty, $field:ident, $field_ty:ty, inline) => {
1008 let _ = move |ptr: *mut $field_ty| {
1009 // SAFETY: This code is unreachable.
1010 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() };
1011 let init = $crate::__internal::AlwaysFail::<$field_ty>::new();
1012 // SAFETY: This code is unreachable.
1013 unsafe { data.$field(ptr, init) }.ok();
1014 };
1015 };
1016
1017 ($ty:ty, $field:ident, $field_ty:ty) => {
1018 const _: () = {
1019 $crate::assert_pinned!($ty, $field, $field_ty, inline);
1020 };
1021 };
1022}
1023
1024/// A pin-initializer for the type `T`.
1025///
1026/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1027/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
1028///
1029/// Also see the [module description](self).
1030///
1031/// # Safety
1032///
1033/// When implementing this trait you will need to take great care. Also there are probably very few
1034/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
1035///
1036/// The [`PinInit::__pinned_init`] function:
1037/// - returns `Ok(())` if it initialized every field of `slot`,
1038/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1039/// - `slot` can be deallocated without UB occurring,
1040/// - `slot` does not need to be dropped,
1041/// - `slot` is not partially initialized.
1042/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1043///
1044#[cfg_attr(
1045 kernel,
1046 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1047)]
1048#[cfg_attr(
1049 kernel,
1050 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1051)]
1052#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1053#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1054#[must_use = "An initializer must be used in order to create its value."]
1055pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
1056 /// Initializes `slot`.
1057 ///
1058 /// # Safety
1059 ///
1060 /// - `slot` is a valid pointer to uninitialized memory.
1061 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1062 /// deallocate.
1063 /// - `slot` will not move until it is dropped, i.e. it will be pinned.
1064 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
1065
1066 /// First initializes the value using `self` then calls the function `f` with the initialized
1067 /// value.
1068 ///
1069 /// If `f` returns an error the value is dropped and the initializer will forward the error.
1070 ///
1071 /// # Examples
1072 ///
1073 /// ```rust
1074 /// # #![feature(allocator_api)]
1075 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1076 /// # use pin_init::*;
1077 /// let mtx_init = CMutex::new(42);
1078 /// // Make the initializer print the value.
1079 /// let mtx_init = mtx_init.pin_chain(|mtx| {
1080 /// println!("{:?}", mtx.get_data_mut());
1081 /// Ok(())
1082 /// });
1083 /// ```
1084 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
1085 where
1086 F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1087 {
1088 ChainPinInit(self, f, PhantomData)
1089 }
1090}
1091
1092/// An initializer returned by [`PinInit::pin_chain`].
1093pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1094
1095// SAFETY: The `__pinned_init` function is implemented such that it
1096// - returns `Ok(())` on successful initialization,
1097// - returns `Err(err)` on error and in this case `slot` will be dropped.
1098// - considers `slot` pinned.
1099unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
1100where
1101 I: PinInit<T, E>,
1102 F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1103{
1104 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1105 // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
1106 unsafe { self.0.__pinned_init(slot)? };
1107 // SAFETY: The above call initialized `slot` and we still have unique access.
1108 let val = unsafe { &mut *slot };
1109 // SAFETY: `slot` is considered pinned.
1110 let val = unsafe { Pin::new_unchecked(val) };
1111 // SAFETY: `slot` was initialized above.
1112 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1113 }
1114}
1115
1116/// An initializer for `T`.
1117///
1118/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1119/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
1120/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1121///
1122/// Also see the [module description](self).
1123///
1124/// # Safety
1125///
1126/// When implementing this trait you will need to take great care. Also there are probably very few
1127/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1128///
1129/// The [`Init::__init`] function:
1130/// - returns `Ok(())` if it initialized every field of `slot`,
1131/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1132/// - `slot` can be deallocated without UB occurring,
1133/// - `slot` does not need to be dropped,
1134/// - `slot` is not partially initialized.
1135/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1136///
1137/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1138/// code as `__init`.
1139///
1140/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1141/// move the pointee after initialization.
1142///
1143#[cfg_attr(
1144 kernel,
1145 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1146)]
1147#[cfg_attr(
1148 kernel,
1149 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1150)]
1151#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1152#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1153#[must_use = "An initializer must be used in order to create its value."]
1154pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1155 /// Initializes `slot`.
1156 ///
1157 /// # Safety
1158 ///
1159 /// - `slot` is a valid pointer to uninitialized memory.
1160 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1161 /// deallocate.
1162 unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1163
1164 /// First initializes the value using `self` then calls the function `f` with the initialized
1165 /// value.
1166 ///
1167 /// If `f` returns an error the value is dropped and the initializer will forward the error.
1168 ///
1169 /// # Examples
1170 ///
1171 /// ```rust
1172 /// # #![expect(clippy::disallowed_names)]
1173 /// use pin_init::{init, init_zeroed, Init};
1174 ///
1175 /// struct Foo {
1176 /// buf: [u8; 1_000_000],
1177 /// }
1178 ///
1179 /// impl Foo {
1180 /// fn setup(&mut self) {
1181 /// println!("Setting up foo");
1182 /// }
1183 /// }
1184 ///
1185 /// let foo = init!(Foo {
1186 /// buf <- init_zeroed()
1187 /// }).chain(|foo| {
1188 /// foo.setup();
1189 /// Ok(())
1190 /// });
1191 /// ```
1192 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1193 where
1194 F: FnOnce(&mut T) -> Result<(), E>,
1195 {
1196 ChainInit(self, f, PhantomData)
1197 }
1198}
1199
1200/// An initializer returned by [`Init::chain`].
1201pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1202
1203// SAFETY: The `__init` function is implemented such that it
1204// - returns `Ok(())` on successful initialization,
1205// - returns `Err(err)` on error and in this case `slot` will be dropped.
1206unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1207where
1208 I: Init<T, E>,
1209 F: FnOnce(&mut T) -> Result<(), E>,
1210{
1211 unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1212 // SAFETY: All requirements fulfilled since this function is `__init`.
1213 unsafe { self.0.__pinned_init(slot)? };
1214 // SAFETY: The above call initialized `slot` and we still have unique access.
1215 (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1216 // SAFETY: `slot` was initialized above.
1217 unsafe { core::ptr::drop_in_place(slot) })
1218 }
1219}
1220
1221// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1222unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1223where
1224 I: Init<T, E>,
1225 F: FnOnce(&mut T) -> Result<(), E>,
1226{
1227 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1228 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1229 unsafe { self.__init(slot) }
1230 }
1231}
1232
1233/// Creates a new [`PinInit<T, E>`] from the given closure.
1234///
1235/// # Safety
1236///
1237/// The closure:
1238/// - returns `Ok(())` if it initialized every field of `slot`,
1239/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1240/// - `slot` can be deallocated without UB occurring,
1241/// - `slot` does not need to be dropped,
1242/// - `slot` is not partially initialized.
1243/// - may assume that the `slot` does not move if `T: !Unpin`,
1244/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1245#[inline]
1246pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1247 f: impl FnOnce(*mut T) -> Result<(), E>,
1248) -> impl PinInit<T, E> {
1249 __internal::InitClosure(f, PhantomData)
1250}
1251
1252/// Creates a new [`Init<T, E>`] from the given closure.
1253///
1254/// # Safety
1255///
1256/// The closure:
1257/// - returns `Ok(())` if it initialized every field of `slot`,
1258/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1259/// - `slot` can be deallocated without UB occurring,
1260/// - `slot` does not need to be dropped,
1261/// - `slot` is not partially initialized.
1262/// - the `slot` may move after initialization.
1263/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1264#[inline]
1265pub const unsafe fn init_from_closure<T: ?Sized, E>(
1266 f: impl FnOnce(*mut T) -> Result<(), E>,
1267) -> impl Init<T, E> {
1268 __internal::InitClosure(f, PhantomData)
1269}
1270
1271/// Changes the to be initialized type.
1272///
1273/// # Safety
1274///
1275/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1276/// pointer must result in a valid `U`.
1277#[expect(clippy::let_and_return)]
1278pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> {
1279 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1280 // requirements.
1281 let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) };
1282 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1283 // cycle when computing the type returned by this function)
1284 res
1285}
1286
1287/// Changes the to be initialized type.
1288///
1289/// # Safety
1290///
1291/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1292/// pointer must result in a valid `U`.
1293#[expect(clippy::let_and_return)]
1294pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> {
1295 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1296 // requirements.
1297 let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) };
1298 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1299 // cycle when computing the type returned by this function)
1300 res
1301}
1302
1303/// An initializer that leaves the memory uninitialized.
1304///
1305/// The initializer is a no-op. The `slot` memory is not changed.
1306#[inline]
1307pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1308 // SAFETY: The memory is allowed to be uninitialized.
1309 unsafe { init_from_closure(|_| Ok(())) }
1310}
1311
1312/// Initializes an array by initializing each element via the provided initializer.
1313///
1314/// # Examples
1315///
1316/// ```rust
1317/// # use pin_init::*;
1318/// use pin_init::init_array_from_fn;
1319/// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1320/// assert_eq!(array.len(), 1_000);
1321/// ```
1322pub fn init_array_from_fn<I, const N: usize, T, E>(
1323 mut make_init: impl FnMut(usize) -> I,
1324) -> impl Init<[T; N], E>
1325where
1326 I: Init<T, E>,
1327{
1328 let init = move |slot: *mut [T; N]| {
1329 let slot = slot.cast::<T>();
1330 for i in 0..N {
1331 let init = make_init(i);
1332 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1333 let ptr = unsafe { slot.add(i) };
1334 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1335 // requirements.
1336 if let Err(e) = unsafe { init.__init(ptr) } {
1337 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1338 // `Err` below, `slot` will be considered uninitialized memory.
1339 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1340 return Err(e);
1341 }
1342 }
1343 Ok(())
1344 };
1345 // SAFETY: The initializer above initializes every element of the array. On failure it drops
1346 // any initialized elements and returns `Err`.
1347 unsafe { init_from_closure(init) }
1348}
1349
1350/// Initializes an array by initializing each element via the provided initializer.
1351///
1352/// # Examples
1353///
1354/// ```rust
1355/// # #![feature(allocator_api)]
1356/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1357/// # use pin_init::*;
1358/// # use core::pin::Pin;
1359/// use pin_init::pin_init_array_from_fn;
1360/// use std::sync::Arc;
1361/// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1362/// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1363/// assert_eq!(array.len(), 1_000);
1364/// ```
1365pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1366 mut make_init: impl FnMut(usize) -> I,
1367) -> impl PinInit<[T; N], E>
1368where
1369 I: PinInit<T, E>,
1370{
1371 let init = move |slot: *mut [T; N]| {
1372 let slot = slot.cast::<T>();
1373 for i in 0..N {
1374 let init = make_init(i);
1375 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1376 let ptr = unsafe { slot.add(i) };
1377 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1378 // requirements.
1379 if let Err(e) = unsafe { init.__pinned_init(ptr) } {
1380 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1381 // `Err` below, `slot` will be considered uninitialized memory.
1382 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1383 return Err(e);
1384 }
1385 }
1386 Ok(())
1387 };
1388 // SAFETY: The initializer above initializes every element of the array. On failure it drops
1389 // any initialized elements and returns `Err`.
1390 unsafe { pin_init_from_closure(init) }
1391}
1392
1393// SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`.
1394unsafe impl<T> Init<T> for T {
1395 unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> {
1396 // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1397 unsafe { slot.write(self) };
1398 Ok(())
1399 }
1400}
1401
1402// SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of
1403// `slot`. Additionally, all pinning invariants of `T` are upheld.
1404unsafe impl<T> PinInit<T> for T {
1405 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> {
1406 // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1407 unsafe { slot.write(self) };
1408 Ok(())
1409 }
1410}
1411
1412// SAFETY: when the `__init` function returns with
1413// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1414// - `Err(err)`, slot was not written to.
1415unsafe impl<T, E> Init<T, E> for Result<T, E> {
1416 unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1417 // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1418 unsafe { slot.write(self?) };
1419 Ok(())
1420 }
1421}
1422
1423// SAFETY: when the `__pinned_init` function returns with
1424// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1425// - `Err(err)`, slot was not written to.
1426unsafe impl<T, E> PinInit<T, E> for Result<T, E> {
1427 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1428 // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1429 unsafe { slot.write(self?) };
1430 Ok(())
1431 }
1432}
1433
1434/// Smart pointer containing uninitialized memory and that can write a value.
1435pub trait InPlaceWrite<T> {
1436 /// The type `Self` turns into when the contents are initialized.
1437 type Initialized;
1438
1439 /// Use the given initializer to write a value into `self`.
1440 ///
1441 /// Does not drop the current value and considers it as uninitialized memory.
1442 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1443
1444 /// Use the given pin-initializer to write a value into `self`.
1445 ///
1446 /// Does not drop the current value and considers it as uninitialized memory.
1447 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1448}
1449
1450/// Trait facilitating pinned destruction.
1451///
1452/// Use [`pinned_drop`] to implement this trait safely:
1453///
1454/// ```rust
1455/// # #![feature(allocator_api)]
1456/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1457/// # use pin_init::*;
1458/// use core::pin::Pin;
1459/// #[pin_data(PinnedDrop)]
1460/// struct Foo {
1461/// #[pin]
1462/// mtx: CMutex<usize>,
1463/// }
1464///
1465/// #[pinned_drop]
1466/// impl PinnedDrop for Foo {
1467/// fn drop(self: Pin<&mut Self>) {
1468/// println!("Foo is being dropped!");
1469/// }
1470/// }
1471/// ```
1472///
1473/// # Safety
1474///
1475/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1476pub unsafe trait PinnedDrop: __internal::HasPinData {
1477 /// Executes the pinned destructor of this type.
1478 ///
1479 /// While this function is marked safe, it is actually unsafe to call it manually. For this
1480 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1481 /// and thus prevents this function from being called where it should not.
1482 ///
1483 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1484 /// automatically.
1485 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1486}
1487
1488/// Marker trait for types that can be initialized by writing just zeroes.
1489///
1490/// # Safety
1491///
1492/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1493/// this is not UB:
1494///
1495/// ```rust,ignore
1496/// let val: Self = unsafe { core::mem::zeroed() };
1497/// ```
1498pub unsafe trait Zeroable {
1499 /// Create a new zeroed `Self`.
1500 ///
1501 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1502 #[inline]
1503 fn init_zeroed() -> impl Init<Self>
1504 where
1505 Self: Sized,
1506 {
1507 init_zeroed()
1508 }
1509
1510 /// Create a `Self` consisting of all zeroes.
1511 ///
1512 /// Whenever a type implements [`Zeroable`], this function should be preferred over
1513 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1514 ///
1515 /// # Examples
1516 ///
1517 /// ```
1518 /// use pin_init::{Zeroable, zeroed};
1519 ///
1520 /// #[derive(Zeroable)]
1521 /// struct Point {
1522 /// x: u32,
1523 /// y: u32,
1524 /// }
1525 ///
1526 /// let point: Point = zeroed();
1527 /// assert_eq!(point.x, 0);
1528 /// assert_eq!(point.y, 0);
1529 /// ```
1530 fn zeroed() -> Self
1531 where
1532 Self: Sized,
1533 {
1534 zeroed()
1535 }
1536}
1537
1538/// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
1539/// `None` to that location.
1540///
1541/// # Safety
1542///
1543/// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
1544pub unsafe trait ZeroableOption {}
1545
1546// SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
1547unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
1548
1549// SAFETY: `Option<&T>` is part of the option layout optimization guarantee:
1550// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1551unsafe impl<T> ZeroableOption for &T {}
1552// SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee:
1553// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1554unsafe impl<T> ZeroableOption for &mut T {}
1555// SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee:
1556// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1557unsafe impl<T> ZeroableOption for NonNull<T> {}
1558
1559/// Create an initializer for a zeroed `T`.
1560///
1561/// The returned initializer will write `0x00` to every byte of the given `slot`.
1562#[inline]
1563pub fn init_zeroed<T: Zeroable>() -> impl Init<T> {
1564 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1565 // and because we write all zeroes, the memory is initialized.
1566 unsafe {
1567 init_from_closure(|slot: *mut T| {
1568 slot.write_bytes(0, 1);
1569 Ok(())
1570 })
1571 }
1572}
1573
1574/// Create a `T` consisting of all zeroes.
1575///
1576/// Whenever a type implements [`Zeroable`], this function should be preferred over
1577/// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1578///
1579/// # Examples
1580///
1581/// ```
1582/// use pin_init::{Zeroable, zeroed};
1583///
1584/// #[derive(Zeroable)]
1585/// struct Point {
1586/// x: u32,
1587/// y: u32,
1588/// }
1589///
1590/// let point: Point = zeroed();
1591/// assert_eq!(point.x, 0);
1592/// assert_eq!(point.y, 0);
1593/// ```
1594pub const fn zeroed<T: Zeroable>() -> T {
1595 // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`.
1596 unsafe { core::mem::zeroed() }
1597}
1598
1599macro_rules! impl_zeroable {
1600 ($($({$($generics:tt)*})? $t:ty, )*) => {
1601 // SAFETY: Safety comments written in the macro invocation.
1602 $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1603 };
1604}
1605
1606impl_zeroable! {
1607 // SAFETY: All primitives that are allowed to be zero.
1608 bool,
1609 char,
1610 u8, u16, u32, u64, u128, usize,
1611 i8, i16, i32, i64, i128, isize,
1612 f32, f64,
1613
1614 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1615 // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1616 // uninhabited/empty types, consult The Rustonomicon:
1617 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1618 // also has information on undefined behavior:
1619 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1620 //
1621 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1622 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1623
1624 // SAFETY: Type is allowed to take any value, including all zeros.
1625 {<T>} MaybeUninit<T>,
1626
1627 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1628 {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1629
1630 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
1631 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
1632 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1633 Option<NonZeroU128>, Option<NonZeroUsize>,
1634 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1635 Option<NonZeroI128>, Option<NonZeroIsize>,
1636
1637 // SAFETY: `null` pointer is valid.
1638 //
1639 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1640 // null.
1641 //
1642 // When `Pointee` gets stabilized, we could use
1643 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1644 {<T>} *mut T, {<T>} *const T,
1645
1646 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1647 // zero.
1648 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1649
1650 // SAFETY: `T` is `Zeroable`.
1651 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1652}
1653
1654macro_rules! impl_tuple_zeroable {
1655 ($(,)?) => {};
1656 ($first:ident, $($t:ident),* $(,)?) => {
1657 // SAFETY: All elements are zeroable and padding can be zero.
1658 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1659 impl_tuple_zeroable!($($t),* ,);
1660 }
1661}
1662
1663impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1664
1665macro_rules! impl_fn_zeroable_option {
1666 ([$($abi:literal),* $(,)?] $args:tt) => {
1667 $(impl_fn_zeroable_option!({extern $abi} $args);)*
1668 $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)*
1669 };
1670 ({$($prefix:tt)*} {$(,)?}) => {};
1671 ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => {
1672 // SAFETY: function pointers are part of the option layout optimization:
1673 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1674 unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {}
1675 impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,});
1676 };
1677}
1678
1679impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U });
1680
1681/// This trait allows creating an instance of `Self` which contains exactly one
1682/// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning).
1683///
1684/// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s.
1685///
1686/// # Examples
1687///
1688/// ```
1689/// # use core::cell::UnsafeCell;
1690/// # use pin_init::{pin_data, pin_init, Wrapper};
1691///
1692/// #[pin_data]
1693/// struct Foo {}
1694///
1695/// #[pin_data]
1696/// struct Bar {
1697/// #[pin]
1698/// content: UnsafeCell<Foo>
1699/// };
1700///
1701/// let foo_initializer = pin_init!(Foo{});
1702/// let initializer = pin_init!(Bar {
1703/// content <- UnsafeCell::pin_init(foo_initializer)
1704/// });
1705/// ```
1706pub trait Wrapper<T> {
1707 /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer.
1708 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>;
1709}
1710
1711impl<T> Wrapper<T> for UnsafeCell<T> {
1712 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1713 // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`.
1714 unsafe { cast_pin_init(value_init) }
1715 }
1716}
1717
1718impl<T> Wrapper<T> for MaybeUninit<T> {
1719 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1720 // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`.
1721 unsafe { cast_pin_init(value_init) }
1722 }
1723}
1724
1725#[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))]
1726impl<T> Wrapper<T> for core::pin::UnsafePinned<T> {
1727 fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1728 // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`.
1729 unsafe { cast_pin_init(init) }
1730 }
1731}