pin_init/
lib.rs

1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
4//!
5//! [Pinning][pinning] is Rust's way of ensuring data does not move.
6//!
7//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
8//! overflow.
9//!
10//! This library's main use-case is in [Rust-for-Linux]. Although this version can be used
11//! standalone.
12//!
13//! There are cases when you want to in-place initialize a struct. For example when it is very big
14//! and moving it from the stack is not an option, because it is bigger than the stack itself.
15//! Another reason would be that you need the address of the object to initialize it. This stands
16//! in direct conflict with Rust's normal process of first initializing an object and then moving
17//! it into it's final memory location. For more information, see
18//! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
19//!
20//! This library allows you to do in-place initialization safely.
21//!
22//! ## Nightly Needed for `alloc` feature
23//!
24//! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
25//! enabled and thus this feature can only be used with a nightly compiler. When enabling the
26//! `alloc` feature, the user will be required to activate `allocator_api` as well.
27//!
28//! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
29//!
30//! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
31//! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
32//! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
33//! mode.
34//!
35//! ## Nightly needed for `unsafe-pinned` feature
36//!
37//! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type.
38//! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735)
39//! and therefore a nightly compiler. Note that this feature is not enabled by default.
40//!
41//! # Overview
42//!
43//! To initialize a `struct` with an in-place constructor you will need two things:
44//! - an in-place constructor,
45//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
46//!   [`Box<T>`] or any other smart pointer that supports this library).
47//!
48//! To get an in-place constructor there are generally three options:
49//! - directly creating an in-place constructor using the [`pin_init!`] macro,
50//! - a custom function/macro returning an in-place constructor provided by someone else,
51//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
52//!
53//! Aside from pinned initialization, this library also supports in-place construction without
54//! pinning, the macros/types/functions are generally named like the pinned variants without the
55//! `pin_` prefix.
56//!
57//! # Examples
58//!
59//! Throughout the examples we will often make use of the `CMutex` type which can be found in
60//! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
61//! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
62//! requires it to be pinned to be locked and thus is a prime candidate for using this library.
63//!
64//! ## Using the [`pin_init!`] macro
65//!
66//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
67//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
68//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
69//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
70//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
71//!
72//! ```rust
73//! # #![expect(clippy::disallowed_names)]
74//! # #![feature(allocator_api)]
75//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
76//! # use core::pin::Pin;
77//! use pin_init::{pin_data, pin_init, InPlaceInit};
78//!
79//! #[pin_data]
80//! struct Foo {
81//!     #[pin]
82//!     a: CMutex<usize>,
83//!     b: u32,
84//! }
85//!
86//! let foo = pin_init!(Foo {
87//!     a <- CMutex::new(42),
88//!     b: 24,
89//! });
90//! # let _ = Box::pin_init(foo);
91//! ```
92//!
93//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
94//! (or just the stack) to actually initialize a `Foo`:
95//!
96//! ```rust
97//! # #![expect(clippy::disallowed_names)]
98//! # #![feature(allocator_api)]
99//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
100//! # use core::{alloc::AllocError, pin::Pin};
101//! # use pin_init::*;
102//! #
103//! # #[pin_data]
104//! # struct Foo {
105//! #     #[pin]
106//! #     a: CMutex<usize>,
107//! #     b: u32,
108//! # }
109//! #
110//! # let foo = pin_init!(Foo {
111//! #     a <- CMutex::new(42),
112//! #     b: 24,
113//! # });
114//! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
115//! ```
116//!
117//! For more information see the [`pin_init!`] macro.
118//!
119//! ## Using a custom function/macro that returns an initializer
120//!
121//! Many types that use this library supply a function/macro that returns an initializer, because
122//! the above method only works for types where you can access the fields.
123//!
124//! ```rust
125//! # #![feature(allocator_api)]
126//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
127//! # use pin_init::*;
128//! # use std::sync::Arc;
129//! # use core::pin::Pin;
130//! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
131//! ```
132//!
133//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
134//!
135//! ```rust
136//! # #![feature(allocator_api)]
137//! # use pin_init::*;
138//! # #[path = "../examples/error.rs"] mod error; use error::Error;
139//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
140//! #[pin_data]
141//! struct DriverData {
142//!     #[pin]
143//!     status: CMutex<i32>,
144//!     buffer: Box<[u8; 1_000_000]>,
145//! }
146//!
147//! impl DriverData {
148//!     fn new() -> impl PinInit<Self, Error> {
149//!         pin_init!(Self {
150//!             status <- CMutex::new(0),
151//!             buffer: Box::init(pin_init::init_zeroed())?,
152//!         }? Error)
153//!     }
154//! }
155//! ```
156//!
157//! ## Manual creation of an initializer
158//!
159//! Often when working with primitives the previous approaches are not sufficient. That is where
160//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
161//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
162//! actually does the initialization in the correct way. Here are the things to look out for
163//! (we are calling the parameter to the closure `slot`):
164//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
165//!   `slot` now contains a valid bit pattern for the type `T`,
166//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
167//!   you need to take care to clean up anything if your initialization fails mid-way,
168//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
169//!   `slot` gets called.
170//!
171//! ```rust
172//! # #![feature(extern_types)]
173//! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
174//! use core::{
175//!     ptr::addr_of_mut,
176//!     marker::PhantomPinned,
177//!     cell::UnsafeCell,
178//!     pin::Pin,
179//!     mem::MaybeUninit,
180//! };
181//! mod bindings {
182//!     #[repr(C)]
183//!     pub struct foo {
184//!         /* fields from C ... */
185//!     }
186//!     extern "C" {
187//!         pub fn init_foo(ptr: *mut foo);
188//!         pub fn destroy_foo(ptr: *mut foo);
189//!         #[must_use = "you must check the error return code"]
190//!         pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
191//!     }
192//! }
193//!
194//! /// # Invariants
195//! ///
196//! /// `foo` is always initialized
197//! #[pin_data(PinnedDrop)]
198//! pub struct RawFoo {
199//!     #[pin]
200//!     _p: PhantomPinned,
201//!     #[pin]
202//!     foo: UnsafeCell<MaybeUninit<bindings::foo>>,
203//! }
204//!
205//! impl RawFoo {
206//!     pub fn new(flags: u32) -> impl PinInit<Self, i32> {
207//!         // SAFETY:
208//!         // - when the closure returns `Ok(())`, then it has successfully initialized and
209//!         //   enabled `foo`,
210//!         // - when it returns `Err(e)`, then it has cleaned up before
211//!         unsafe {
212//!             pin_init_from_closure(move |slot: *mut Self| {
213//!                 // `slot` contains uninit memory, avoid creating a reference.
214//!                 let foo = addr_of_mut!((*slot).foo);
215//!                 let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
216//!
217//!                 // Initialize the `foo`
218//!                 bindings::init_foo(foo);
219//!
220//!                 // Try to enable it.
221//!                 let err = bindings::enable_foo(foo, flags);
222//!                 if err != 0 {
223//!                     // Enabling has failed, first clean up the foo and then return the error.
224//!                     bindings::destroy_foo(foo);
225//!                     Err(err)
226//!                 } else {
227//!                     // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
228//!                     Ok(())
229//!                 }
230//!             })
231//!         }
232//!     }
233//! }
234//!
235//! #[pinned_drop]
236//! impl PinnedDrop for RawFoo {
237//!     fn drop(self: Pin<&mut Self>) {
238//!         // SAFETY: Since `foo` is initialized, destroying is safe.
239//!         unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
240//!     }
241//! }
242//! ```
243//!
244//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
245//! the `kernel` crate. The [`sync`] module is a good starting point.
246//!
247//! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
248//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
249//! [structurally pinned fields]:
250//!     https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
251//! [stack]: crate::stack_pin_init
252#![cfg_attr(
253    kernel,
254    doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
255)]
256#![cfg_attr(
257    kernel,
258    doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
259)]
260#![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
261#![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
262//! [`impl PinInit<Foo>`]: crate::PinInit
263//! [`impl PinInit<T, E>`]: crate::PinInit
264//! [`impl Init<T, E>`]: crate::Init
265//! [Rust-for-Linux]: https://rust-for-linux.com/
266
267#![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))]
268#![cfg_attr(
269    all(
270        any(feature = "alloc", feature = "std"),
271        not(RUSTC_NEW_UNINIT_IS_STABLE)
272    ),
273    feature(new_uninit)
274)]
275#![forbid(missing_docs, unsafe_op_in_unsafe_fn)]
276#![cfg_attr(not(feature = "std"), no_std)]
277#![cfg_attr(feature = "alloc", feature(allocator_api))]
278#![cfg_attr(
279    all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED),
280    feature(unsafe_pinned)
281)]
282
283use core::{
284    cell::UnsafeCell,
285    convert::Infallible,
286    marker::PhantomData,
287    mem::MaybeUninit,
288    num::*,
289    pin::Pin,
290    ptr::{self, NonNull},
291};
292
293// This is used by doc-tests -- the proc-macros expand to `::pin_init::...` and without this the
294// doc-tests wouldn't have an extern crate named `pin_init`.
295#[allow(unused_extern_crates)]
296extern crate self as pin_init;
297
298#[doc(hidden)]
299pub mod __internal;
300
301#[cfg(any(feature = "std", feature = "alloc"))]
302mod alloc;
303#[cfg(any(feature = "std", feature = "alloc"))]
304pub use alloc::InPlaceInit;
305
306/// Used to specify the pinning information of the fields of a struct.
307///
308/// This is somewhat similar in purpose as
309/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
310/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
311/// field you want to structurally pin.
312///
313/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
314/// then `#[pin]` directs the type of initializer that is required.
315///
316/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
317/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
318/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
319///
320/// # Examples
321///
322/// ```
323/// # #![feature(allocator_api)]
324/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
325/// use pin_init::pin_data;
326///
327/// enum Command {
328///     /* ... */
329/// }
330///
331/// #[pin_data]
332/// struct DriverData {
333///     #[pin]
334///     queue: CMutex<Vec<Command>>,
335///     buf: Box<[u8; 1024 * 1024]>,
336/// }
337/// ```
338///
339/// ```
340/// # #![feature(allocator_api)]
341/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
342/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
343/// use core::pin::Pin;
344/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
345///
346/// enum Command {
347///     /* ... */
348/// }
349///
350/// #[pin_data(PinnedDrop)]
351/// struct DriverData {
352///     #[pin]
353///     queue: CMutex<Vec<Command>>,
354///     buf: Box<[u8; 1024 * 1024]>,
355///     raw_info: *mut bindings::info,
356/// }
357///
358/// #[pinned_drop]
359/// impl PinnedDrop for DriverData {
360///     fn drop(self: Pin<&mut Self>) {
361///         unsafe { bindings::destroy_info(self.raw_info) };
362///     }
363/// }
364/// ```
365pub use ::pin_init_internal::pin_data;
366
367/// Used to implement `PinnedDrop` safely.
368///
369/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
370///
371/// # Examples
372///
373/// ```
374/// # #![feature(allocator_api)]
375/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
376/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
377/// use core::pin::Pin;
378/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
379///
380/// enum Command {
381///     /* ... */
382/// }
383///
384/// #[pin_data(PinnedDrop)]
385/// struct DriverData {
386///     #[pin]
387///     queue: CMutex<Vec<Command>>,
388///     buf: Box<[u8; 1024 * 1024]>,
389///     raw_info: *mut bindings::info,
390/// }
391///
392/// #[pinned_drop]
393/// impl PinnedDrop for DriverData {
394///     fn drop(self: Pin<&mut Self>) {
395///         unsafe { bindings::destroy_info(self.raw_info) };
396///     }
397/// }
398/// ```
399pub use ::pin_init_internal::pinned_drop;
400
401/// Derives the [`Zeroable`] trait for the given `struct` or `union`.
402///
403/// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`]
404/// trait.
405///
406/// # Examples
407///
408/// ```
409/// use pin_init::Zeroable;
410///
411/// #[derive(Zeroable)]
412/// pub struct DriverData {
413///     pub(crate) id: i64,
414///     buf_ptr: *mut u8,
415///     len: usize,
416/// }
417/// ```
418///
419/// ```
420/// use pin_init::Zeroable;
421///
422/// #[derive(Zeroable)]
423/// pub union SignCast {
424///     signed: i64,
425///     unsigned: u64,
426/// }
427/// ```
428pub use ::pin_init_internal::Zeroable;
429
430/// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement
431/// [`Zeroable`].
432///
433/// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field
434/// doesn't implement [`Zeroable`].
435///
436/// # Examples
437///
438/// ```
439/// use pin_init::MaybeZeroable;
440///
441/// // implmements `Zeroable`
442/// #[derive(MaybeZeroable)]
443/// pub struct DriverData {
444///     pub(crate) id: i64,
445///     buf_ptr: *mut u8,
446///     len: usize,
447/// }
448///
449/// // does not implmement `Zeroable`
450/// #[derive(MaybeZeroable)]
451/// pub struct DriverData2 {
452///     pub(crate) id: i64,
453///     buf_ptr: *mut u8,
454///     len: usize,
455///     // this field doesn't implement `Zeroable`
456///     other_data: &'static i32,
457/// }
458/// ```
459pub use ::pin_init_internal::MaybeZeroable;
460
461/// Initialize and pin a type directly on the stack.
462///
463/// # Examples
464///
465/// ```rust
466/// # #![expect(clippy::disallowed_names)]
467/// # #![feature(allocator_api)]
468/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
469/// # use pin_init::*;
470/// # use core::pin::Pin;
471/// #[pin_data]
472/// struct Foo {
473///     #[pin]
474///     a: CMutex<usize>,
475///     b: Bar,
476/// }
477///
478/// #[pin_data]
479/// struct Bar {
480///     x: u32,
481/// }
482///
483/// stack_pin_init!(let foo = pin_init!(Foo {
484///     a <- CMutex::new(42),
485///     b: Bar {
486///         x: 64,
487///     },
488/// }));
489/// let foo: Pin<&mut Foo> = foo;
490/// println!("a: {}", &*foo.a.lock());
491/// ```
492///
493/// # Syntax
494///
495/// A normal `let` binding with optional type annotation. The expression is expected to implement
496/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
497/// type, then use [`stack_try_pin_init!`].
498#[macro_export]
499macro_rules! stack_pin_init {
500    (let $var:ident $(: $t:ty)? = $val:expr) => {
501        let val = $val;
502        let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
503        let mut $var = match $crate::__internal::StackInit::init($var, val) {
504            Ok(res) => res,
505            Err(x) => {
506                let x: ::core::convert::Infallible = x;
507                match x {}
508            }
509        };
510    };
511}
512
513/// Initialize and pin a type directly on the stack.
514///
515/// # Examples
516///
517/// ```rust
518/// # #![expect(clippy::disallowed_names)]
519/// # #![feature(allocator_api)]
520/// # #[path = "../examples/error.rs"] mod error; use error::Error;
521/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
522/// # use pin_init::*;
523/// #[pin_data]
524/// struct Foo {
525///     #[pin]
526///     a: CMutex<usize>,
527///     b: Box<Bar>,
528/// }
529///
530/// struct Bar {
531///     x: u32,
532/// }
533///
534/// stack_try_pin_init!(let foo: Foo = pin_init!(Foo {
535///     a <- CMutex::new(42),
536///     b: Box::try_new(Bar {
537///         x: 64,
538///     })?,
539/// }? Error));
540/// let foo = foo.unwrap();
541/// println!("a: {}", &*foo.a.lock());
542/// ```
543///
544/// ```rust
545/// # #![expect(clippy::disallowed_names)]
546/// # #![feature(allocator_api)]
547/// # #[path = "../examples/error.rs"] mod error; use error::Error;
548/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
549/// # use pin_init::*;
550/// #[pin_data]
551/// struct Foo {
552///     #[pin]
553///     a: CMutex<usize>,
554///     b: Box<Bar>,
555/// }
556///
557/// struct Bar {
558///     x: u32,
559/// }
560///
561/// stack_try_pin_init!(let foo: Foo =? pin_init!(Foo {
562///     a <- CMutex::new(42),
563///     b: Box::try_new(Bar {
564///         x: 64,
565///     })?,
566/// }? Error));
567/// println!("a: {}", &*foo.a.lock());
568/// # Ok::<_, Error>(())
569/// ```
570///
571/// # Syntax
572///
573/// A normal `let` binding with optional type annotation. The expression is expected to implement
574/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
575/// `=` will propagate this error.
576#[macro_export]
577macro_rules! stack_try_pin_init {
578    (let $var:ident $(: $t:ty)? = $val:expr) => {
579        let val = $val;
580        let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
581        let mut $var = $crate::__internal::StackInit::init($var, val);
582    };
583    (let $var:ident $(: $t:ty)? =? $val:expr) => {
584        let val = $val;
585        let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
586        let mut $var = $crate::__internal::StackInit::init($var, val)?;
587    };
588}
589
590/// Construct an in-place, fallible pinned initializer for `struct`s.
591///
592/// The error type defaults to [`Infallible`]; if you need a different one, write `? Error` at the
593/// end, after the struct initializer.
594///
595/// The syntax is almost identical to that of a normal `struct` initializer:
596///
597/// ```rust
598/// # use pin_init::*;
599/// # use core::pin::Pin;
600/// #[pin_data]
601/// struct Foo {
602///     a: usize,
603///     b: Bar,
604/// }
605///
606/// #[pin_data]
607/// struct Bar {
608///     x: u32,
609/// }
610///
611/// # fn demo() -> impl PinInit<Foo> {
612/// let a = 42;
613///
614/// let initializer = pin_init!(Foo {
615///     a,
616///     b: Bar {
617///         x: 64,
618///     },
619/// });
620/// # initializer }
621/// # Box::pin_init(demo()).unwrap();
622/// ```
623///
624/// Arbitrary Rust expressions can be used to set the value of a variable.
625///
626/// The fields are initialized in the order that they appear in the initializer. So it is possible
627/// to read already initialized fields using raw pointers.
628///
629/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
630/// initializer.
631///
632/// # Init-functions
633///
634/// When working with this library it is often desired to let others construct your types without
635/// giving access to all fields. This is where you would normally write a plain function `new` that
636/// would return a new instance of your type. With this library that is also possible. However,
637/// there are a few extra things to keep in mind.
638///
639/// To create an initializer function, simply declare it like this:
640///
641/// ```rust
642/// # use pin_init::*;
643/// # use core::pin::Pin;
644/// # #[pin_data]
645/// # struct Foo {
646/// #     a: usize,
647/// #     b: Bar,
648/// # }
649/// # #[pin_data]
650/// # struct Bar {
651/// #     x: u32,
652/// # }
653/// impl Foo {
654///     fn new() -> impl PinInit<Self> {
655///         pin_init!(Self {
656///             a: 42,
657///             b: Bar {
658///                 x: 64,
659///             },
660///         })
661///     }
662/// }
663/// ```
664///
665/// Users of `Foo` can now create it like this:
666///
667/// ```rust
668/// # #![expect(clippy::disallowed_names)]
669/// # use pin_init::*;
670/// # use core::pin::Pin;
671/// # #[pin_data]
672/// # struct Foo {
673/// #     a: usize,
674/// #     b: Bar,
675/// # }
676/// # #[pin_data]
677/// # struct Bar {
678/// #     x: u32,
679/// # }
680/// # impl Foo {
681/// #     fn new() -> impl PinInit<Self> {
682/// #         pin_init!(Self {
683/// #             a: 42,
684/// #             b: Bar {
685/// #                 x: 64,
686/// #             },
687/// #         })
688/// #     }
689/// # }
690/// let foo = Box::pin_init(Foo::new());
691/// ```
692///
693/// They can also easily embed it into their own `struct`s:
694///
695/// ```rust
696/// # use pin_init::*;
697/// # use core::pin::Pin;
698/// # #[pin_data]
699/// # struct Foo {
700/// #     a: usize,
701/// #     b: Bar,
702/// # }
703/// # #[pin_data]
704/// # struct Bar {
705/// #     x: u32,
706/// # }
707/// # impl Foo {
708/// #     fn new() -> impl PinInit<Self> {
709/// #         pin_init!(Self {
710/// #             a: 42,
711/// #             b: Bar {
712/// #                 x: 64,
713/// #             },
714/// #         })
715/// #     }
716/// # }
717/// #[pin_data]
718/// struct FooContainer {
719///     #[pin]
720///     foo1: Foo,
721///     #[pin]
722///     foo2: Foo,
723///     other: u32,
724/// }
725///
726/// impl FooContainer {
727///     fn new(other: u32) -> impl PinInit<Self> {
728///         pin_init!(Self {
729///             foo1 <- Foo::new(),
730///             foo2 <- Foo::new(),
731///             other,
732///         })
733///     }
734/// }
735/// ```
736///
737/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
738/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
739/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
740///
741/// # Syntax
742///
743/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
744/// the following modifications is expected:
745/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
746/// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in
747///   order to run arbitrary code.
748/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
749///   pointer named `this` inside of the initializer.
750/// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the
751///   struct, this initializes every field with 0 and then runs all initializers specified in the
752///   body. This can only be done if [`Zeroable`] is implemented for the struct.
753///
754/// For instance:
755///
756/// ```rust
757/// # use pin_init::*;
758/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
759/// #[pin_data]
760/// #[derive(Zeroable)]
761/// struct Buf {
762///     // `ptr` points into `buf`.
763///     ptr: *mut u8,
764///     buf: [u8; 64],
765///     #[pin]
766///     pin: PhantomPinned,
767/// }
768///
769/// let init = pin_init!(&this in Buf {
770///     buf: [0; 64],
771///     // SAFETY: TODO.
772///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
773///     pin: PhantomPinned,
774/// });
775/// let init = pin_init!(Buf {
776///     buf: [1; 64],
777///     ..Zeroable::init_zeroed()
778/// });
779/// ```
780///
781/// [`NonNull<Self>`]: core::ptr::NonNull
782pub use pin_init_internal::pin_init;
783
784/// Construct an in-place, fallible initializer for `struct`s.
785///
786/// This macro defaults the error to [`Infallible`]; if you need a different one, write `? Error`
787/// at the end, after the struct initializer.
788///
789/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
790/// - `unsafe` code must guarantee either full initialization or return an error and allow
791///   deallocation of the memory.
792/// - the fields are initialized in the order given in the initializer.
793/// - no references to fields are allowed to be created inside of the initializer.
794///
795/// This initializer is for initializing data in-place that might later be moved. If you want to
796/// pin-initialize, use [`pin_init!`].
797///
798/// # Examples
799///
800/// ```rust
801/// # #![feature(allocator_api)]
802/// # #[path = "../examples/error.rs"] mod error; use error::Error;
803/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
804/// # use pin_init::InPlaceInit;
805/// use pin_init::{init, Init, init_zeroed};
806///
807/// struct BigBuf {
808///     small: [u8; 1024 * 1024],
809/// }
810///
811/// impl BigBuf {
812///     fn new() -> impl Init<Self> {
813///         init!(Self {
814///             small <- init_zeroed(),
815///         })
816///     }
817/// }
818/// # let _ = Box::init(BigBuf::new());
819/// ```
820pub use pin_init_internal::init;
821
822/// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
823/// structurally pinned.
824///
825/// # Examples
826///
827/// This will succeed:
828/// ```
829/// use pin_init::{pin_data, assert_pinned};
830///
831/// #[pin_data]
832/// struct MyStruct {
833///     #[pin]
834///     some_field: u64,
835/// }
836///
837/// assert_pinned!(MyStruct, some_field, u64);
838/// ```
839///
840/// This will fail:
841/// ```compile_fail
842/// use pin_init::{pin_data, assert_pinned};
843///
844/// #[pin_data]
845/// struct MyStruct {
846///     some_field: u64,
847/// }
848///
849/// assert_pinned!(MyStruct, some_field, u64);
850/// ```
851///
852/// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
853/// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
854/// only be used when the macro is invoked from a function body.
855/// ```
856/// # use core::pin::Pin;
857/// use pin_init::{pin_data, assert_pinned};
858///
859/// #[pin_data]
860/// struct Foo<T> {
861///     #[pin]
862///     elem: T,
863/// }
864///
865/// impl<T> Foo<T> {
866///     fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> {
867///         assert_pinned!(Foo<T>, elem, T, inline);
868///
869///         // SAFETY: The field is structurally pinned.
870///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
871///     }
872/// }
873/// ```
874#[macro_export]
875macro_rules! assert_pinned {
876    ($ty:ty, $field:ident, $field_ty:ty, inline) => {
877        let _ = move |ptr: *mut $field_ty| {
878            // SAFETY: This code is unreachable.
879            let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() };
880            let init = $crate::__internal::AlwaysFail::<$field_ty>::new();
881            // SAFETY: This code is unreachable.
882            unsafe { data.$field(ptr, init) }.ok();
883        };
884    };
885
886    ($ty:ty, $field:ident, $field_ty:ty) => {
887        const _: () = {
888            $crate::assert_pinned!($ty, $field, $field_ty, inline);
889        };
890    };
891}
892
893/// A pin-initializer for the type `T`.
894///
895/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
896/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
897///
898/// Also see the [module description](self).
899///
900/// # Safety
901///
902/// When implementing this trait you will need to take great care. Also there are probably very few
903/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
904///
905/// The [`PinInit::__pinned_init`] function:
906/// - returns `Ok(())` if it initialized every field of `slot`,
907/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
908///     - `slot` can be deallocated without UB occurring,
909///     - `slot` does not need to be dropped,
910///     - `slot` is not partially initialized.
911/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
912///
913#[cfg_attr(
914    kernel,
915    doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
916)]
917#[cfg_attr(
918    kernel,
919    doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
920)]
921#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
922#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
923#[must_use = "An initializer must be used in order to create its value."]
924pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
925    /// Initializes `slot`.
926    ///
927    /// # Safety
928    ///
929    /// - `slot` is a valid pointer to uninitialized memory.
930    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
931    ///   deallocate.
932    /// - `slot` will not move until it is dropped, i.e. it will be pinned.
933    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
934
935    /// First initializes the value using `self` then calls the function `f` with the initialized
936    /// value.
937    ///
938    /// If `f` returns an error the value is dropped and the initializer will forward the error.
939    ///
940    /// # Examples
941    ///
942    /// ```rust
943    /// # #![feature(allocator_api)]
944    /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
945    /// # use pin_init::*;
946    /// let mtx_init = CMutex::new(42);
947    /// // Make the initializer print the value.
948    /// let mtx_init = mtx_init.pin_chain(|mtx| {
949    ///     println!("{:?}", mtx.get_data_mut());
950    ///     Ok(())
951    /// });
952    /// ```
953    fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
954    where
955        F: FnOnce(Pin<&mut T>) -> Result<(), E>,
956    {
957        ChainPinInit(self, f, PhantomData)
958    }
959}
960
961/// An initializer returned by [`PinInit::pin_chain`].
962pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
963
964// SAFETY: The `__pinned_init` function is implemented such that it
965// - returns `Ok(())` on successful initialization,
966// - returns `Err(err)` on error and in this case `slot` will be dropped.
967// - considers `slot` pinned.
968unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
969where
970    I: PinInit<T, E>,
971    F: FnOnce(Pin<&mut T>) -> Result<(), E>,
972{
973    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
974        // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
975        unsafe { self.0.__pinned_init(slot)? };
976        // SAFETY: The above call initialized `slot` and we still have unique access.
977        let val = unsafe { &mut *slot };
978        // SAFETY: `slot` is considered pinned.
979        let val = unsafe { Pin::new_unchecked(val) };
980        // SAFETY: `slot` was initialized above.
981        (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
982    }
983}
984
985/// An initializer for `T`.
986///
987/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
988/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
989/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
990///
991/// Also see the [module description](self).
992///
993/// # Safety
994///
995/// When implementing this trait you will need to take great care. Also there are probably very few
996/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
997///
998/// The [`Init::__init`] function:
999/// - returns `Ok(())` if it initialized every field of `slot`,
1000/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1001///     - `slot` can be deallocated without UB occurring,
1002///     - `slot` does not need to be dropped,
1003///     - `slot` is not partially initialized.
1004/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1005///
1006/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1007/// code as `__init`.
1008///
1009/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1010/// move the pointee after initialization.
1011///
1012#[cfg_attr(
1013    kernel,
1014    doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1015)]
1016#[cfg_attr(
1017    kernel,
1018    doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1019)]
1020#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1021#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1022#[must_use = "An initializer must be used in order to create its value."]
1023pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1024    /// Initializes `slot`.
1025    ///
1026    /// # Safety
1027    ///
1028    /// - `slot` is a valid pointer to uninitialized memory.
1029    /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1030    ///   deallocate.
1031    unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1032
1033    /// First initializes the value using `self` then calls the function `f` with the initialized
1034    /// value.
1035    ///
1036    /// If `f` returns an error the value is dropped and the initializer will forward the error.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```rust
1041    /// # #![expect(clippy::disallowed_names)]
1042    /// use pin_init::{init, init_zeroed, Init};
1043    ///
1044    /// struct Foo {
1045    ///     buf: [u8; 1_000_000],
1046    /// }
1047    ///
1048    /// impl Foo {
1049    ///     fn setup(&mut self) {
1050    ///         println!("Setting up foo");
1051    ///     }
1052    /// }
1053    ///
1054    /// let foo = init!(Foo {
1055    ///     buf <- init_zeroed()
1056    /// }).chain(|foo| {
1057    ///     foo.setup();
1058    ///     Ok(())
1059    /// });
1060    /// ```
1061    fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1062    where
1063        F: FnOnce(&mut T) -> Result<(), E>,
1064    {
1065        ChainInit(self, f, PhantomData)
1066    }
1067}
1068
1069/// An initializer returned by [`Init::chain`].
1070pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1071
1072// SAFETY: The `__init` function is implemented such that it
1073// - returns `Ok(())` on successful initialization,
1074// - returns `Err(err)` on error and in this case `slot` will be dropped.
1075unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1076where
1077    I: Init<T, E>,
1078    F: FnOnce(&mut T) -> Result<(), E>,
1079{
1080    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1081        // SAFETY: All requirements fulfilled since this function is `__init`.
1082        unsafe { self.0.__pinned_init(slot)? };
1083        // SAFETY: The above call initialized `slot` and we still have unique access.
1084        (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1085            // SAFETY: `slot` was initialized above.
1086            unsafe { core::ptr::drop_in_place(slot) })
1087    }
1088}
1089
1090// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1091unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1092where
1093    I: Init<T, E>,
1094    F: FnOnce(&mut T) -> Result<(), E>,
1095{
1096    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1097        // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1098        unsafe { self.__init(slot) }
1099    }
1100}
1101
1102/// Creates a new [`PinInit<T, E>`] from the given closure.
1103///
1104/// # Safety
1105///
1106/// The closure:
1107/// - returns `Ok(())` if it initialized every field of `slot`,
1108/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1109///     - `slot` can be deallocated without UB occurring,
1110///     - `slot` does not need to be dropped,
1111///     - `slot` is not partially initialized.
1112/// - may assume that the `slot` does not move if `T: !Unpin`,
1113/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1114#[inline]
1115pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1116    f: impl FnOnce(*mut T) -> Result<(), E>,
1117) -> impl PinInit<T, E> {
1118    __internal::InitClosure(f, PhantomData)
1119}
1120
1121/// Creates a new [`Init<T, E>`] from the given closure.
1122///
1123/// # Safety
1124///
1125/// The closure:
1126/// - returns `Ok(())` if it initialized every field of `slot`,
1127/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1128///     - `slot` can be deallocated without UB occurring,
1129///     - `slot` does not need to be dropped,
1130///     - `slot` is not partially initialized.
1131/// - the `slot` may move after initialization.
1132/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1133#[inline]
1134pub const unsafe fn init_from_closure<T: ?Sized, E>(
1135    f: impl FnOnce(*mut T) -> Result<(), E>,
1136) -> impl Init<T, E> {
1137    __internal::InitClosure(f, PhantomData)
1138}
1139
1140/// Changes the to be initialized type.
1141///
1142/// # Safety
1143///
1144/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1145///   pointer must result in a valid `U`.
1146#[expect(clippy::let_and_return)]
1147pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> {
1148    // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1149    // requirements.
1150    let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) };
1151    // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1152    // cycle when computing the type returned by this function)
1153    res
1154}
1155
1156/// Changes the to be initialized type.
1157///
1158/// # Safety
1159///
1160/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1161///   pointer must result in a valid `U`.
1162#[expect(clippy::let_and_return)]
1163pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> {
1164    // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1165    // requirements.
1166    let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) };
1167    // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1168    // cycle when computing the type returned by this function)
1169    res
1170}
1171
1172/// An initializer that leaves the memory uninitialized.
1173///
1174/// The initializer is a no-op. The `slot` memory is not changed.
1175#[inline]
1176pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1177    // SAFETY: The memory is allowed to be uninitialized.
1178    unsafe { init_from_closure(|_| Ok(())) }
1179}
1180
1181/// Initializes an array by initializing each element via the provided initializer.
1182///
1183/// # Examples
1184///
1185/// ```rust
1186/// # use pin_init::*;
1187/// use pin_init::init_array_from_fn;
1188/// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1189/// assert_eq!(array.len(), 1_000);
1190/// ```
1191pub fn init_array_from_fn<I, const N: usize, T, E>(
1192    mut make_init: impl FnMut(usize) -> I,
1193) -> impl Init<[T; N], E>
1194where
1195    I: Init<T, E>,
1196{
1197    let init = move |slot: *mut [T; N]| {
1198        let slot = slot.cast::<T>();
1199        for i in 0..N {
1200            let init = make_init(i);
1201            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1202            let ptr = unsafe { slot.add(i) };
1203            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1204            // requirements.
1205            if let Err(e) = unsafe { init.__init(ptr) } {
1206                // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1207                // `Err` below, `slot` will be considered uninitialized memory.
1208                unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1209                return Err(e);
1210            }
1211        }
1212        Ok(())
1213    };
1214    // SAFETY: The initializer above initializes every element of the array. On failure it drops
1215    // any initialized elements and returns `Err`.
1216    unsafe { init_from_closure(init) }
1217}
1218
1219/// Initializes an array by initializing each element via the provided initializer.
1220///
1221/// # Examples
1222///
1223/// ```rust
1224/// # #![feature(allocator_api)]
1225/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1226/// # use pin_init::*;
1227/// # use core::pin::Pin;
1228/// use pin_init::pin_init_array_from_fn;
1229/// use std::sync::Arc;
1230/// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1231///     Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1232/// assert_eq!(array.len(), 1_000);
1233/// ```
1234pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1235    mut make_init: impl FnMut(usize) -> I,
1236) -> impl PinInit<[T; N], E>
1237where
1238    I: PinInit<T, E>,
1239{
1240    let init = move |slot: *mut [T; N]| {
1241        let slot = slot.cast::<T>();
1242        for i in 0..N {
1243            let init = make_init(i);
1244            // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1245            let ptr = unsafe { slot.add(i) };
1246            // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1247            // requirements.
1248            if let Err(e) = unsafe { init.__pinned_init(ptr) } {
1249                // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1250                // `Err` below, `slot` will be considered uninitialized memory.
1251                unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1252                return Err(e);
1253            }
1254        }
1255        Ok(())
1256    };
1257    // SAFETY: The initializer above initializes every element of the array. On failure it drops
1258    // any initialized elements and returns `Err`.
1259    unsafe { pin_init_from_closure(init) }
1260}
1261
1262/// Construct an initializer in a closure and run it.
1263///
1264/// Returns an initializer that first runs the closure and then the initializer returned by it.
1265///
1266/// See also [`init_scope`].
1267///
1268/// # Examples
1269///
1270/// ```
1271/// # use pin_init::*;
1272/// # #[pin_data]
1273/// # struct Foo { a: u64, b: isize }
1274/// # struct Bar { a: u32, b: isize }
1275/// # fn lookup_bar() -> Result<Bar, Error> { todo!() }
1276/// # struct Error;
1277/// fn init_foo() -> impl PinInit<Foo, Error> {
1278///     pin_init_scope(|| {
1279///         let bar = lookup_bar()?;
1280///         Ok(pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error))
1281///     })
1282/// }
1283/// ```
1284///
1285/// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the
1286/// initializer itself will fail with that error. If it returned `Ok`, then it will run the
1287/// initializer returned by the [`pin_init!`] invocation.
1288pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E>
1289where
1290    F: FnOnce() -> Result<I, E>,
1291    I: PinInit<T, E>,
1292{
1293    // SAFETY:
1294    // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized,
1295    // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`.
1296    // - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called
1297    //   from an initializer.
1298    unsafe {
1299        pin_init_from_closure(move |slot: *mut T| -> Result<(), E> {
1300            let init = make_init()?;
1301            init.__pinned_init(slot)
1302        })
1303    }
1304}
1305
1306/// Construct an initializer in a closure and run it.
1307///
1308/// Returns an initializer that first runs the closure and then the initializer returned by it.
1309///
1310/// See also [`pin_init_scope`].
1311///
1312/// # Examples
1313///
1314/// ```
1315/// # use pin_init::*;
1316/// # struct Foo { a: u64, b: isize }
1317/// # struct Bar { a: u32, b: isize }
1318/// # fn lookup_bar() -> Result<Bar, Error> { todo!() }
1319/// # struct Error;
1320/// fn init_foo() -> impl Init<Foo, Error> {
1321///     init_scope(|| {
1322///         let bar = lookup_bar()?;
1323///         Ok(init!(Foo { a: bar.a.into(), b: bar.b }? Error))
1324///     })
1325/// }
1326/// ```
1327///
1328/// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the
1329/// initializer itself will fail with that error. If it returned `Ok`, then it will run the
1330/// initializer returned by the [`init!`] invocation.
1331pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E>
1332where
1333    F: FnOnce() -> Result<I, E>,
1334    I: Init<T, E>,
1335{
1336    // SAFETY:
1337    // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized,
1338    // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`.
1339    // - The safety requirements of `init.__init` are fulfilled, since it's being called from an
1340    //   initializer.
1341    unsafe {
1342        init_from_closure(move |slot: *mut T| -> Result<(), E> {
1343            let init = make_init()?;
1344            init.__init(slot)
1345        })
1346    }
1347}
1348
1349// SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`.
1350unsafe impl<T> Init<T> for T {
1351    unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> {
1352        // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1353        unsafe { slot.write(self) };
1354        Ok(())
1355    }
1356}
1357
1358// SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of
1359// `slot`. Additionally, all pinning invariants of `T` are upheld.
1360unsafe impl<T> PinInit<T> for T {
1361    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> {
1362        // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1363        unsafe { slot.write(self) };
1364        Ok(())
1365    }
1366}
1367
1368// SAFETY: when the `__init` function returns with
1369// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1370// - `Err(err)`, slot was not written to.
1371unsafe impl<T, E> Init<T, E> for Result<T, E> {
1372    unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1373        // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1374        unsafe { slot.write(self?) };
1375        Ok(())
1376    }
1377}
1378
1379// SAFETY: when the `__pinned_init` function returns with
1380// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1381// - `Err(err)`, slot was not written to.
1382unsafe impl<T, E> PinInit<T, E> for Result<T, E> {
1383    unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1384        // SAFETY: `slot` is valid for writes by the safety requirements of this function.
1385        unsafe { slot.write(self?) };
1386        Ok(())
1387    }
1388}
1389
1390/// Smart pointer containing uninitialized memory and that can write a value.
1391pub trait InPlaceWrite<T> {
1392    /// The type `Self` turns into when the contents are initialized.
1393    type Initialized;
1394
1395    /// Use the given initializer to write a value into `self`.
1396    ///
1397    /// Does not drop the current value and considers it as uninitialized memory.
1398    fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1399
1400    /// Use the given pin-initializer to write a value into `self`.
1401    ///
1402    /// Does not drop the current value and considers it as uninitialized memory.
1403    fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1404}
1405
1406impl<T> InPlaceWrite<T> for &'static mut MaybeUninit<T> {
1407    type Initialized = &'static mut T;
1408
1409    fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
1410        let slot = self.as_mut_ptr();
1411
1412        // SAFETY: `slot` is a valid pointer to uninitialized memory.
1413        unsafe { init.__init(slot)? };
1414
1415        // SAFETY: The above call initialized the memory.
1416        unsafe { Ok(self.assume_init_mut()) }
1417    }
1418
1419    fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
1420        let slot = self.as_mut_ptr();
1421
1422        // SAFETY: `slot` is a valid pointer to uninitialized memory.
1423        //
1424        // The `'static` borrow guarantees the data will not be
1425        // moved/invalidated until it gets dropped (which is never).
1426        unsafe { init.__pinned_init(slot)? };
1427
1428        // SAFETY: The above call initialized the memory.
1429        Ok(Pin::static_mut(unsafe { self.assume_init_mut() }))
1430    }
1431}
1432
1433/// Trait facilitating pinned destruction.
1434///
1435/// Use [`pinned_drop`] to implement this trait safely:
1436///
1437/// ```rust
1438/// # #![feature(allocator_api)]
1439/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1440/// # use pin_init::*;
1441/// use core::pin::Pin;
1442/// #[pin_data(PinnedDrop)]
1443/// struct Foo {
1444///     #[pin]
1445///     mtx: CMutex<usize>,
1446/// }
1447///
1448/// #[pinned_drop]
1449/// impl PinnedDrop for Foo {
1450///     fn drop(self: Pin<&mut Self>) {
1451///         println!("Foo is being dropped!");
1452///     }
1453/// }
1454/// ```
1455///
1456/// # Safety
1457///
1458/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1459pub unsafe trait PinnedDrop: __internal::HasPinData {
1460    /// Executes the pinned destructor of this type.
1461    ///
1462    /// While this function is marked safe, it is actually unsafe to call it manually. For this
1463    /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1464    /// and thus prevents this function from being called where it should not.
1465    ///
1466    /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1467    /// automatically.
1468    fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1469}
1470
1471/// Marker trait for types that can be initialized by writing just zeroes.
1472///
1473/// # Safety
1474///
1475/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1476/// this is not UB:
1477///
1478/// ```rust,ignore
1479/// let val: Self = unsafe { core::mem::zeroed() };
1480/// ```
1481pub unsafe trait Zeroable {
1482    /// Create a new zeroed `Self`.
1483    ///
1484    /// The returned initializer will write `0x00` to every byte of the given `slot`.
1485    #[inline]
1486    fn init_zeroed() -> impl Init<Self>
1487    where
1488        Self: Sized,
1489    {
1490        init_zeroed()
1491    }
1492
1493    /// Create a `Self` consisting of all zeroes.
1494    ///
1495    /// Whenever a type implements [`Zeroable`], this function should be preferred over
1496    /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1497    ///
1498    /// # Examples
1499    ///
1500    /// ```
1501    /// use pin_init::{Zeroable, zeroed};
1502    ///
1503    /// #[derive(Zeroable)]
1504    /// struct Point {
1505    ///     x: u32,
1506    ///     y: u32,
1507    /// }
1508    ///
1509    /// let point: Point = zeroed();
1510    /// assert_eq!(point.x, 0);
1511    /// assert_eq!(point.y, 0);
1512    /// ```
1513    fn zeroed() -> Self
1514    where
1515        Self: Sized,
1516    {
1517        zeroed()
1518    }
1519}
1520
1521/// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
1522/// `None` to that location.
1523///
1524/// # Safety
1525///
1526/// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
1527pub unsafe trait ZeroableOption {}
1528
1529// SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
1530unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
1531
1532// SAFETY: `Option<&T>` is part of the option layout optimization guarantee:
1533// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1534unsafe impl<T> ZeroableOption for &T {}
1535// SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee:
1536// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1537unsafe impl<T> ZeroableOption for &mut T {}
1538// SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee:
1539// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1540unsafe impl<T> ZeroableOption for NonNull<T> {}
1541
1542/// Create an initializer for a zeroed `T`.
1543///
1544/// The returned initializer will write `0x00` to every byte of the given `slot`.
1545#[inline]
1546pub fn init_zeroed<T: Zeroable>() -> impl Init<T> {
1547    // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1548    // and because we write all zeroes, the memory is initialized.
1549    unsafe {
1550        init_from_closure(|slot: *mut T| {
1551            slot.write_bytes(0, 1);
1552            Ok(())
1553        })
1554    }
1555}
1556
1557/// Create a `T` consisting of all zeroes.
1558///
1559/// Whenever a type implements [`Zeroable`], this function should be preferred over
1560/// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1561///
1562/// # Examples
1563///
1564/// ```
1565/// use pin_init::{Zeroable, zeroed};
1566///
1567/// #[derive(Zeroable)]
1568/// struct Point {
1569///     x: u32,
1570///     y: u32,
1571/// }
1572///
1573/// let point: Point = zeroed();
1574/// assert_eq!(point.x, 0);
1575/// assert_eq!(point.y, 0);
1576/// ```
1577pub const fn zeroed<T: Zeroable>() -> T {
1578    // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`.
1579    unsafe { core::mem::zeroed() }
1580}
1581
1582macro_rules! impl_zeroable {
1583    ($($({$($generics:tt)*})? $t:ty, )*) => {
1584        // SAFETY: Safety comments written in the macro invocation.
1585        $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1586    };
1587}
1588
1589impl_zeroable! {
1590    // SAFETY: All primitives that are allowed to be zero.
1591    bool,
1592    char,
1593    u8, u16, u32, u64, u128, usize,
1594    i8, i16, i32, i64, i128, isize,
1595    f32, f64,
1596
1597    // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1598    // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1599    // uninhabited/empty types, consult The Rustonomicon:
1600    // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1601    // also has information on undefined behavior:
1602    // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1603    //
1604    // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1605    {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1606
1607    // SAFETY: Type is allowed to take any value, including all zeros.
1608    {<T>} MaybeUninit<T>,
1609
1610    // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1611    {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1612
1613    // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
1614    // <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
1615    Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1616    Option<NonZeroU128>, Option<NonZeroUsize>,
1617    Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1618    Option<NonZeroI128>, Option<NonZeroIsize>,
1619
1620    // SAFETY: `null` pointer is valid.
1621    //
1622    // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1623    // null.
1624    //
1625    // When `Pointee` gets stabilized, we could use
1626    // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1627    {<T>} *mut T, {<T>} *const T,
1628
1629    // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1630    // zero.
1631    {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1632
1633    // SAFETY: `T` is `Zeroable`.
1634    {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1635}
1636
1637macro_rules! impl_tuple_zeroable {
1638    ($(,)?) => {};
1639    ($first:ident, $($t:ident),* $(,)?) => {
1640        // SAFETY: All elements are zeroable and padding can be zero.
1641        unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1642        impl_tuple_zeroable!($($t),* ,);
1643    }
1644}
1645
1646impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1647
1648macro_rules! impl_fn_zeroable_option {
1649    ([$($abi:literal),* $(,)?] $args:tt) => {
1650        $(impl_fn_zeroable_option!({extern $abi} $args);)*
1651        $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)*
1652    };
1653    ({$($prefix:tt)*} {$(,)?}) => {};
1654    ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => {
1655        // SAFETY: function pointers are part of the option layout optimization:
1656        // <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1657        unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {}
1658        impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,});
1659    };
1660}
1661
1662impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U });
1663
1664/// This trait allows creating an instance of `Self` which contains exactly one
1665/// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning).
1666///
1667/// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s.
1668///
1669/// # Examples
1670///
1671/// ```
1672/// # use core::cell::UnsafeCell;
1673/// # use pin_init::{pin_data, pin_init, Wrapper};
1674///
1675/// #[pin_data]
1676/// struct Foo {}
1677///
1678/// #[pin_data]
1679/// struct Bar {
1680///     #[pin]
1681///     content: UnsafeCell<Foo>
1682/// };
1683///
1684/// let foo_initializer = pin_init!(Foo{});
1685/// let initializer = pin_init!(Bar {
1686///     content <- UnsafeCell::pin_init(foo_initializer)
1687/// });
1688/// ```
1689pub trait Wrapper<T> {
1690    /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer.
1691    fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>;
1692}
1693
1694impl<T> Wrapper<T> for UnsafeCell<T> {
1695    fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1696        // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`.
1697        unsafe { cast_pin_init(value_init) }
1698    }
1699}
1700
1701impl<T> Wrapper<T> for MaybeUninit<T> {
1702    fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1703        // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`.
1704        unsafe { cast_pin_init(value_init) }
1705    }
1706}
1707
1708#[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))]
1709impl<T> Wrapper<T> for core::pin::UnsafePinned<T> {
1710    fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1711        // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`.
1712        unsafe { cast_pin_init(init) }
1713    }
1714}