kernel/
task.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Tasks (threads and processes).
4//!
5//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6
7use crate::{
8    bindings,
9    ffi::{c_int, c_long, c_uint},
10    mm::MmWithUser,
11    pid_namespace::PidNamespace,
12    sync::aref::ARef,
13    types::{NotThreadSafe, Opaque},
14};
15use core::{
16    cmp::{Eq, PartialEq},
17    ops::Deref,
18    ptr,
19};
20
21/// A sentinel value used for infinite timeouts.
22pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
23
24/// Bitmask for tasks that are sleeping in an interruptible state.
25pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
26/// Bitmask for tasks that are sleeping in an uninterruptible state.
27pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
28/// Bitmask for tasks that are sleeping in a freezable state.
29pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int;
30/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
31/// uninterruptible sleep.
32pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
33
34/// Returns the currently running task.
35#[macro_export]
36macro_rules! current {
37    () => {
38        // SAFETY: This expression creates a temporary value that is dropped at the end of the
39        // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot
40        // leave current task context:
41        //
42        // * To return to userspace, the caller must leave the current scope.
43        // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of
44        //   `begin_new_exec()` is responsible for safety.
45        // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the
46        //   closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the
47        //   `&CurrentTask` cannot cross the scope in either direction.
48        unsafe { &*$crate::task::Task::current() }
49    };
50}
51
52/// Wraps the kernel's `struct task_struct`.
53///
54/// # Invariants
55///
56/// All instances are valid tasks created by the C portion of the kernel.
57///
58/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
59/// that the allocation remains valid at least until the matching call to `put_task_struct`.
60///
61/// # Examples
62///
63/// The following is an example of getting the PID of the current thread with zero additional cost
64/// when compared to the C version:
65///
66/// ```
67/// let pid = current!().pid();
68/// ```
69///
70/// Getting the PID of the current process, also zero additional cost:
71///
72/// ```
73/// let pid = current!().group_leader().pid();
74/// ```
75///
76/// Getting the current task and storing it in some struct. The reference count is automatically
77/// incremented when creating `State` and decremented when it is dropped:
78///
79/// ```
80/// use kernel::{task::Task, sync::aref::ARef};
81///
82/// struct State {
83///     creator: ARef<Task>,
84///     index: u32,
85/// }
86///
87/// impl State {
88///     fn new() -> Self {
89///         Self {
90///             creator: ARef::from(&**current!()),
91///             index: 0,
92///         }
93///     }
94/// }
95/// ```
96#[repr(transparent)]
97pub struct Task(pub(crate) Opaque<bindings::task_struct>);
98
99// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
100// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
101// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
102// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
103unsafe impl Send for Task {}
104
105// SAFETY: It's OK to access `Task` through shared references from other threads because we're
106// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
107// synchronised by C code (e.g., `signal_pending`).
108unsafe impl Sync for Task {}
109
110/// Represents the [`Task`] in the `current` global.
111///
112/// This type exists to provide more efficient operations that are only valid on the current task.
113/// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is
114/// the current task.
115///
116/// # Invariants
117///
118/// Each value of this type must only be accessed from the task context it was created within.
119///
120/// Of course, every thread is in a different task context, but for the purposes of this invariant,
121/// these operations also permanently leave the task context:
122///
123/// * Returning to userspace from system call context.
124/// * Calling `release_task()`.
125/// * Calling `begin_new_exec()` in a binary format loader.
126///
127/// Other operations temporarily create a new sub-context:
128///
129/// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the
130///   old context.
131///
132/// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again
133/// once `kthread_unuse_mm()` is called, but it must not be used between these two calls.
134/// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair
135/// must not be used after `kthread_unuse_mm()`.
136#[repr(transparent)]
137pub struct CurrentTask(Task, NotThreadSafe);
138
139// Make all `Task` methods available on `CurrentTask`.
140impl Deref for CurrentTask {
141    type Target = Task;
142    #[inline]
143    fn deref(&self) -> &Task {
144        &self.0
145    }
146}
147
148/// The type of process identifiers (PIDs).
149pub type Pid = bindings::pid_t;
150
151/// The type of user identifiers (UIDs).
152#[derive(Copy, Clone)]
153pub struct Kuid {
154    kuid: bindings::kuid_t,
155}
156
157impl Task {
158    /// Returns a raw pointer to the current task.
159    ///
160    /// It is up to the user to use the pointer correctly.
161    #[inline]
162    pub fn current_raw() -> *mut bindings::task_struct {
163        // SAFETY: Getting the current pointer is always safe.
164        unsafe { bindings::get_current() }
165    }
166
167    /// Returns a task reference for the currently executing task/thread.
168    ///
169    /// The recommended way to get the current task/thread is to use the
170    /// [`current`] macro because it is safe.
171    ///
172    /// # Safety
173    ///
174    /// Callers must ensure that the returned object is only used to access a [`CurrentTask`]
175    /// within the task context that was active when this function was called. For more details,
176    /// see the invariants section for [`CurrentTask`].
177    #[inline]
178    pub unsafe fn current() -> impl Deref<Target = CurrentTask> {
179        struct TaskRef {
180            task: *const CurrentTask,
181        }
182
183        impl Deref for TaskRef {
184            type Target = CurrentTask;
185
186            fn deref(&self) -> &Self::Target {
187                // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive
188                // the `TaskRef`, which the caller of `Task::current()` has promised will not
189                // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it
190                // is okay to return a `CurrentTask` reference here.
191                unsafe { &*self.task }
192            }
193        }
194
195        TaskRef {
196            // CAST: The layout of `struct task_struct` and `CurrentTask` is identical.
197            task: Task::current_raw().cast(),
198        }
199    }
200
201    /// Returns a raw pointer to the task.
202    #[inline]
203    pub fn as_ptr(&self) -> *mut bindings::task_struct {
204        self.0.get()
205    }
206
207    /// Returns the group leader of the given task.
208    pub fn group_leader(&self) -> &Task {
209        // SAFETY: The group leader of a task never changes after initialization, so reading this
210        // field is not a data race.
211        let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
212
213        // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
214        // and given that a task has a reference to its group leader, we know it must be valid for
215        // the lifetime of the returned task reference.
216        unsafe { &*ptr.cast() }
217    }
218
219    /// Returns the PID of the given task.
220    pub fn pid(&self) -> Pid {
221        // SAFETY: The pid of a task never changes after initialization, so reading this field is
222        // not a data race.
223        unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
224    }
225
226    /// Returns the UID of the given task.
227    #[inline]
228    pub fn uid(&self) -> Kuid {
229        // SAFETY: It's always safe to call `task_uid` on a valid task.
230        Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
231    }
232
233    /// Returns the effective UID of the given task.
234    #[inline]
235    pub fn euid(&self) -> Kuid {
236        // SAFETY: It's always safe to call `task_euid` on a valid task.
237        Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
238    }
239
240    /// Determines whether the given task has pending signals.
241    #[inline]
242    pub fn signal_pending(&self) -> bool {
243        // SAFETY: It's always safe to call `signal_pending` on a valid task.
244        unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
245    }
246
247    /// Returns task's pid namespace with elevated reference count
248    #[inline]
249    pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
250        // SAFETY: By the type invariant, we know that `self.0` is valid.
251        let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
252        if ptr.is_null() {
253            None
254        } else {
255            // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
256            // reference count via `task_get_pid_ns()`.
257            // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
258            Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
259        }
260    }
261
262    /// Returns the given task's pid in the provided pid namespace.
263    #[doc(alias = "task_tgid_nr_ns")]
264    #[inline]
265    pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
266        let pidns = match pidns {
267            Some(pidns) => pidns.as_ptr(),
268            None => core::ptr::null_mut(),
269        };
270        // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
271        // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
272        // thus pass a null pointer. The underlying C function is safe to be used with NULL
273        // pointers.
274        unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
275    }
276
277    /// Wakes up the task.
278    #[inline]
279    pub fn wake_up(&self) {
280        // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task
281        // running.
282        unsafe { bindings::wake_up_process(self.as_ptr()) };
283    }
284}
285
286impl CurrentTask {
287    /// Access the address space of the current task.
288    ///
289    /// This function does not touch the refcount of the mm.
290    #[inline]
291    pub fn mm(&self) -> Option<&MmWithUser> {
292        // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is
293        // not a data race.
294        let mm = unsafe { (*self.as_ptr()).mm };
295
296        if mm.is_null() {
297            return None;
298        }
299
300        // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero
301        // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this
302        // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained.
303        //
304        // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two
305        // relevant cases:
306        // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be
307        //   accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the
308        //   `NotThreadSafe` field of `CurrentTask`.
309        // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()`
310        //   scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser`
311        //   also cannot escape that scope.
312        // In either case, it's not possible to read `current->mm` and keep using it after the
313        // scope is ended with `kthread_unuse_mm()`.
314        Some(unsafe { MmWithUser::from_raw(mm) })
315    }
316
317    /// Access the pid namespace of the current task.
318    ///
319    /// This function does not touch the refcount of the namespace or use RCU protection.
320    ///
321    /// To access the pid namespace of another task, see [`Task::get_pid_ns`].
322    #[doc(alias = "task_active_pid_ns")]
323    #[inline]
324    pub fn active_pid_ns(&self) -> Option<&PidNamespace> {
325        // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it
326        // on the current task.
327        let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) };
328
329        if active_ns.is_null() {
330            return None;
331        }
332
333        // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
334        //
335        // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive.
336        //
337        // From system call context retrieving the `PidNamespace` for the current task is always
338        // safe and requires neither RCU locking nor a reference count to be held. Retrieving the
339        // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
340        // like that is exposed to Rust.
341        //
342        // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns.
343        // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot
344        // escape the scope in which the current pointer was obtained, e.g. it cannot live past a
345        // `release_task()` call.
346        Some(unsafe { PidNamespace::from_ptr(active_ns) })
347    }
348}
349
350// SAFETY: The type invariants guarantee that `Task` is always refcounted.
351unsafe impl crate::sync::aref::AlwaysRefCounted for Task {
352    #[inline]
353    fn inc_ref(&self) {
354        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
355        unsafe { bindings::get_task_struct(self.as_ptr()) };
356    }
357
358    #[inline]
359    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
360        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
361        unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
362    }
363}
364
365impl Kuid {
366    /// Get the current euid.
367    #[inline]
368    pub fn current_euid() -> Kuid {
369        // SAFETY: Just an FFI call.
370        Self::from_raw(unsafe { bindings::current_euid() })
371    }
372
373    /// Create a `Kuid` given the raw C type.
374    #[inline]
375    pub fn from_raw(kuid: bindings::kuid_t) -> Self {
376        Self { kuid }
377    }
378
379    /// Turn this kuid into the raw C type.
380    #[inline]
381    pub fn into_raw(self) -> bindings::kuid_t {
382        self.kuid
383    }
384
385    /// Converts this kernel UID into a userspace UID.
386    ///
387    /// Uses the namespace of the current task.
388    #[inline]
389    pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
390        // SAFETY: Just an FFI call.
391        unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
392    }
393}
394
395impl PartialEq for Kuid {
396    #[inline]
397    fn eq(&self, other: &Kuid) -> bool {
398        // SAFETY: Just an FFI call.
399        unsafe { bindings::uid_eq(self.kuid, other.kuid) }
400    }
401}
402
403impl Eq for Kuid {}
404
405/// Annotation for functions that can sleep.
406///
407/// Equivalent to the C side [`might_sleep()`], this function serves as
408/// a debugging aid and a potential scheduling point.
409///
410/// This function can only be used in a nonatomic context.
411///
412/// [`might_sleep()`]: https://docs.kernel.org/driver-api/basics.html#c.might_sleep
413#[track_caller]
414#[inline]
415pub fn might_sleep() {
416    #[cfg(CONFIG_DEBUG_ATOMIC_SLEEP)]
417    {
418        let loc = core::panic::Location::caller();
419        let file = kernel::file_from_location(loc);
420
421        // SAFETY: `file.as_ptr()` is valid for reading and guaranteed to be nul-terminated.
422        unsafe { crate::bindings::__might_sleep(file.as_ptr().cast(), loc.line() as i32) }
423    }
424
425    // SAFETY: Always safe to call.
426    unsafe { crate::bindings::might_resched() }
427}