kernel/sync/
atomic.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Atomic primitives.
4//!
5//! These primitives have the same semantics as their C counterparts: and the precise definitions of
6//! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
7//! only model for Rust code in kernel, and Rust's own atomics should be avoided.
8//!
9//! # Data races
10//!
11//! [`LKMM`] atomics have different rules regarding data races:
12//!
13//! - A normal write from C side is treated as an atomic write if
14//!   CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
15//! - Mixed-size atomic accesses don't cause data races.
16//!
17//! [`LKMM`]: srctree/tools/memory-model/
18
19mod internal;
20pub mod ordering;
21mod predefine;
22
23pub use internal::AtomicImpl;
24pub use ordering::{Acquire, Full, Relaxed, Release};
25pub(crate) use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps};
26
27use crate::build_error;
28use internal::AtomicRepr;
29use ordering::OrderingType;
30
31/// A memory location which can be safely modified from multiple execution contexts.
32///
33/// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
34/// niche optimization for the same reason as [`UnsafeCell`].
35///
36/// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
37/// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
38/// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
39/// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
40/// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
41/// `smp_load_acquire()` and `smp_store_release()`).
42///
43/// # Invariants
44///
45/// `self.0` is a valid `T`.
46///
47/// [`UnsafeCell`]: core::cell::UnsafeCell
48/// [LKMM]: srctree/tools/memory-model/
49/// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
50#[repr(transparent)]
51pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
52
53// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
54unsafe impl<T: AtomicType> Sync for Atomic<T> {}
55
56/// Types that support basic atomic operations.
57///
58/// # Round-trip transmutability
59///
60/// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
61///
62/// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
63/// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
64///   yields a value that is in all aspects equivalent to the original value.
65///
66/// # Safety
67///
68/// - [`Self`] must have the same size and alignment as [`Self::Repr`].
69/// - [`Self`] must be [round-trip transmutable] to  [`Self::Repr`].
70///
71/// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
72/// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
73/// variables over unit-only enums, see [Examples].
74///
75/// # Limitations
76///
77/// Because C primitives are used to implement the atomic operations, and a C function requires a
78/// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
79/// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
80/// u16)` (padding bytes are uninitialized) are currently not supported.
81///
82/// # Examples
83///
84/// A unit-only enum that implements [`AtomicType`]:
85///
86/// ```
87/// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
88///
89/// #[derive(Clone, Copy, PartialEq, Eq)]
90/// #[repr(i32)]
91/// enum State {
92///     Uninit = 0,
93///     Working = 1,
94///     Done = 2,
95/// };
96///
97/// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
98/// // transmutable to `i32`.
99/// unsafe impl AtomicType for State {
100///     type Repr = i32;
101/// }
102///
103/// let s = Atomic::new(State::Uninit);
104///
105/// assert_eq!(State::Uninit, s.load(Relaxed));
106/// ```
107/// [`transmute()`]: core::mem::transmute
108/// [round-trip transmutable]: AtomicType#round-trip-transmutability
109/// [Examples]: AtomicType#examples
110pub unsafe trait AtomicType: Sized + Send + Copy {
111    /// The backing atomic implementation type.
112    type Repr: AtomicImpl;
113}
114
115/// Types that support atomic add operations.
116///
117/// # Safety
118///
119// TODO: Properly defines `wrapping_add` in the following comment.
120/// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to
121/// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must
122/// yield a value with a bit pattern also valid for `Self`.
123pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType {
124    /// Converts `Rhs` into the `Delta` type of the atomic implementation.
125    fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta;
126}
127
128#[inline(always)]
129const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
130    // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
131    // `T::Repr`, therefore the transmute operation is sound.
132    unsafe { core::mem::transmute_copy(&v) }
133}
134
135/// # Safety
136///
137/// `r` must be a valid bit pattern of `T`.
138#[inline(always)]
139const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
140    // SAFETY: Per the safety requirement of the function, the transmute operation is sound.
141    unsafe { core::mem::transmute_copy(&r) }
142}
143
144impl<T: AtomicType> Atomic<T> {
145    /// Creates a new atomic `T`.
146    pub const fn new(v: T) -> Self {
147        // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
148        Self(AtomicRepr::new(into_repr(v)))
149    }
150
151    /// Creates a reference to an atomic `T` from a pointer of `T`.
152    ///
153    /// This usually is used when communicating with C side or manipulating a C struct, see
154    /// examples below.
155    ///
156    /// # Safety
157    ///
158    /// - `ptr` is aligned to `align_of::<T>()`.
159    /// - `ptr` is valid for reads and writes for `'a`.
160    /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
161    ///   by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
162    ///   accesses are atomic, then this safety requirement is trivially fulfilled.
163    ///
164    /// [`LKMM`]: srctree/tools/memory-model
165    ///
166    /// # Examples
167    ///
168    /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
169    /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
170    /// `WRITE_ONCE()`/`smp_store_release()` in C side:
171    ///
172    /// ```
173    /// # use kernel::types::Opaque;
174    /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
175    ///
176    /// // Assume there is a C struct `foo`.
177    /// mod cbindings {
178    ///     #[repr(C)]
179    ///     pub(crate) struct foo {
180    ///         pub(crate) a: i32,
181    ///         pub(crate) b: i32
182    ///     }
183    /// }
184    ///
185    /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
186    ///
187    /// // struct foo *foo_ptr = ..;
188    /// let foo_ptr = tmp.get();
189    ///
190    /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
191    /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
192    ///
193    /// // a = READ_ONCE(foo_ptr->a);
194    /// //
195    /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
196    /// // data race.
197    /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
198    /// # assert_eq!(a, 1);
199    ///
200    /// // smp_store_release(&foo_ptr->a, 2);
201    /// //
202    /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
203    /// // no data race.
204    /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
205    /// ```
206    pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
207    where
208        T: Sync,
209    {
210        // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
211        // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
212        // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
213        // guarantees other accesses won't cause data races.
214        unsafe { &*ptr.cast::<Self>() }
215    }
216
217    /// Returns a pointer to the underlying atomic `T`.
218    ///
219    /// Note that use of the return pointer must not cause data races defined by [`LKMM`].
220    ///
221    /// # Guarantees
222    ///
223    /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
224    ///
225    /// [`LKMM`]: srctree/tools/memory-model
226    /// [`align_of::<T>()`]: core::mem::align_of
227    pub const fn as_ptr(&self) -> *mut T {
228        // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
229        // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
230        // of `AtomicType`, it's a valid and properly aligned pointer of `T`.
231        self.0.as_ptr().cast()
232    }
233
234    /// Returns a mutable reference to the underlying atomic `T`.
235    ///
236    /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
237    pub fn get_mut(&mut self) -> &mut T {
238        // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
239        // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
240        // result is a valid pointer of `T`.
241        // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
242        // guarantees exclusive access.
243        unsafe { &mut *self.0.as_ptr().cast() }
244    }
245}
246
247impl<T: AtomicType> Atomic<T>
248where
249    T::Repr: AtomicBasicOps,
250{
251    /// Loads the value from the atomic `T`.
252    ///
253    /// # Examples
254    ///
255    /// ```
256    /// use kernel::sync::atomic::{Atomic, Relaxed};
257    ///
258    /// let x = Atomic::new(42i32);
259    ///
260    /// assert_eq!(42, x.load(Relaxed));
261    ///
262    /// let x = Atomic::new(42i64);
263    ///
264    /// assert_eq!(42, x.load(Relaxed));
265    /// ```
266    #[doc(alias("atomic_read", "atomic64_read"))]
267    #[inline(always)]
268    pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
269        let v = {
270            match Ordering::TYPE {
271                OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
272                OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
273                _ => build_error!("Wrong ordering"),
274            }
275        };
276
277        // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
278        unsafe { from_repr(v) }
279    }
280
281    /// Stores a value to the atomic `T`.
282    ///
283    /// # Examples
284    ///
285    /// ```
286    /// use kernel::sync::atomic::{Atomic, Relaxed};
287    ///
288    /// let x = Atomic::new(42i32);
289    ///
290    /// assert_eq!(42, x.load(Relaxed));
291    ///
292    /// x.store(43, Relaxed);
293    ///
294    /// assert_eq!(43, x.load(Relaxed));
295    /// ```
296    #[doc(alias("atomic_set", "atomic64_set"))]
297    #[inline(always)]
298    pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
299        let v = into_repr(v);
300
301        // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
302        match Ordering::TYPE {
303            OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
304            OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
305            _ => build_error!("Wrong ordering"),
306        }
307    }
308}
309
310impl<T: AtomicType + core::fmt::Debug> core::fmt::Debug for Atomic<T>
311where
312    T::Repr: AtomicBasicOps,
313{
314    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
315        core::fmt::Debug::fmt(&self.load(Relaxed), f)
316    }
317}
318
319impl<T: AtomicType> Atomic<T>
320where
321    T::Repr: AtomicExchangeOps,
322{
323    /// Atomic exchange.
324    ///
325    /// Atomically updates `*self` to `v` and returns the old value of `*self`.
326    ///
327    /// # Examples
328    ///
329    /// ```
330    /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
331    ///
332    /// let x = Atomic::new(42);
333    ///
334    /// assert_eq!(42, x.xchg(52, Acquire));
335    /// assert_eq!(52, x.load(Relaxed));
336    /// ```
337    #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
338    #[inline(always)]
339    pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
340        let v = into_repr(v);
341
342        // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
343        // `T`.
344        let ret = {
345            match Ordering::TYPE {
346                OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
347                OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
348                OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
349                OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
350            }
351        };
352
353        // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
354        unsafe { from_repr(ret) }
355    }
356
357    /// Atomic compare and exchange.
358    ///
359    /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
360    /// modified.
361    ///
362    /// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
363    ///
364    /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
365    /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
366    /// failed cmpxchg is a [`Relaxed`] load.
367    ///
368    /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
369    /// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// use kernel::sync::atomic::{Atomic, Full, Relaxed};
375    ///
376    /// let x = Atomic::new(42);
377    ///
378    /// // Checks whether cmpxchg succeeded.
379    /// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
380    /// # assert!(!success);
381    ///
382    /// // Checks whether cmpxchg failed.
383    /// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
384    /// # assert!(failure);
385    ///
386    /// // Uses the old value if failed, probably re-try cmpxchg.
387    /// match x.cmpxchg(52, 64, Relaxed) {
388    ///     Ok(_) => { },
389    ///     Err(old) => {
390    ///         // do something with `old`.
391    ///         # assert_eq!(old, 42);
392    ///     }
393    /// }
394    ///
395    /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
396    /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
397    /// # assert_eq!(42, latest);
398    /// assert_eq!(64, x.load(Relaxed));
399    /// ```
400    ///
401    /// [`Relaxed`]: ordering::Relaxed
402    #[doc(alias(
403        "atomic_cmpxchg",
404        "atomic64_cmpxchg",
405        "atomic_try_cmpxchg",
406        "atomic64_try_cmpxchg",
407        "compare_exchange"
408    ))]
409    #[inline(always)]
410    pub fn cmpxchg<Ordering: ordering::Ordering>(
411        &self,
412        mut old: T,
413        new: T,
414        o: Ordering,
415    ) -> Result<T, T> {
416        // Note on code generation:
417        //
418        // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
419        // the compiler is able to figure out that branch is not needed if the users don't care
420        // about whether the operation succeeds or not. One exception is on x86, due to commit
421        // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
422        // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
423        // success of cmpxchg and only wants to use the old value. For example, for code like:
424        //
425        //     let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
426        //
427        // It will still generate code:
428        //
429        //     movl    $0x40, %ecx
430        //     movl    $0x34, %eax
431        //     lock
432        //     cmpxchgl        %ecx, 0x4(%rsp)
433        //     jne     1f
434        //     2:
435        //     ...
436        //     1:  movl    %eax, %ecx
437        //     jmp 2b
438        //
439        // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
440        // location in the C function is always safe to write.
441        if self.try_cmpxchg(&mut old, new, o) {
442            Ok(old)
443        } else {
444            Err(old)
445        }
446    }
447
448    /// Atomic compare and exchange and returns whether the operation succeeds.
449    ///
450    /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
451    /// modified, `*old` is updated to the current value of `*self`.
452    ///
453    /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
454    ///
455    /// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
456    #[inline(always)]
457    fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
458        let mut tmp = into_repr(*old);
459        let new = into_repr(new);
460
461        // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
462        // transmutable to `T`.
463        let ret = {
464            match Ordering::TYPE {
465                OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
466                OrderingType::Acquire => {
467                    T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
468                }
469                OrderingType::Release => {
470                    T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
471                }
472                OrderingType::Relaxed => {
473                    T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
474                }
475            }
476        };
477
478        // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
479        *old = unsafe { from_repr(tmp) };
480
481        ret
482    }
483}
484
485impl<T: AtomicType> Atomic<T>
486where
487    T::Repr: AtomicArithmeticOps,
488{
489    /// Atomic add.
490    ///
491    /// Atomically updates `*self` to `(*self).wrapping_add(v)`.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// use kernel::sync::atomic::{Atomic, Relaxed};
497    ///
498    /// let x = Atomic::new(42);
499    ///
500    /// assert_eq!(42, x.load(Relaxed));
501    ///
502    /// x.add(12, Relaxed);
503    ///
504    /// assert_eq!(54, x.load(Relaxed));
505    /// ```
506    #[inline(always)]
507    pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed)
508    where
509        T: AtomicAdd<Rhs>,
510    {
511        let v = T::rhs_into_delta(v);
512
513        // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of
514        // `AtomicAdd`.
515        T::Repr::atomic_add(&self.0, v);
516    }
517
518    /// Atomic fetch and add.
519    ///
520    /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self`
521    /// before the update.
522    ///
523    /// # Examples
524    ///
525    /// ```
526    /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed};
527    ///
528    /// let x = Atomic::new(42);
529    ///
530    /// assert_eq!(42, x.load(Relaxed));
531    ///
532    /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) });
533    ///
534    /// let x = Atomic::new(42);
535    ///
536    /// assert_eq!(42, x.load(Relaxed));
537    ///
538    /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } );
539    /// ```
540    #[inline(always)]
541    pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T
542    where
543        T: AtomicAdd<Rhs>,
544    {
545        let v = T::rhs_into_delta(v);
546
547        // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement
548        // of `AtomicAdd`.
549        let ret = {
550            match Ordering::TYPE {
551                OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v),
552                OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v),
553                OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v),
554                OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v),
555            }
556        };
557
558        // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants.
559        unsafe { from_repr(ret) }
560    }
561}