core/num/
int_macros.rs

1macro_rules! int_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        UnsignedT = $UnsignedT:ty,
6
7        // These are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        Min = $Min:literal,
14        Max = $Max:literal,
15        rot = $rot:literal,
16        rot_op = $rot_op:literal,
17        rot_result = $rot_result:literal,
18        swap_op = $swap_op:literal,
19        swapped = $swapped:literal,
20        reversed = $reversed:literal,
21        le_bytes = $le_bytes:literal,
22        be_bytes = $be_bytes:literal,
23        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
24        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
25        bound_condition = $bound_condition:literal,
26    ) => {
27        /// The smallest value that can be represented by this integer type
28        #[doc = concat!("(&minus;2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ").")]
29        ///
30        /// # Examples
31        ///
32        /// ```
33        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
34        /// ```
35        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
36        pub const MIN: Self = !Self::MAX;
37
38        /// The largest value that can be represented by this integer type
39        #[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> &minus; 1", $bound_condition, ").")]
40        ///
41        /// # Examples
42        ///
43        /// ```
44        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
45        /// ```
46        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
47        pub const MAX: Self = (<$UnsignedT>::MAX >> 1) as Self;
48
49        /// The size of this integer type in bits.
50        ///
51        /// # Examples
52        ///
53        /// ```
54        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
55        /// ```
56        #[stable(feature = "int_bits_const", since = "1.53.0")]
57        pub const BITS: u32 = <$UnsignedT>::BITS;
58
59        /// Returns the number of ones in the binary representation of `self`.
60        ///
61        /// # Examples
62        ///
63        /// ```
64        #[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
65        ///
66        /// assert_eq!(n.count_ones(), 1);
67        /// ```
68        ///
69        #[stable(feature = "rust1", since = "1.0.0")]
70        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
71        #[doc(alias = "popcount")]
72        #[doc(alias = "popcnt")]
73        #[must_use = "this returns the result of the operation, \
74                      without modifying the original"]
75        #[inline(always)]
76        pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
77
78        /// Returns the number of zeros in the binary representation of `self`.
79        ///
80        /// # Examples
81        ///
82        /// ```
83        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
84        /// ```
85        #[stable(feature = "rust1", since = "1.0.0")]
86        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
87        #[must_use = "this returns the result of the operation, \
88                      without modifying the original"]
89        #[inline(always)]
90        pub const fn count_zeros(self) -> u32 {
91            (!self).count_ones()
92        }
93
94        /// Returns the number of leading zeros in the binary representation of `self`.
95        ///
96        /// Depending on what you're doing with the value, you might also be interested in the
97        /// [`ilog2`] function which returns a consistent number, even if the type widens.
98        ///
99        /// # Examples
100        ///
101        /// ```
102        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
103        ///
104        /// assert_eq!(n.leading_zeros(), 0);
105        /// ```
106        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
107        #[stable(feature = "rust1", since = "1.0.0")]
108        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
109        #[must_use = "this returns the result of the operation, \
110                      without modifying the original"]
111        #[inline(always)]
112        pub const fn leading_zeros(self) -> u32 {
113            (self as $UnsignedT).leading_zeros()
114        }
115
116        /// Returns the number of trailing zeros in the binary representation of `self`.
117        ///
118        /// # Examples
119        ///
120        /// ```
121        #[doc = concat!("let n = -4", stringify!($SelfT), ";")]
122        ///
123        /// assert_eq!(n.trailing_zeros(), 2);
124        /// ```
125        #[stable(feature = "rust1", since = "1.0.0")]
126        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
127        #[must_use = "this returns the result of the operation, \
128                      without modifying the original"]
129        #[inline(always)]
130        pub const fn trailing_zeros(self) -> u32 {
131            (self as $UnsignedT).trailing_zeros()
132        }
133
134        /// Returns the number of leading ones in the binary representation of `self`.
135        ///
136        /// # Examples
137        ///
138        /// ```
139        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
140        ///
141        #[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
142        /// ```
143        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
144        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
145        #[must_use = "this returns the result of the operation, \
146                      without modifying the original"]
147        #[inline(always)]
148        pub const fn leading_ones(self) -> u32 {
149            (self as $UnsignedT).leading_ones()
150        }
151
152        /// Returns the number of trailing ones in the binary representation of `self`.
153        ///
154        /// # Examples
155        ///
156        /// ```
157        #[doc = concat!("let n = 3", stringify!($SelfT), ";")]
158        ///
159        /// assert_eq!(n.trailing_ones(), 2);
160        /// ```
161        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
162        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
163        #[must_use = "this returns the result of the operation, \
164                      without modifying the original"]
165        #[inline(always)]
166        pub const fn trailing_ones(self) -> u32 {
167            (self as $UnsignedT).trailing_ones()
168        }
169
170        /// Returns `self` with only the most significant bit set, or `0` if
171        /// the input is `0`.
172        ///
173        /// # Examples
174        ///
175        /// ```
176        /// #![feature(isolate_most_least_significant_one)]
177        ///
178        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
179        ///
180        /// assert_eq!(n.isolate_highest_one(), 0b_01000000);
181        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_highest_one(), 0);")]
182        /// ```
183        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
184        #[must_use = "this returns the result of the operation, \
185                      without modifying the original"]
186        #[inline(always)]
187        pub const fn isolate_highest_one(self) -> Self {
188            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
189        }
190
191        /// Returns `self` with only the least significant bit set, or `0` if
192        /// the input is `0`.
193        ///
194        /// # Examples
195        ///
196        /// ```
197        /// #![feature(isolate_most_least_significant_one)]
198        ///
199        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
200        ///
201        /// assert_eq!(n.isolate_lowest_one(), 0b_00000100);
202        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_lowest_one(), 0);")]
203        /// ```
204        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
205        #[must_use = "this returns the result of the operation, \
206                      without modifying the original"]
207        #[inline(always)]
208        pub const fn isolate_lowest_one(self) -> Self {
209            self & self.wrapping_neg()
210        }
211
212        /// Returns the index of the highest bit set to one in `self`, or `None`
213        /// if `self` is `0`.
214        ///
215        /// # Examples
216        ///
217        /// ```
218        /// #![feature(int_lowest_highest_one)]
219        ///
220        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".highest_one(), None);")]
221        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".highest_one(), Some(0));")]
222        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".highest_one(), Some(4));")]
223        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".highest_one(), Some(4));")]
224        /// ```
225        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
226        #[must_use = "this returns the result of the operation, \
227                      without modifying the original"]
228        #[inline(always)]
229        pub const fn highest_one(self) -> Option<u32> {
230            (self as $UnsignedT).highest_one()
231        }
232
233        /// Returns the index of the lowest bit set to one in `self`, or `None`
234        /// if `self` is `0`.
235        ///
236        /// # Examples
237        ///
238        /// ```
239        /// #![feature(int_lowest_highest_one)]
240        ///
241        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".lowest_one(), None);")]
242        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".lowest_one(), Some(0));")]
243        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".lowest_one(), Some(4));")]
244        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".lowest_one(), Some(0));")]
245        /// ```
246        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
247        #[must_use = "this returns the result of the operation, \
248                      without modifying the original"]
249        #[inline(always)]
250        pub const fn lowest_one(self) -> Option<u32> {
251            (self as $UnsignedT).lowest_one()
252        }
253
254        /// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size.
255        ///
256        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
257        /// the same.
258        ///
259        /// # Examples
260        ///
261        /// ```
262        #[doc = concat!("let n = -1", stringify!($SelfT), ";")]
263        ///
264        #[doc = concat!("assert_eq!(n.cast_unsigned(), ", stringify!($UnsignedT), "::MAX);")]
265        /// ```
266        #[stable(feature = "integer_sign_cast", since = "1.87.0")]
267        #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
268        #[must_use = "this returns the result of the operation, \
269                      without modifying the original"]
270        #[inline(always)]
271        pub const fn cast_unsigned(self) -> $UnsignedT {
272            self as $UnsignedT
273        }
274
275        /// Shifts the bits to the left by a specified amount, `n`,
276        /// wrapping the truncated bits to the end of the resulting integer.
277        ///
278        /// `rotate_left(n)` is equivalent to applying `rotate_left(1)` a total of `n` times. In
279        /// particular, a rotation by the number of bits in `self` returns the input value
280        /// unchanged.
281        ///
282        /// Please note this isn't the same operation as the `<<` shifting operator!
283        ///
284        /// # Examples
285        ///
286        /// ```
287        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
288        #[doc = concat!("let m = ", $rot_result, ";")]
289        ///
290        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
291        #[doc = concat!("assert_eq!(n.rotate_left(1024), n);")]
292        /// ```
293        #[stable(feature = "rust1", since = "1.0.0")]
294        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
295        #[must_use = "this returns the result of the operation, \
296                      without modifying the original"]
297        #[inline(always)]
298        pub const fn rotate_left(self, n: u32) -> Self {
299            (self as $UnsignedT).rotate_left(n) as Self
300        }
301
302        /// Shifts the bits to the right by a specified amount, `n`,
303        /// wrapping the truncated bits to the beginning of the resulting
304        /// integer.
305        ///
306        /// `rotate_right(n)` is equivalent to applying `rotate_right(1)` a total of `n` times. In
307        /// particular, a rotation by the number of bits in `self` returns the input value
308        /// unchanged.
309        ///
310        /// Please note this isn't the same operation as the `>>` shifting operator!
311        ///
312        /// # Examples
313        ///
314        /// ```
315        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
316        #[doc = concat!("let m = ", $rot_op, ";")]
317        ///
318        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
319        #[doc = concat!("assert_eq!(n.rotate_right(1024), n);")]
320        /// ```
321        #[stable(feature = "rust1", since = "1.0.0")]
322        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
323        #[must_use = "this returns the result of the operation, \
324                      without modifying the original"]
325        #[inline(always)]
326        pub const fn rotate_right(self, n: u32) -> Self {
327            (self as $UnsignedT).rotate_right(n) as Self
328        }
329
330        /// Reverses the byte order of the integer.
331        ///
332        /// # Examples
333        ///
334        /// ```
335        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
336        ///
337        /// let m = n.swap_bytes();
338        ///
339        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
340        /// ```
341        #[stable(feature = "rust1", since = "1.0.0")]
342        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
343        #[must_use = "this returns the result of the operation, \
344                      without modifying the original"]
345        #[inline(always)]
346        pub const fn swap_bytes(self) -> Self {
347            (self as $UnsignedT).swap_bytes() as Self
348        }
349
350        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
351        ///                 second least-significant bit becomes second most-significant bit, etc.
352        ///
353        /// # Examples
354        ///
355        /// ```
356        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
357        /// let m = n.reverse_bits();
358        ///
359        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
360        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
361        /// ```
362        #[stable(feature = "reverse_bits", since = "1.37.0")]
363        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
364        #[must_use = "this returns the result of the operation, \
365                      without modifying the original"]
366        #[inline(always)]
367        pub const fn reverse_bits(self) -> Self {
368            (self as $UnsignedT).reverse_bits() as Self
369        }
370
371        /// Converts an integer from big endian to the target's endianness.
372        ///
373        /// On big endian this is a no-op. On little endian the bytes are swapped.
374        ///
375        /// # Examples
376        ///
377        /// ```
378        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
379        ///
380        /// if cfg!(target_endian = "big") {
381        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
382        /// } else {
383        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
384        /// }
385        /// ```
386        #[stable(feature = "rust1", since = "1.0.0")]
387        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
388        #[must_use]
389        #[inline]
390        pub const fn from_be(x: Self) -> Self {
391            #[cfg(target_endian = "big")]
392            {
393                x
394            }
395            #[cfg(not(target_endian = "big"))]
396            {
397                x.swap_bytes()
398            }
399        }
400
401        /// Converts an integer from little endian to the target's endianness.
402        ///
403        /// On little endian this is a no-op. On big endian the bytes are swapped.
404        ///
405        /// # Examples
406        ///
407        /// ```
408        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
409        ///
410        /// if cfg!(target_endian = "little") {
411        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
412        /// } else {
413        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
414        /// }
415        /// ```
416        #[stable(feature = "rust1", since = "1.0.0")]
417        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
418        #[must_use]
419        #[inline]
420        pub const fn from_le(x: Self) -> Self {
421            #[cfg(target_endian = "little")]
422            {
423                x
424            }
425            #[cfg(not(target_endian = "little"))]
426            {
427                x.swap_bytes()
428            }
429        }
430
431        /// Converts `self` to big endian from the target's endianness.
432        ///
433        /// On big endian this is a no-op. On little endian the bytes are swapped.
434        ///
435        /// # Examples
436        ///
437        /// ```
438        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
439        ///
440        /// if cfg!(target_endian = "big") {
441        ///     assert_eq!(n.to_be(), n)
442        /// } else {
443        ///     assert_eq!(n.to_be(), n.swap_bytes())
444        /// }
445        /// ```
446        #[stable(feature = "rust1", since = "1.0.0")]
447        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
448        #[must_use = "this returns the result of the operation, \
449                      without modifying the original"]
450        #[inline]
451        pub const fn to_be(self) -> Self { // or not to be?
452            #[cfg(target_endian = "big")]
453            {
454                self
455            }
456            #[cfg(not(target_endian = "big"))]
457            {
458                self.swap_bytes()
459            }
460        }
461
462        /// Converts `self` to little endian from the target's endianness.
463        ///
464        /// On little endian this is a no-op. On big endian the bytes are swapped.
465        ///
466        /// # Examples
467        ///
468        /// ```
469        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
470        ///
471        /// if cfg!(target_endian = "little") {
472        ///     assert_eq!(n.to_le(), n)
473        /// } else {
474        ///     assert_eq!(n.to_le(), n.swap_bytes())
475        /// }
476        /// ```
477        #[stable(feature = "rust1", since = "1.0.0")]
478        #[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
479        #[must_use = "this returns the result of the operation, \
480                      without modifying the original"]
481        #[inline]
482        pub const fn to_le(self) -> Self {
483            #[cfg(target_endian = "little")]
484            {
485                self
486            }
487            #[cfg(not(target_endian = "little"))]
488            {
489                self.swap_bytes()
490            }
491        }
492
493        /// Checked integer addition. Computes `self + rhs`, returning `None`
494        /// if overflow occurred.
495        ///
496        /// # Examples
497        ///
498        /// ```
499        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
500        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
501        /// ```
502        #[stable(feature = "rust1", since = "1.0.0")]
503        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
504        #[must_use = "this returns the result of the operation, \
505                      without modifying the original"]
506        #[inline]
507        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
508            let (a, b) = self.overflowing_add(rhs);
509            if intrinsics::unlikely(b) { None } else { Some(a) }
510        }
511
512        /// Strict integer addition. Computes `self + rhs`, panicking
513        /// if overflow occurred.
514        ///
515        /// # Panics
516        ///
517        /// ## Overflow behavior
518        ///
519        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
520        ///
521        /// # Examples
522        ///
523        /// ```
524        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
525        /// ```
526        ///
527        /// The following panics because of overflow:
528        ///
529        /// ```should_panic
530        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
531        /// ```
532        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
533        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
534        #[must_use = "this returns the result of the operation, \
535                      without modifying the original"]
536        #[inline]
537        #[track_caller]
538        pub const fn strict_add(self, rhs: Self) -> Self {
539            let (a, b) = self.overflowing_add(rhs);
540            if b { overflow_panic::add() } else { a }
541        }
542
543        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
544        /// cannot occur.
545        ///
546        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
547        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
548        ///
549        /// If you're just trying to avoid the panic in debug mode, then **do not**
550        /// use this.  Instead, you're looking for [`wrapping_add`].
551        ///
552        /// # Safety
553        ///
554        /// This results in undefined behavior when
555        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
556        /// i.e. when [`checked_add`] would return `None`.
557        ///
558        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
559        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
560        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
561        #[stable(feature = "unchecked_math", since = "1.79.0")]
562        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
563        #[must_use = "this returns the result of the operation, \
564                      without modifying the original"]
565        #[inline(always)]
566        #[track_caller]
567        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
568            assert_unsafe_precondition!(
569                check_language_ub,
570                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
571                (
572                    lhs: $SelfT = self,
573                    rhs: $SelfT = rhs,
574                ) => !lhs.overflowing_add(rhs).1,
575            );
576
577            // SAFETY: this is guaranteed to be safe by the caller.
578            unsafe {
579                intrinsics::unchecked_add(self, rhs)
580            }
581        }
582
583        /// Checked addition with an unsigned integer. Computes `self + rhs`,
584        /// returning `None` if overflow occurred.
585        ///
586        /// # Examples
587        ///
588        /// ```
589        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
590        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
591        /// ```
592        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
593        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
594        #[must_use = "this returns the result of the operation, \
595                      without modifying the original"]
596        #[inline]
597        pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
598            let (a, b) = self.overflowing_add_unsigned(rhs);
599            if intrinsics::unlikely(b) { None } else { Some(a) }
600        }
601
602        /// Strict addition with an unsigned integer. Computes `self + rhs`,
603        /// panicking if overflow occurred.
604        ///
605        /// # Panics
606        ///
607        /// ## Overflow behavior
608        ///
609        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
610        ///
611        /// # Examples
612        ///
613        /// ```
614        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_unsigned(2), 3);")]
615        /// ```
616        ///
617        /// The following panics because of overflow:
618        ///
619        /// ```should_panic
620        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_unsigned(3);")]
621        /// ```
622        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
623        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
624        #[must_use = "this returns the result of the operation, \
625                      without modifying the original"]
626        #[inline]
627        #[track_caller]
628        pub const fn strict_add_unsigned(self, rhs: $UnsignedT) -> Self {
629            let (a, b) = self.overflowing_add_unsigned(rhs);
630            if b { overflow_panic::add() } else { a }
631        }
632
633        /// Checked integer subtraction. Computes `self - rhs`, returning `None` if
634        /// overflow occurred.
635        ///
636        /// # Examples
637        ///
638        /// ```
639        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
640        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
641        /// ```
642        #[stable(feature = "rust1", since = "1.0.0")]
643        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
644        #[must_use = "this returns the result of the operation, \
645                      without modifying the original"]
646        #[inline]
647        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
648            let (a, b) = self.overflowing_sub(rhs);
649            if intrinsics::unlikely(b) { None } else { Some(a) }
650        }
651
652        /// Strict integer subtraction. Computes `self - rhs`, panicking if
653        /// overflow occurred.
654        ///
655        /// # Panics
656        ///
657        /// ## Overflow behavior
658        ///
659        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
660        ///
661        /// # Examples
662        ///
663        /// ```
664        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).strict_sub(1), ", stringify!($SelfT), "::MIN + 1);")]
665        /// ```
666        ///
667        /// The following panics because of overflow:
668        ///
669        /// ```should_panic
670        #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub(3);")]
671        /// ```
672        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
673        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
674        #[must_use = "this returns the result of the operation, \
675                      without modifying the original"]
676        #[inline]
677        #[track_caller]
678        pub const fn strict_sub(self, rhs: Self) -> Self {
679            let (a, b) = self.overflowing_sub(rhs);
680            if b { overflow_panic::sub() } else { a }
681        }
682
683        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
684        /// cannot occur.
685        ///
686        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
687        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
688        ///
689        /// If you're just trying to avoid the panic in debug mode, then **do not**
690        /// use this.  Instead, you're looking for [`wrapping_sub`].
691        ///
692        /// # Safety
693        ///
694        /// This results in undefined behavior when
695        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
696        /// i.e. when [`checked_sub`] would return `None`.
697        ///
698        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
699        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
700        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
701        #[stable(feature = "unchecked_math", since = "1.79.0")]
702        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
703        #[must_use = "this returns the result of the operation, \
704                      without modifying the original"]
705        #[inline(always)]
706        #[track_caller]
707        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
708            assert_unsafe_precondition!(
709                check_language_ub,
710                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
711                (
712                    lhs: $SelfT = self,
713                    rhs: $SelfT = rhs,
714                ) => !lhs.overflowing_sub(rhs).1,
715            );
716
717            // SAFETY: this is guaranteed to be safe by the caller.
718            unsafe {
719                intrinsics::unchecked_sub(self, rhs)
720            }
721        }
722
723        /// Checked subtraction with an unsigned integer. Computes `self - rhs`,
724        /// returning `None` if overflow occurred.
725        ///
726        /// # Examples
727        ///
728        /// ```
729        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
730        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
731        /// ```
732        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
733        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
734        #[must_use = "this returns the result of the operation, \
735                      without modifying the original"]
736        #[inline]
737        pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
738            let (a, b) = self.overflowing_sub_unsigned(rhs);
739            if intrinsics::unlikely(b) { None } else { Some(a) }
740        }
741
742        /// Strict subtraction with an unsigned integer. Computes `self - rhs`,
743        /// panicking if overflow occurred.
744        ///
745        /// # Panics
746        ///
747        /// ## Overflow behavior
748        ///
749        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
750        ///
751        /// # Examples
752        ///
753        /// ```
754        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub_unsigned(2), -1);")]
755        /// ```
756        ///
757        /// The following panics because of overflow:
758        ///
759        /// ```should_panic
760        #[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub_unsigned(3);")]
761        /// ```
762        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
763        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
764        #[must_use = "this returns the result of the operation, \
765                      without modifying the original"]
766        #[inline]
767        #[track_caller]
768        pub const fn strict_sub_unsigned(self, rhs: $UnsignedT) -> Self {
769            let (a, b) = self.overflowing_sub_unsigned(rhs);
770            if b { overflow_panic::sub() } else { a }
771        }
772
773        /// Checked integer multiplication. Computes `self * rhs`, returning `None` if
774        /// overflow occurred.
775        ///
776        /// # Examples
777        ///
778        /// ```
779        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
780        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
781        /// ```
782        #[stable(feature = "rust1", since = "1.0.0")]
783        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
784        #[must_use = "this returns the result of the operation, \
785                      without modifying the original"]
786        #[inline]
787        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
788            let (a, b) = self.overflowing_mul(rhs);
789            if intrinsics::unlikely(b) { None } else { Some(a) }
790        }
791
792        /// Strict integer multiplication. Computes `self * rhs`, panicking if
793        /// overflow occurred.
794        ///
795        /// # Panics
796        ///
797        /// ## Overflow behavior
798        ///
799        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
800        ///
801        /// # Examples
802        ///
803        /// ```
804        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.strict_mul(1), ", stringify!($SelfT), "::MAX);")]
805        /// ```
806        ///
807        /// The following panics because of overflow:
808        ///
809        /// ``` should_panic
810        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
811        /// ```
812        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
813        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
814        #[must_use = "this returns the result of the operation, \
815                      without modifying the original"]
816        #[inline]
817        #[track_caller]
818        pub const fn strict_mul(self, rhs: Self) -> Self {
819            let (a, b) = self.overflowing_mul(rhs);
820            if b { overflow_panic::mul() } else { a }
821        }
822
823        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
824        /// cannot occur.
825        ///
826        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
827        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
828        ///
829        /// If you're just trying to avoid the panic in debug mode, then **do not**
830        /// use this.  Instead, you're looking for [`wrapping_mul`].
831        ///
832        /// # Safety
833        ///
834        /// This results in undefined behavior when
835        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
836        /// i.e. when [`checked_mul`] would return `None`.
837        ///
838        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
839        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
840        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
841        #[stable(feature = "unchecked_math", since = "1.79.0")]
842        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
843        #[must_use = "this returns the result of the operation, \
844                      without modifying the original"]
845        #[inline(always)]
846        #[track_caller]
847        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
848            assert_unsafe_precondition!(
849                check_language_ub,
850                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
851                (
852                    lhs: $SelfT = self,
853                    rhs: $SelfT = rhs,
854                ) => !lhs.overflowing_mul(rhs).1,
855            );
856
857            // SAFETY: this is guaranteed to be safe by the caller.
858            unsafe {
859                intrinsics::unchecked_mul(self, rhs)
860            }
861        }
862
863        /// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
864        /// or the division results in overflow.
865        ///
866        /// # Examples
867        ///
868        /// ```
869        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
870        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
871        #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
872        /// ```
873        #[stable(feature = "rust1", since = "1.0.0")]
874        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
875        #[must_use = "this returns the result of the operation, \
876                      without modifying the original"]
877        #[inline]
878        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
879            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
880                None
881            } else {
882                // SAFETY: div by zero and by INT_MIN have been checked above
883                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
884            }
885        }
886
887        /// Strict integer division. Computes `self / rhs`, panicking
888        /// if overflow occurred.
889        ///
890        /// # Panics
891        ///
892        /// This function will panic if `rhs` is zero.
893        ///
894        /// ## Overflow behavior
895        ///
896        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
897        ///
898        /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
899        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
900        /// that is too large to represent in the type.
901        ///
902        /// # Examples
903        ///
904        /// ```
905        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div(-1), ", stringify!($Max), ");")]
906        /// ```
907        ///
908        /// The following panics because of overflow:
909        ///
910        /// ```should_panic
911        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div(-1);")]
912        /// ```
913        ///
914        /// The following panics because of division by zero:
915        ///
916        /// ```should_panic
917        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
918        /// ```
919        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
920        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
921        #[must_use = "this returns the result of the operation, \
922                      without modifying the original"]
923        #[inline]
924        #[track_caller]
925        pub const fn strict_div(self, rhs: Self) -> Self {
926            let (a, b) = self.overflowing_div(rhs);
927            if b { overflow_panic::div() } else { a }
928        }
929
930        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
931        /// returning `None` if `rhs == 0` or the division results in overflow.
932        ///
933        /// # Examples
934        ///
935        /// ```
936        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
937        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
938        #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
939        /// ```
940        #[stable(feature = "euclidean_division", since = "1.38.0")]
941        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
942        #[must_use = "this returns the result of the operation, \
943                      without modifying the original"]
944        #[inline]
945        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
946            // Using `&` helps LLVM see that it is the same check made in division.
947            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
948                None
949            } else {
950                Some(self.div_euclid(rhs))
951            }
952        }
953
954        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`, panicking
955        /// if overflow occurred.
956        ///
957        /// # Panics
958        ///
959        /// This function will panic if `rhs` is zero.
960        ///
961        /// ## Overflow behavior
962        ///
963        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
964        ///
965        /// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
966        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
967        /// that is too large to represent in the type.
968        ///
969        /// # Examples
970        ///
971        /// ```
972        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div_euclid(-1), ", stringify!($Max), ");")]
973        /// ```
974        ///
975        /// The following panics because of overflow:
976        ///
977        /// ```should_panic
978        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div_euclid(-1);")]
979        /// ```
980        ///
981        /// The following panics because of division by zero:
982        ///
983        /// ```should_panic
984        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
985        /// ```
986        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
987        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
988        #[must_use = "this returns the result of the operation, \
989                      without modifying the original"]
990        #[inline]
991        #[track_caller]
992        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
993            let (a, b) = self.overflowing_div_euclid(rhs);
994            if b { overflow_panic::div() } else { a }
995        }
996
997        /// Checked integer division without remainder. Computes `self / rhs`,
998        /// returning `None` if `rhs == 0`, the division results in overflow,
999        /// or `self % rhs != 0`.
1000        ///
1001        /// # Examples
1002        ///
1003        /// ```
1004        /// #![feature(exact_div)]
1005        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_exact(-1), Some(", stringify!($Max), "));")]
1006        #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_div_exact(2), None);")]
1007        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_exact(-1), None);")]
1008        #[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_exact(0), None);")]
1009        /// ```
1010        #[unstable(
1011            feature = "exact_div",
1012            issue = "139911",
1013        )]
1014        #[must_use = "this returns the result of the operation, \
1015                      without modifying the original"]
1016        #[inline]
1017        pub const fn checked_div_exact(self, rhs: Self) -> Option<Self> {
1018            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1019                None
1020            } else {
1021                // SAFETY: division by zero and overflow are checked above
1022                unsafe {
1023                    if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1024                        None
1025                    } else {
1026                        Some(intrinsics::exact_div(self, rhs))
1027                    }
1028                }
1029            }
1030        }
1031
1032        /// Integer division without remainder. Computes `self / rhs`, returning `None` if `self % rhs != 0`.
1033        ///
1034        /// # Panics
1035        ///
1036        /// This function will panic  if `rhs == 0`.
1037        ///
1038        /// ## Overflow behavior
1039        ///
1040        /// On overflow, this function will panic if overflow checks are enabled (default in debug
1041        /// mode) and wrap if overflow checks are disabled (default in release mode).
1042        ///
1043        /// # Examples
1044        ///
1045        /// ```
1046        /// #![feature(exact_div)]
1047        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(2), Some(32));")]
1048        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(32), Some(2));")]
1049        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).div_exact(-1), Some(", stringify!($Max), "));")]
1050        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".div_exact(2), None);")]
1051        /// ```
1052        /// ```should_panic
1053        /// #![feature(exact_div)]
1054        #[doc = concat!("let _ = 64", stringify!($SelfT),".div_exact(0);")]
1055        /// ```
1056        /// ```should_panic
1057        /// #![feature(exact_div)]
1058        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.div_exact(-1);")]
1059        /// ```
1060        #[unstable(
1061            feature = "exact_div",
1062            issue = "139911",
1063        )]
1064        #[must_use = "this returns the result of the operation, \
1065                      without modifying the original"]
1066        #[inline]
1067        #[rustc_inherit_overflow_checks]
1068        pub const fn div_exact(self, rhs: Self) -> Option<Self> {
1069            if self % rhs != 0 {
1070                None
1071            } else {
1072                Some(self / rhs)
1073            }
1074        }
1075
1076        /// Unchecked integer division without remainder. Computes `self / rhs`.
1077        ///
1078        /// # Safety
1079        ///
1080        /// This results in undefined behavior when `rhs == 0`, `self % rhs != 0`, or
1081        #[doc = concat!("`self == ", stringify!($SelfT), "::MIN && rhs == -1`,")]
1082        /// i.e. when [`checked_div_exact`](Self::checked_div_exact) would return `None`.
1083        #[unstable(
1084            feature = "exact_div",
1085            issue = "139911",
1086        )]
1087        #[must_use = "this returns the result of the operation, \
1088                      without modifying the original"]
1089        #[inline]
1090        pub const unsafe fn unchecked_div_exact(self, rhs: Self) -> Self {
1091            assert_unsafe_precondition!(
1092                check_language_ub,
1093                concat!(stringify!($SelfT), "::unchecked_div_exact cannot overflow, divide by zero, or leave a remainder"),
1094                (
1095                    lhs: $SelfT = self,
1096                    rhs: $SelfT = rhs,
1097                ) => rhs > 0 && lhs % rhs == 0 && (lhs != <$SelfT>::MIN || rhs != -1),
1098            );
1099            // SAFETY: Same precondition
1100            unsafe { intrinsics::exact_div(self, rhs) }
1101        }
1102
1103        /// Checked integer remainder. Computes `self % rhs`, returning `None` if
1104        /// `rhs == 0` or the division results in overflow.
1105        ///
1106        /// # Examples
1107        ///
1108        /// ```
1109        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1110        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1111        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
1112        /// ```
1113        #[stable(feature = "wrapping", since = "1.7.0")]
1114        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1115        #[must_use = "this returns the result of the operation, \
1116                      without modifying the original"]
1117        #[inline]
1118        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1119            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
1120                None
1121            } else {
1122                // SAFETY: div by zero and by INT_MIN have been checked above
1123                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1124            }
1125        }
1126
1127        /// Strict integer remainder. Computes `self % rhs`, panicking if
1128        /// the division results in overflow.
1129        ///
1130        /// # Panics
1131        ///
1132        /// This function will panic if `rhs` is zero.
1133        ///
1134        /// ## Overflow behavior
1135        ///
1136        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1137        ///
1138        /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1139        /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1140        ///
1141        /// # Examples
1142        ///
1143        /// ```
1144        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem(2), 1);")]
1145        /// ```
1146        ///
1147        /// The following panics because of division by zero:
1148        ///
1149        /// ```should_panic
1150        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1151        /// ```
1152        ///
1153        /// The following panics because of overflow:
1154        ///
1155        /// ```should_panic
1156        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem(-1);")]
1157        /// ```
1158        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1159        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1160        #[must_use = "this returns the result of the operation, \
1161                      without modifying the original"]
1162        #[inline]
1163        #[track_caller]
1164        pub const fn strict_rem(self, rhs: Self) -> Self {
1165            let (a, b) = self.overflowing_rem(rhs);
1166            if b { overflow_panic::rem() } else { a }
1167        }
1168
1169        /// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
1170        /// if `rhs == 0` or the division results in overflow.
1171        ///
1172        /// # Examples
1173        ///
1174        /// ```
1175        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1176        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1177        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
1178        /// ```
1179        #[stable(feature = "euclidean_division", since = "1.38.0")]
1180        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1181        #[must_use = "this returns the result of the operation, \
1182                      without modifying the original"]
1183        #[inline]
1184        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1185            // Using `&` helps LLVM see that it is the same check made in division.
1186            if intrinsics::unlikely(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
1187                None
1188            } else {
1189                Some(self.rem_euclid(rhs))
1190            }
1191        }
1192
1193        /// Strict Euclidean remainder. Computes `self.rem_euclid(rhs)`, panicking if
1194        /// the division results in overflow.
1195        ///
1196        /// # Panics
1197        ///
1198        /// This function will panic if `rhs` is zero.
1199        ///
1200        /// ## Overflow behavior
1201        ///
1202        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1203        ///
1204        /// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
1205        /// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
1206        ///
1207        /// # Examples
1208        ///
1209        /// ```
1210        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem_euclid(2), 1);")]
1211        /// ```
1212        ///
1213        /// The following panics because of division by zero:
1214        ///
1215        /// ```should_panic
1216        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1217        /// ```
1218        ///
1219        /// The following panics because of overflow:
1220        ///
1221        /// ```should_panic
1222        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem_euclid(-1);")]
1223        /// ```
1224        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1225        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1226        #[must_use = "this returns the result of the operation, \
1227                      without modifying the original"]
1228        #[inline]
1229        #[track_caller]
1230        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1231            let (a, b) = self.overflowing_rem_euclid(rhs);
1232            if b { overflow_panic::rem() } else { a }
1233        }
1234
1235        /// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
1236        ///
1237        /// # Examples
1238        ///
1239        /// ```
1240        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
1241        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
1242        /// ```
1243        #[stable(feature = "wrapping", since = "1.7.0")]
1244        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1245        #[must_use = "this returns the result of the operation, \
1246                      without modifying the original"]
1247        #[inline]
1248        pub const fn checked_neg(self) -> Option<Self> {
1249            let (a, b) = self.overflowing_neg();
1250            if intrinsics::unlikely(b) { None } else { Some(a) }
1251        }
1252
1253        /// Unchecked negation. Computes `-self`, assuming overflow cannot occur.
1254        ///
1255        /// # Safety
1256        ///
1257        /// This results in undefined behavior when
1258        #[doc = concat!("`self == ", stringify!($SelfT), "::MIN`,")]
1259        /// i.e. when [`checked_neg`] would return `None`.
1260        ///
1261        #[doc = concat!("[`checked_neg`]: ", stringify!($SelfT), "::checked_neg")]
1262        #[unstable(
1263            feature = "unchecked_neg",
1264            reason = "niche optimization path",
1265            issue = "85122",
1266        )]
1267        #[must_use = "this returns the result of the operation, \
1268                      without modifying the original"]
1269        #[inline(always)]
1270        #[track_caller]
1271        pub const unsafe fn unchecked_neg(self) -> Self {
1272            assert_unsafe_precondition!(
1273                check_language_ub,
1274                concat!(stringify!($SelfT), "::unchecked_neg cannot overflow"),
1275                (
1276                    lhs: $SelfT = self,
1277                ) => !lhs.overflowing_neg().1,
1278            );
1279
1280            // SAFETY: this is guaranteed to be safe by the caller.
1281            unsafe {
1282                intrinsics::unchecked_sub(0, self)
1283            }
1284        }
1285
1286        /// Strict negation. Computes `-self`, panicking if `self == MIN`.
1287        ///
1288        /// # Panics
1289        ///
1290        /// ## Overflow behavior
1291        ///
1292        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1293        ///
1294        /// # Examples
1295        ///
1296        /// ```
1297        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_neg(), -5);")]
1298        /// ```
1299        ///
1300        /// The following panics because of overflow:
1301        ///
1302        /// ```should_panic
1303        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_neg();")]
1304        /// ```
1305        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1306        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1307        #[must_use = "this returns the result of the operation, \
1308                      without modifying the original"]
1309        #[inline]
1310        #[track_caller]
1311        pub const fn strict_neg(self) -> Self {
1312            let (a, b) = self.overflowing_neg();
1313            if b { overflow_panic::neg() } else { a }
1314        }
1315
1316        /// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
1317        /// than or equal to the number of bits in `self`.
1318        ///
1319        /// # Examples
1320        ///
1321        /// ```
1322        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1323        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
1324        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1325        /// ```
1326        #[stable(feature = "wrapping", since = "1.7.0")]
1327        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1328        #[must_use = "this returns the result of the operation, \
1329                      without modifying the original"]
1330        #[inline]
1331        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1332            // Not using overflowing_shl as that's a wrapping shift
1333            if rhs < Self::BITS {
1334                // SAFETY: just checked the RHS is in-range
1335                Some(unsafe { self.unchecked_shl(rhs) })
1336            } else {
1337                None
1338            }
1339        }
1340
1341        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1342        /// than or equal to the number of bits in `self`.
1343        ///
1344        /// # Panics
1345        ///
1346        /// ## Overflow behavior
1347        ///
1348        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1349        ///
1350        /// # Examples
1351        ///
1352        /// ```
1353        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1354        /// ```
1355        ///
1356        /// The following panics because of overflow:
1357        ///
1358        /// ```should_panic
1359        #[doc = concat!("let _ = 0x1", stringify!($SelfT), ".strict_shl(129);")]
1360        /// ```
1361        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1362        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1363        #[must_use = "this returns the result of the operation, \
1364                      without modifying the original"]
1365        #[inline]
1366        #[track_caller]
1367        pub const fn strict_shl(self, rhs: u32) -> Self {
1368            let (a, b) = self.overflowing_shl(rhs);
1369            if b { overflow_panic::shl() } else { a }
1370        }
1371
1372        /// Unchecked shift left. Computes `self << rhs`, assuming that
1373        /// `rhs` is less than the number of bits in `self`.
1374        ///
1375        /// # Safety
1376        ///
1377        /// This results in undefined behavior if `rhs` is larger than
1378        /// or equal to the number of bits in `self`,
1379        /// i.e. when [`checked_shl`] would return `None`.
1380        ///
1381        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1382        #[unstable(
1383            feature = "unchecked_shifts",
1384            reason = "niche optimization path",
1385            issue = "85122",
1386        )]
1387        #[must_use = "this returns the result of the operation, \
1388                      without modifying the original"]
1389        #[inline(always)]
1390        #[track_caller]
1391        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1392            assert_unsafe_precondition!(
1393                check_language_ub,
1394                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1395                (
1396                    rhs: u32 = rhs,
1397                ) => rhs < <$ActualT>::BITS,
1398            );
1399
1400            // SAFETY: this is guaranteed to be safe by the caller.
1401            unsafe {
1402                intrinsics::unchecked_shl(self, rhs)
1403            }
1404        }
1405
1406        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1407        ///
1408        /// If `rhs` is larger or equal to the number of bits in `self`,
1409        /// the entire value is shifted out, and `0` is returned.
1410        ///
1411        /// # Examples
1412        ///
1413        /// ```
1414        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1415        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1416        /// ```
1417        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1418        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1419        #[must_use = "this returns the result of the operation, \
1420                      without modifying the original"]
1421        #[inline]
1422        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1423            if rhs < Self::BITS {
1424                // SAFETY:
1425                // rhs is just checked to be in-range above
1426                unsafe { self.unchecked_shl(rhs) }
1427            } else {
1428                0
1429            }
1430        }
1431
1432        /// Exact shift left. Computes `self << rhs` as long as it can be reversed losslessly.
1433        ///
1434        /// Returns `None` if any bits that would be shifted out differ from the resulting sign bit
1435        /// or if `rhs` >=
1436        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1437        /// Otherwise, returns `Some(self << rhs)`.
1438        ///
1439        /// # Examples
1440        ///
1441        /// ```
1442        /// #![feature(exact_bitshifts)]
1443        ///
1444        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(4), Some(0x10));")]
1445        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(", stringify!($SelfT), "::BITS - 2), Some(1 << ", stringify!($SelfT), "::BITS - 2));")]
1446        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(", stringify!($SelfT), "::BITS - 1), None);")]
1447        #[doc = concat!("assert_eq!((-0x2", stringify!($SelfT), ").shl_exact(", stringify!($SelfT), "::BITS - 2), Some(-0x2 << ", stringify!($SelfT), "::BITS - 2));")]
1448        #[doc = concat!("assert_eq!((-0x2", stringify!($SelfT), ").shl_exact(", stringify!($SelfT), "::BITS - 1), None);")]
1449        /// ```
1450        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1451        #[must_use = "this returns the result of the operation, \
1452                      without modifying the original"]
1453        #[inline]
1454        pub const fn shl_exact(self, rhs: u32) -> Option<$SelfT> {
1455            if rhs < self.leading_zeros() || rhs < self.leading_ones() {
1456                // SAFETY: rhs is checked above
1457                Some(unsafe { self.unchecked_shl(rhs) })
1458            } else {
1459                None
1460            }
1461        }
1462
1463        /// Unchecked exact shift left. Computes `self << rhs`, assuming the operation can be
1464        /// losslessly reversed and `rhs` cannot be larger than
1465        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1466        ///
1467        /// # Safety
1468        ///
1469        /// This results in undefined behavior when `rhs >= self.leading_zeros() && rhs >=
1470        /// self.leading_ones()` i.e. when
1471        #[doc = concat!("[`", stringify!($SelfT), "::shl_exact`]")]
1472        /// would return `None`.
1473        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1474        #[must_use = "this returns the result of the operation, \
1475                      without modifying the original"]
1476        #[inline]
1477        pub const unsafe fn unchecked_shl_exact(self, rhs: u32) -> $SelfT {
1478            assert_unsafe_precondition!(
1479                check_library_ub,
1480                concat!(stringify!($SelfT), "::unchecked_shl_exact cannot shift out bits that would change the value of the first bit"),
1481                (
1482                    zeros: u32 = self.leading_zeros(),
1483                    ones: u32 = self.leading_ones(),
1484                    rhs: u32 = rhs,
1485                ) => rhs < zeros || rhs < ones,
1486            );
1487
1488            // SAFETY: this is guaranteed to be safe by the caller
1489            unsafe { self.unchecked_shl(rhs) }
1490        }
1491
1492        /// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
1493        /// larger than or equal to the number of bits in `self`.
1494        ///
1495        /// # Examples
1496        ///
1497        /// ```
1498        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1499        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
1500        /// ```
1501        #[stable(feature = "wrapping", since = "1.7.0")]
1502        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1503        #[must_use = "this returns the result of the operation, \
1504                      without modifying the original"]
1505        #[inline]
1506        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1507            // Not using overflowing_shr as that's a wrapping shift
1508            if rhs < Self::BITS {
1509                // SAFETY: just checked the RHS is in-range
1510                Some(unsafe { self.unchecked_shr(rhs) })
1511            } else {
1512                None
1513            }
1514        }
1515
1516        /// Strict shift right. Computes `self >> rhs`, panicking if `rhs` is
1517        /// larger than or equal to the number of bits in `self`.
1518        ///
1519        /// # Panics
1520        ///
1521        /// ## Overflow behavior
1522        ///
1523        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1524        ///
1525        /// # Examples
1526        ///
1527        /// ```
1528        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1529        /// ```
1530        ///
1531        /// The following panics because of overflow:
1532        ///
1533        /// ```should_panic
1534        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(128);")]
1535        /// ```
1536        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1537        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1538        #[must_use = "this returns the result of the operation, \
1539                      without modifying the original"]
1540        #[inline]
1541        #[track_caller]
1542        pub const fn strict_shr(self, rhs: u32) -> Self {
1543            let (a, b) = self.overflowing_shr(rhs);
1544            if b { overflow_panic::shr() } else { a }
1545        }
1546
1547        /// Unchecked shift right. Computes `self >> rhs`, assuming that
1548        /// `rhs` is less than the number of bits in `self`.
1549        ///
1550        /// # Safety
1551        ///
1552        /// This results in undefined behavior if `rhs` is larger than
1553        /// or equal to the number of bits in `self`,
1554        /// i.e. when [`checked_shr`] would return `None`.
1555        ///
1556        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1557        #[unstable(
1558            feature = "unchecked_shifts",
1559            reason = "niche optimization path",
1560            issue = "85122",
1561        )]
1562        #[must_use = "this returns the result of the operation, \
1563                      without modifying the original"]
1564        #[inline(always)]
1565        #[track_caller]
1566        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1567            assert_unsafe_precondition!(
1568                check_language_ub,
1569                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1570                (
1571                    rhs: u32 = rhs,
1572                ) => rhs < <$ActualT>::BITS,
1573            );
1574
1575            // SAFETY: this is guaranteed to be safe by the caller.
1576            unsafe {
1577                intrinsics::unchecked_shr(self, rhs)
1578            }
1579        }
1580
1581        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1582        ///
1583        /// If `rhs` is larger or equal to the number of bits in `self`,
1584        /// the entire value is shifted out, which yields `0` for a positive number,
1585        /// and `-1` for a negative number.
1586        ///
1587        /// # Examples
1588        ///
1589        /// ```
1590        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1591        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1592        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.unbounded_shr(129), -1);")]
1593        /// ```
1594        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1595        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1596        #[must_use = "this returns the result of the operation, \
1597                      without modifying the original"]
1598        #[inline]
1599        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1600            if rhs < Self::BITS {
1601                // SAFETY:
1602                // rhs is just checked to be in-range above
1603                unsafe { self.unchecked_shr(rhs) }
1604            } else {
1605                // A shift by `Self::BITS-1` suffices for signed integers, because the sign bit is copied for each of the shifted bits.
1606
1607                // SAFETY:
1608                // `Self::BITS-1` is guaranteed to be less than `Self::BITS`
1609                unsafe { self.unchecked_shr(Self::BITS - 1) }
1610            }
1611        }
1612
1613        /// Exact shift right. Computes `self >> rhs` as long as it can be reversed losslessly.
1614        ///
1615        /// Returns `None` if any non-zero bits would be shifted out or if `rhs` >=
1616        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1617        /// Otherwise, returns `Some(self >> rhs)`.
1618        ///
1619        /// # Examples
1620        ///
1621        /// ```
1622        /// #![feature(exact_bitshifts)]
1623        ///
1624        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(4), Some(0x1));")]
1625        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(5), None);")]
1626        /// ```
1627        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1628        #[must_use = "this returns the result of the operation, \
1629                      without modifying the original"]
1630        #[inline]
1631        pub const fn shr_exact(self, rhs: u32) -> Option<$SelfT> {
1632            if rhs <= self.trailing_zeros() && rhs < <$SelfT>::BITS {
1633                // SAFETY: rhs is checked above
1634                Some(unsafe { self.unchecked_shr(rhs) })
1635            } else {
1636                None
1637            }
1638        }
1639
1640        /// Unchecked exact shift right. Computes `self >> rhs`, assuming the operation can be
1641        /// losslessly reversed and `rhs` cannot be larger than
1642        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1643        ///
1644        /// # Safety
1645        ///
1646        /// This results in undefined behavior when `rhs > self.trailing_zeros() || rhs >=
1647        #[doc = concat!(stringify!($SelfT), "::BITS`")]
1648        /// i.e. when
1649        #[doc = concat!("[`", stringify!($SelfT), "::shr_exact`]")]
1650        /// would return `None`.
1651        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1652        #[must_use = "this returns the result of the operation, \
1653                      without modifying the original"]
1654        #[inline]
1655        pub const unsafe fn unchecked_shr_exact(self, rhs: u32) -> $SelfT {
1656            assert_unsafe_precondition!(
1657                check_library_ub,
1658                concat!(stringify!($SelfT), "::unchecked_shr_exact cannot shift out non-zero bits"),
1659                (
1660                    zeros: u32 = self.trailing_zeros(),
1661                    bits: u32 =  <$SelfT>::BITS,
1662                    rhs: u32 = rhs,
1663                ) => rhs <= zeros && rhs < bits,
1664            );
1665
1666            // SAFETY: this is guaranteed to be safe by the caller
1667            unsafe { self.unchecked_shr(rhs) }
1668        }
1669
1670        /// Checked absolute value. Computes `self.abs()`, returning `None` if
1671        /// `self == MIN`.
1672        ///
1673        /// # Examples
1674        ///
1675        /// ```
1676        #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
1677        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
1678        /// ```
1679        #[stable(feature = "no_panic_abs", since = "1.13.0")]
1680        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1681        #[must_use = "this returns the result of the operation, \
1682                      without modifying the original"]
1683        #[inline]
1684        pub const fn checked_abs(self) -> Option<Self> {
1685            if self.is_negative() {
1686                self.checked_neg()
1687            } else {
1688                Some(self)
1689            }
1690        }
1691
1692        /// Strict absolute value. Computes `self.abs()`, panicking if
1693        /// `self == MIN`.
1694        ///
1695        /// # Panics
1696        ///
1697        /// ## Overflow behavior
1698        ///
1699        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1700        ///
1701        /// # Examples
1702        ///
1703        /// ```
1704        #[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").strict_abs(), 5);")]
1705        /// ```
1706        ///
1707        /// The following panics because of overflow:
1708        ///
1709        /// ```should_panic
1710        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_abs();")]
1711        /// ```
1712        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1713        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1714        #[must_use = "this returns the result of the operation, \
1715                      without modifying the original"]
1716        #[inline]
1717        #[track_caller]
1718        pub const fn strict_abs(self) -> Self {
1719            if self.is_negative() {
1720                self.strict_neg()
1721            } else {
1722                self
1723            }
1724        }
1725
1726        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1727        /// overflow occurred.
1728        ///
1729        /// # Examples
1730        ///
1731        /// ```
1732        #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
1733        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".checked_pow(0), Some(1));")]
1734        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1735        /// ```
1736
1737        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1738        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1739        #[must_use = "this returns the result of the operation, \
1740                      without modifying the original"]
1741        #[inline]
1742        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1743            if exp == 0 {
1744                return Some(1);
1745            }
1746            let mut base = self;
1747            let mut acc: Self = 1;
1748
1749            loop {
1750                if (exp & 1) == 1 {
1751                    acc = try_opt!(acc.checked_mul(base));
1752                    // since exp!=0, finally the exp must be 1.
1753                    if exp == 1 {
1754                        return Some(acc);
1755                    }
1756                }
1757                exp /= 2;
1758                base = try_opt!(base.checked_mul(base));
1759            }
1760        }
1761
1762        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1763        /// overflow occurred.
1764        ///
1765        /// # Panics
1766        ///
1767        /// ## Overflow behavior
1768        ///
1769        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1770        ///
1771        /// # Examples
1772        ///
1773        /// ```
1774        #[doc = concat!("assert_eq!(8", stringify!($SelfT), ".strict_pow(2), 64);")]
1775        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".strict_pow(0), 1);")]
1776        /// ```
1777        ///
1778        /// The following panics because of overflow:
1779        ///
1780        /// ```should_panic
1781        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1782        /// ```
1783        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1784        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1785        #[must_use = "this returns the result of the operation, \
1786                      without modifying the original"]
1787        #[inline]
1788        #[track_caller]
1789        pub const fn strict_pow(self, mut exp: u32) -> Self {
1790            if exp == 0 {
1791                return 1;
1792            }
1793            let mut base = self;
1794            let mut acc: Self = 1;
1795
1796            loop {
1797                if (exp & 1) == 1 {
1798                    acc = acc.strict_mul(base);
1799                    // since exp!=0, finally the exp must be 1.
1800                    if exp == 1 {
1801                        return acc;
1802                    }
1803                }
1804                exp /= 2;
1805                base = base.strict_mul(base);
1806            }
1807        }
1808
1809        /// Returns the square root of the number, rounded down.
1810        ///
1811        /// Returns `None` if `self` is negative.
1812        ///
1813        /// # Examples
1814        ///
1815        /// ```
1816        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
1817        /// ```
1818        #[stable(feature = "isqrt", since = "1.84.0")]
1819        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
1820        #[must_use = "this returns the result of the operation, \
1821                      without modifying the original"]
1822        #[inline]
1823        pub const fn checked_isqrt(self) -> Option<Self> {
1824            if self < 0 {
1825                None
1826            } else {
1827                // SAFETY: Input is nonnegative in this `else` branch.
1828                let result = unsafe {
1829                    crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT
1830                };
1831
1832                // Inform the optimizer what the range of outputs is. If
1833                // testing `core` crashes with no panic message and a
1834                // `num::int_sqrt::i*` test failed, it's because your edits
1835                // caused these assertions to become false.
1836                //
1837                // SAFETY: Integer square root is a monotonically nondecreasing
1838                // function, which means that increasing the input will never
1839                // cause the output to decrease. Thus, since the input for
1840                // nonnegative signed integers is bounded by
1841                // `[0, <$ActualT>::MAX]`, sqrt(n) will be bounded by
1842                // `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
1843                unsafe {
1844                    // SAFETY: `<$ActualT>::MAX` is nonnegative.
1845                    const MAX_RESULT: $SelfT = unsafe {
1846                        crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT
1847                    };
1848
1849                    crate::hint::assert_unchecked(result >= 0);
1850                    crate::hint::assert_unchecked(result <= MAX_RESULT);
1851                }
1852
1853                Some(result)
1854            }
1855        }
1856
1857        /// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
1858        /// bounds instead of overflowing.
1859        ///
1860        /// # Examples
1861        ///
1862        /// ```
1863        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1864        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
1865        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
1866        /// ```
1867
1868        #[stable(feature = "rust1", since = "1.0.0")]
1869        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1870        #[must_use = "this returns the result of the operation, \
1871                      without modifying the original"]
1872        #[inline(always)]
1873        pub const fn saturating_add(self, rhs: Self) -> Self {
1874            intrinsics::saturating_add(self, rhs)
1875        }
1876
1877        /// Saturating addition with an unsigned integer. Computes `self + rhs`,
1878        /// saturating at the numeric bounds instead of overflowing.
1879        ///
1880        /// # Examples
1881        ///
1882        /// ```
1883        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
1884        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
1885        /// ```
1886        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1887        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1888        #[must_use = "this returns the result of the operation, \
1889                      without modifying the original"]
1890        #[inline]
1891        pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
1892            // Overflow can only happen at the upper bound
1893            // We cannot use `unwrap_or` here because it is not `const`
1894            match self.checked_add_unsigned(rhs) {
1895                Some(x) => x,
1896                None => Self::MAX,
1897            }
1898        }
1899
1900        /// Saturating integer subtraction. Computes `self - rhs`, saturating at the
1901        /// numeric bounds instead of overflowing.
1902        ///
1903        /// # Examples
1904        ///
1905        /// ```
1906        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
1907        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
1908        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
1909        /// ```
1910        #[stable(feature = "rust1", since = "1.0.0")]
1911        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1912        #[must_use = "this returns the result of the operation, \
1913                      without modifying the original"]
1914        #[inline(always)]
1915        pub const fn saturating_sub(self, rhs: Self) -> Self {
1916            intrinsics::saturating_sub(self, rhs)
1917        }
1918
1919        /// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
1920        /// saturating at the numeric bounds instead of overflowing.
1921        ///
1922        /// # Examples
1923        ///
1924        /// ```
1925        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
1926        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
1927        /// ```
1928        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1929        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1930        #[must_use = "this returns the result of the operation, \
1931                      without modifying the original"]
1932        #[inline]
1933        pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
1934            // Overflow can only happen at the lower bound
1935            // We cannot use `unwrap_or` here because it is not `const`
1936            match self.checked_sub_unsigned(rhs) {
1937                Some(x) => x,
1938                None => Self::MIN,
1939            }
1940        }
1941
1942        /// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
1943        /// instead of overflowing.
1944        ///
1945        /// # Examples
1946        ///
1947        /// ```
1948        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
1949        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
1950        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
1951        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
1952        /// ```
1953
1954        #[stable(feature = "saturating_neg", since = "1.45.0")]
1955        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1956        #[must_use = "this returns the result of the operation, \
1957                      without modifying the original"]
1958        #[inline(always)]
1959        pub const fn saturating_neg(self) -> Self {
1960            intrinsics::saturating_sub(0, self)
1961        }
1962
1963        /// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
1964        /// MIN` instead of overflowing.
1965        ///
1966        /// # Examples
1967        ///
1968        /// ```
1969        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
1970        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
1971        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1972        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
1973        /// ```
1974
1975        #[stable(feature = "saturating_neg", since = "1.45.0")]
1976        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1977        #[must_use = "this returns the result of the operation, \
1978                      without modifying the original"]
1979        #[inline]
1980        pub const fn saturating_abs(self) -> Self {
1981            if self.is_negative() {
1982                self.saturating_neg()
1983            } else {
1984                self
1985            }
1986        }
1987
1988        /// Saturating integer multiplication. Computes `self * rhs`, saturating at the
1989        /// numeric bounds instead of overflowing.
1990        ///
1991        /// # Examples
1992        ///
1993        /// ```
1994        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
1995        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
1996        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
1997        /// ```
1998        #[stable(feature = "wrapping", since = "1.7.0")]
1999        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2000        #[must_use = "this returns the result of the operation, \
2001                      without modifying the original"]
2002        #[inline]
2003        pub const fn saturating_mul(self, rhs: Self) -> Self {
2004            match self.checked_mul(rhs) {
2005                Some(x) => x,
2006                None => if (self < 0) == (rhs < 0) {
2007                    Self::MAX
2008                } else {
2009                    Self::MIN
2010                }
2011            }
2012        }
2013
2014        /// Saturating integer division. Computes `self / rhs`, saturating at the
2015        /// numeric bounds instead of overflowing.
2016        ///
2017        /// # Panics
2018        ///
2019        /// This function will panic if `rhs` is zero.
2020        ///
2021        /// # Examples
2022        ///
2023        /// ```
2024        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
2025        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
2026        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
2027        ///
2028        /// ```
2029        #[stable(feature = "saturating_div", since = "1.58.0")]
2030        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
2031        #[must_use = "this returns the result of the operation, \
2032                      without modifying the original"]
2033        #[inline]
2034        pub const fn saturating_div(self, rhs: Self) -> Self {
2035            match self.overflowing_div(rhs) {
2036                (result, false) => result,
2037                (_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
2038            }
2039        }
2040
2041        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2042        /// saturating at the numeric bounds instead of overflowing.
2043        ///
2044        /// # Examples
2045        ///
2046        /// ```
2047        #[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
2048        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".saturating_pow(0), 1);")]
2049        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2050        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
2051        /// ```
2052        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2053        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2054        #[must_use = "this returns the result of the operation, \
2055                      without modifying the original"]
2056        #[inline]
2057        pub const fn saturating_pow(self, exp: u32) -> Self {
2058            match self.checked_pow(exp) {
2059                Some(x) => x,
2060                None if self < 0 && exp % 2 == 1 => Self::MIN,
2061                None => Self::MAX,
2062            }
2063        }
2064
2065        /// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
2066        /// boundary of the type.
2067        ///
2068        /// # Examples
2069        ///
2070        /// ```
2071        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
2072        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
2073        /// ```
2074        #[stable(feature = "rust1", since = "1.0.0")]
2075        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2076        #[must_use = "this returns the result of the operation, \
2077                      without modifying the original"]
2078        #[inline(always)]
2079        pub const fn wrapping_add(self, rhs: Self) -> Self {
2080            intrinsics::wrapping_add(self, rhs)
2081        }
2082
2083        /// Wrapping (modular) addition with an unsigned integer. Computes
2084        /// `self + rhs`, wrapping around at the boundary of the type.
2085        ///
2086        /// # Examples
2087        ///
2088        /// ```
2089        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
2090        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
2091        /// ```
2092        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2093        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2094        #[must_use = "this returns the result of the operation, \
2095                      without modifying the original"]
2096        #[inline(always)]
2097        pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
2098            self.wrapping_add(rhs as Self)
2099        }
2100
2101        /// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
2102        /// boundary of the type.
2103        ///
2104        /// # Examples
2105        ///
2106        /// ```
2107        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
2108        #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
2109        /// ```
2110        #[stable(feature = "rust1", since = "1.0.0")]
2111        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2112        #[must_use = "this returns the result of the operation, \
2113                      without modifying the original"]
2114        #[inline(always)]
2115        pub const fn wrapping_sub(self, rhs: Self) -> Self {
2116            intrinsics::wrapping_sub(self, rhs)
2117        }
2118
2119        /// Wrapping (modular) subtraction with an unsigned integer. Computes
2120        /// `self - rhs`, wrapping around at the boundary of the type.
2121        ///
2122        /// # Examples
2123        ///
2124        /// ```
2125        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
2126        #[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
2127        /// ```
2128        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2129        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2130        #[must_use = "this returns the result of the operation, \
2131                      without modifying the original"]
2132        #[inline(always)]
2133        pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
2134            self.wrapping_sub(rhs as Self)
2135        }
2136
2137        /// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
2138        /// the boundary of the type.
2139        ///
2140        /// # Examples
2141        ///
2142        /// ```
2143        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
2144        /// assert_eq!(11i8.wrapping_mul(12), -124);
2145        /// ```
2146        #[stable(feature = "rust1", since = "1.0.0")]
2147        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2148        #[must_use = "this returns the result of the operation, \
2149                      without modifying the original"]
2150        #[inline(always)]
2151        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2152            intrinsics::wrapping_mul(self, rhs)
2153        }
2154
2155        /// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
2156        /// boundary of the type.
2157        ///
2158        /// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
2159        /// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
2160        /// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
2161        ///
2162        /// # Panics
2163        ///
2164        /// This function will panic if `rhs` is zero.
2165        ///
2166        /// # Examples
2167        ///
2168        /// ```
2169        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2170        /// assert_eq!((-128i8).wrapping_div(-1), -128);
2171        /// ```
2172        #[stable(feature = "num_wrapping", since = "1.2.0")]
2173        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2174        #[must_use = "this returns the result of the operation, \
2175                      without modifying the original"]
2176        #[inline]
2177        pub const fn wrapping_div(self, rhs: Self) -> Self {
2178            self.overflowing_div(rhs).0
2179        }
2180
2181        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
2182        /// wrapping around at the boundary of the type.
2183        ///
2184        /// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
2185        /// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
2186        /// type. In this case, this method returns `MIN` itself.
2187        ///
2188        /// # Panics
2189        ///
2190        /// This function will panic if `rhs` is zero.
2191        ///
2192        /// # Examples
2193        ///
2194        /// ```
2195        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2196        /// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
2197        /// ```
2198        #[stable(feature = "euclidean_division", since = "1.38.0")]
2199        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2200        #[must_use = "this returns the result of the operation, \
2201                      without modifying the original"]
2202        #[inline]
2203        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2204            self.overflowing_div_euclid(rhs).0
2205        }
2206
2207        /// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
2208        /// boundary of the type.
2209        ///
2210        /// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
2211        /// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
2212        /// this function returns `0`.
2213        ///
2214        /// # Panics
2215        ///
2216        /// This function will panic if `rhs` is zero.
2217        ///
2218        /// # Examples
2219        ///
2220        /// ```
2221        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2222        /// assert_eq!((-128i8).wrapping_rem(-1), 0);
2223        /// ```
2224        #[stable(feature = "num_wrapping", since = "1.2.0")]
2225        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2226        #[must_use = "this returns the result of the operation, \
2227                      without modifying the original"]
2228        #[inline]
2229        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2230            self.overflowing_rem(rhs).0
2231        }
2232
2233        /// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
2234        /// at the boundary of the type.
2235        ///
2236        /// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
2237        /// for the type). In this case, this method returns 0.
2238        ///
2239        /// # Panics
2240        ///
2241        /// This function will panic if `rhs` is zero.
2242        ///
2243        /// # Examples
2244        ///
2245        /// ```
2246        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2247        /// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
2248        /// ```
2249        #[stable(feature = "euclidean_division", since = "1.38.0")]
2250        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2251        #[must_use = "this returns the result of the operation, \
2252                      without modifying the original"]
2253        #[inline]
2254        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2255            self.overflowing_rem_euclid(rhs).0
2256        }
2257
2258        /// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
2259        /// of the type.
2260        ///
2261        /// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
2262        /// is the negative minimal value for the type); this is a positive value that is too large to represent
2263        /// in the type. In such a case, this function returns `MIN` itself.
2264        ///
2265        /// # Examples
2266        ///
2267        /// ```
2268        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
2269        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_neg(), 100);")]
2270        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
2271        /// ```
2272        #[stable(feature = "num_wrapping", since = "1.2.0")]
2273        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2274        #[must_use = "this returns the result of the operation, \
2275                      without modifying the original"]
2276        #[inline(always)]
2277        pub const fn wrapping_neg(self) -> Self {
2278            (0 as $SelfT).wrapping_sub(self)
2279        }
2280
2281        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
2282        /// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2283        ///
2284        /// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
2285        /// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
2286        /// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
2287        /// which may be what you want instead.
2288        ///
2289        /// # Examples
2290        ///
2291        /// ```
2292        #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
2293        #[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
2294        /// ```
2295        #[stable(feature = "num_wrapping", since = "1.2.0")]
2296        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2297        #[must_use = "this returns the result of the operation, \
2298                      without modifying the original"]
2299        #[inline(always)]
2300        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2301            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2302            // out of bounds
2303            unsafe {
2304                self.unchecked_shl(rhs & (Self::BITS - 1))
2305            }
2306        }
2307
2308        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
2309        /// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
2310        ///
2311        /// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
2312        /// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
2313        /// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
2314        /// which may be what you want instead.
2315        ///
2316        /// # Examples
2317        ///
2318        /// ```
2319        #[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
2320        /// assert_eq!((-128i16).wrapping_shr(64), -128);
2321        /// ```
2322        #[stable(feature = "num_wrapping", since = "1.2.0")]
2323        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2324        #[must_use = "this returns the result of the operation, \
2325                      without modifying the original"]
2326        #[inline(always)]
2327        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2328            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2329            // out of bounds
2330            unsafe {
2331                self.unchecked_shr(rhs & (Self::BITS - 1))
2332            }
2333        }
2334
2335        /// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
2336        /// the boundary of the type.
2337        ///
2338        /// The only case where such wrapping can occur is when one takes the absolute value of the negative
2339        /// minimal value for the type; this is a positive value that is too large to represent in the type. In
2340        /// such a case, this function returns `MIN` itself.
2341        ///
2342        /// # Examples
2343        ///
2344        /// ```
2345        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
2346        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
2347        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
2348        /// assert_eq!((-128i8).wrapping_abs() as u8, 128);
2349        /// ```
2350        #[stable(feature = "no_panic_abs", since = "1.13.0")]
2351        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2352        #[must_use = "this returns the result of the operation, \
2353                      without modifying the original"]
2354        #[allow(unused_attributes)]
2355        #[inline]
2356        pub const fn wrapping_abs(self) -> Self {
2357             if self.is_negative() {
2358                 self.wrapping_neg()
2359             } else {
2360                 self
2361             }
2362        }
2363
2364        /// Computes the absolute value of `self` without any wrapping
2365        /// or panicking.
2366        ///
2367        ///
2368        /// # Examples
2369        ///
2370        /// ```
2371        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2372        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
2373        /// assert_eq!((-128i8).unsigned_abs(), 128u8);
2374        /// ```
2375        #[stable(feature = "unsigned_abs", since = "1.51.0")]
2376        #[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
2377        #[must_use = "this returns the result of the operation, \
2378                      without modifying the original"]
2379        #[inline]
2380        pub const fn unsigned_abs(self) -> $UnsignedT {
2381             self.wrapping_abs() as $UnsignedT
2382        }
2383
2384        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2385        /// wrapping around at the boundary of the type.
2386        ///
2387        /// # Examples
2388        ///
2389        /// ```
2390        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
2391        /// assert_eq!(3i8.wrapping_pow(5), -13);
2392        /// assert_eq!(3i8.wrapping_pow(6), -39);
2393        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_pow(0), 1);")]
2394        /// ```
2395        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2396        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2397        #[must_use = "this returns the result of the operation, \
2398                      without modifying the original"]
2399        #[inline]
2400        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2401            if exp == 0 {
2402                return 1;
2403            }
2404            let mut base = self;
2405            let mut acc: Self = 1;
2406
2407            if intrinsics::is_val_statically_known(exp) {
2408                while exp > 1 {
2409                    if (exp & 1) == 1 {
2410                        acc = acc.wrapping_mul(base);
2411                    }
2412                    exp /= 2;
2413                    base = base.wrapping_mul(base);
2414                }
2415
2416                // since exp!=0, finally the exp must be 1.
2417                // Deal with the final bit of the exponent separately, since
2418                // squaring the base afterwards is not necessary.
2419                acc.wrapping_mul(base)
2420            } else {
2421                // This is faster than the above when the exponent is not known
2422                // at compile time. We can't use the same code for the constant
2423                // exponent case because LLVM is currently unable to unroll
2424                // this loop.
2425                loop {
2426                    if (exp & 1) == 1 {
2427                        acc = acc.wrapping_mul(base);
2428                        // since exp!=0, finally the exp must be 1.
2429                        if exp == 1 {
2430                            return acc;
2431                        }
2432                    }
2433                    exp /= 2;
2434                    base = base.wrapping_mul(base);
2435                }
2436            }
2437        }
2438
2439        /// Calculates `self` + `rhs`.
2440        ///
2441        /// Returns a tuple of the addition along with a boolean indicating
2442        /// whether an arithmetic overflow would occur. If an overflow would have
2443        /// occurred then the wrapped value is returned.
2444        ///
2445        /// # Examples
2446        ///
2447        /// ```
2448        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2449        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
2450        /// ```
2451        #[stable(feature = "wrapping", since = "1.7.0")]
2452        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2453        #[must_use = "this returns the result of the operation, \
2454                      without modifying the original"]
2455        #[inline(always)]
2456        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2457            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2458            (a as Self, b)
2459        }
2460
2461        /// Calculates `self` + `rhs` + `carry` and checks for overflow.
2462        ///
2463        /// Performs "ternary addition" of two integer operands and a carry-in
2464        /// bit, and returns a tuple of the sum along with a boolean indicating
2465        /// whether an arithmetic overflow would occur. On overflow, the wrapped
2466        /// value is returned.
2467        ///
2468        /// This allows chaining together multiple additions to create a wider
2469        /// addition, and can be useful for bignum addition. This method should
2470        /// only be used for the most significant word; for the less significant
2471        /// words the unsigned method
2472        #[doc = concat!("[`", stringify!($UnsignedT), "::carrying_add`]")]
2473        /// should be used.
2474        ///
2475        /// The output boolean returned by this method is *not* a carry flag,
2476        /// and should *not* be added to a more significant word.
2477        ///
2478        /// If the input carry is false, this method is equivalent to
2479        /// [`overflowing_add`](Self::overflowing_add).
2480        ///
2481        /// # Examples
2482        ///
2483        /// ```
2484        /// #![feature(bigint_helper_methods)]
2485        /// // Only the most significant word is signed.
2486        /// //
2487        #[doc = concat!("//   10  MAX    (a = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2488        #[doc = concat!("// + -5    9    (b = -5 × 2^", stringify!($BITS), " + 9)")]
2489        /// // ---------
2490        #[doc = concat!("//    6    8    (sum = 6 × 2^", stringify!($BITS), " + 8)")]
2491        ///
2492        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (10, ", stringify!($UnsignedT), "::MAX);")]
2493        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2494        /// let carry0 = false;
2495        ///
2496        #[doc = concat!("// ", stringify!($UnsignedT), "::carrying_add for the less significant words")]
2497        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2498        /// assert_eq!(carry1, true);
2499        ///
2500        #[doc = concat!("// ", stringify!($SelfT), "::carrying_add for the most significant word")]
2501        /// let (sum1, overflow) = a1.carrying_add(b1, carry1);
2502        /// assert_eq!(overflow, false);
2503        ///
2504        /// assert_eq!((sum1, sum0), (6, 8));
2505        /// ```
2506        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2507        #[must_use = "this returns the result of the operation, \
2508                      without modifying the original"]
2509        #[inline]
2510        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2511            // note: longer-term this should be done via an intrinsic.
2512            // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2513            let (a, b) = self.overflowing_add(rhs);
2514            let (c, d) = a.overflowing_add(carry as $SelfT);
2515            (c, b != d)
2516        }
2517
2518        /// Calculates `self` + `rhs` with an unsigned `rhs`.
2519        ///
2520        /// Returns a tuple of the addition along with a boolean indicating
2521        /// whether an arithmetic overflow would occur. If an overflow would
2522        /// have occurred then the wrapped value is returned.
2523        ///
2524        /// # Examples
2525        ///
2526        /// ```
2527        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
2528        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
2529        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
2530        /// ```
2531        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2532        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2533        #[must_use = "this returns the result of the operation, \
2534                      without modifying the original"]
2535        #[inline]
2536        pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2537            let rhs = rhs as Self;
2538            let (res, overflowed) = self.overflowing_add(rhs);
2539            (res, overflowed ^ (rhs < 0))
2540        }
2541
2542        /// Calculates `self` - `rhs`.
2543        ///
2544        /// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
2545        /// would occur. If an overflow would have occurred then the wrapped value is returned.
2546        ///
2547        /// # Examples
2548        ///
2549        /// ```
2550        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2551        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2552        /// ```
2553        #[stable(feature = "wrapping", since = "1.7.0")]
2554        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2555        #[must_use = "this returns the result of the operation, \
2556                      without modifying the original"]
2557        #[inline(always)]
2558        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2559            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2560            (a as Self, b)
2561        }
2562
2563        /// Calculates `self` &minus; `rhs` &minus; `borrow` and checks for
2564        /// overflow.
2565        ///
2566        /// Performs "ternary subtraction" by subtracting both an integer
2567        /// operand and a borrow-in bit from `self`, and returns a tuple of the
2568        /// difference along with a boolean indicating whether an arithmetic
2569        /// overflow would occur. On overflow, the wrapped value is returned.
2570        ///
2571        /// This allows chaining together multiple subtractions to create a
2572        /// wider subtraction, and can be useful for bignum subtraction. This
2573        /// method should only be used for the most significant word; for the
2574        /// less significant words the unsigned method
2575        #[doc = concat!("[`", stringify!($UnsignedT), "::borrowing_sub`]")]
2576        /// should be used.
2577        ///
2578        /// The output boolean returned by this method is *not* a borrow flag,
2579        /// and should *not* be subtracted from a more significant word.
2580        ///
2581        /// If the input borrow is false, this method is equivalent to
2582        /// [`overflowing_sub`](Self::overflowing_sub).
2583        ///
2584        /// # Examples
2585        ///
2586        /// ```
2587        /// #![feature(bigint_helper_methods)]
2588        /// // Only the most significant word is signed.
2589        /// //
2590        #[doc = concat!("//    6    8    (a = 6 × 2^", stringify!($BITS), " + 8)")]
2591        #[doc = concat!("// - -5    9    (b = -5 × 2^", stringify!($BITS), " + 9)")]
2592        /// // ---------
2593        #[doc = concat!("//   10  MAX    (diff = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2594        ///
2595        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (6, 8);")]
2596        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
2597        /// let borrow0 = false;
2598        ///
2599        #[doc = concat!("// ", stringify!($UnsignedT), "::borrowing_sub for the less significant words")]
2600        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2601        /// assert_eq!(borrow1, true);
2602        ///
2603        #[doc = concat!("// ", stringify!($SelfT), "::borrowing_sub for the most significant word")]
2604        /// let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
2605        /// assert_eq!(overflow, false);
2606        ///
2607        #[doc = concat!("assert_eq!((diff1, diff0), (10, ", stringify!($UnsignedT), "::MAX));")]
2608        /// ```
2609        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2610        #[must_use = "this returns the result of the operation, \
2611                      without modifying the original"]
2612        #[inline]
2613        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2614            // note: longer-term this should be done via an intrinsic.
2615            // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
2616            let (a, b) = self.overflowing_sub(rhs);
2617            let (c, d) = a.overflowing_sub(borrow as $SelfT);
2618            (c, b != d)
2619        }
2620
2621        /// Calculates `self` - `rhs` with an unsigned `rhs`.
2622        ///
2623        /// Returns a tuple of the subtraction along with a boolean indicating
2624        /// whether an arithmetic overflow would occur. If an overflow would
2625        /// have occurred then the wrapped value is returned.
2626        ///
2627        /// # Examples
2628        ///
2629        /// ```
2630        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
2631        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
2632        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
2633        /// ```
2634        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2635        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2636        #[must_use = "this returns the result of the operation, \
2637                      without modifying the original"]
2638        #[inline]
2639        pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
2640            let rhs = rhs as Self;
2641            let (res, overflowed) = self.overflowing_sub(rhs);
2642            (res, overflowed ^ (rhs < 0))
2643        }
2644
2645        /// Calculates the multiplication of `self` and `rhs`.
2646        ///
2647        /// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
2648        /// would occur. If an overflow would have occurred then the wrapped value is returned.
2649        ///
2650        /// # Examples
2651        ///
2652        /// ```
2653        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
2654        /// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
2655        /// ```
2656        #[stable(feature = "wrapping", since = "1.7.0")]
2657        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2658        #[must_use = "this returns the result of the operation, \
2659                      without modifying the original"]
2660        #[inline(always)]
2661        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2662            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2663            (a as Self, b)
2664        }
2665
2666        /// Calculates the complete product `self * rhs` without the possibility to overflow.
2667        ///
2668        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2669        /// of the result as two separate values, in that order.
2670        ///
2671        /// If you also need to add a carry to the wide result, then you want
2672        /// [`Self::carrying_mul`] instead.
2673        ///
2674        /// # Examples
2675        ///
2676        /// Please note that this example is shared among integer types, which is why `i32` is used.
2677        ///
2678        /// ```
2679        /// #![feature(bigint_helper_methods)]
2680        /// assert_eq!(5i32.widening_mul(-2), (4294967286, -1));
2681        /// assert_eq!(1_000_000_000i32.widening_mul(-10), (2884901888, -3));
2682        /// ```
2683        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2684        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2685        #[must_use = "this returns the result of the operation, \
2686                      without modifying the original"]
2687        #[inline]
2688        pub const fn widening_mul(self, rhs: Self) -> ($UnsignedT, Self) {
2689            Self::carrying_mul_add(self, rhs, 0, 0)
2690        }
2691
2692        /// Calculates the "full multiplication" `self * rhs + carry`
2693        /// without the possibility to overflow.
2694        ///
2695        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2696        /// of the result as two separate values, in that order.
2697        ///
2698        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2699        /// additional amount of overflow. This allows for chaining together multiple
2700        /// multiplications to create "big integers" which represent larger values.
2701        ///
2702        /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2703        ///
2704        /// # Examples
2705        ///
2706        /// Please note that this example is shared among integer types, which is why `i32` is used.
2707        ///
2708        /// ```
2709        /// #![feature(bigint_helper_methods)]
2710        /// assert_eq!(5i32.carrying_mul(-2, 0), (4294967286, -1));
2711        /// assert_eq!(5i32.carrying_mul(-2, 10), (0, 0));
2712        /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 0), (2884901888, -3));
2713        /// assert_eq!(1_000_000_000i32.carrying_mul(-10, 10), (2884901898, -3));
2714        #[doc = concat!("assert_eq!(",
2715            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2716            "(", stringify!($SelfT), "::MAX.unsigned_abs() + 1, ", stringify!($SelfT), "::MAX / 2));"
2717        )]
2718        /// ```
2719        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2720        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2721        #[must_use = "this returns the result of the operation, \
2722                      without modifying the original"]
2723        #[inline]
2724        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> ($UnsignedT, Self) {
2725            Self::carrying_mul_add(self, rhs, carry, 0)
2726        }
2727
2728        /// Calculates the "full multiplication" `self * rhs + carry + add`
2729        /// without the possibility to overflow.
2730        ///
2731        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2732        /// of the result as two separate values, in that order.
2733        ///
2734        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2735        /// additional amount of overflow. This allows for chaining together multiple
2736        /// multiplications to create "big integers" which represent larger values.
2737        ///
2738        /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2739        /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2740        ///
2741        /// # Examples
2742        ///
2743        /// Please note that this example is shared among integer types, which is why `i32` is used.
2744        ///
2745        /// ```
2746        /// #![feature(bigint_helper_methods)]
2747        /// assert_eq!(5i32.carrying_mul_add(-2, 0, 0), (4294967286, -1));
2748        /// assert_eq!(5i32.carrying_mul_add(-2, 10, 10), (10, 0));
2749        /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 0, 0), (2884901888, -3));
2750        /// assert_eq!(1_000_000_000i32.carrying_mul_add(-10, 10, 10), (2884901908, -3));
2751        #[doc = concat!("assert_eq!(",
2752            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2753            "(", stringify!($UnsignedT), "::MAX, ", stringify!($SelfT), "::MAX / 2));"
2754        )]
2755        /// ```
2756        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2757        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2758        #[must_use = "this returns the result of the operation, \
2759                      without modifying the original"]
2760        #[inline]
2761        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> ($UnsignedT, Self) {
2762            intrinsics::carrying_mul_add(self, rhs, carry, add)
2763        }
2764
2765        /// Calculates the divisor when `self` is divided by `rhs`.
2766        ///
2767        /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2768        /// occur. If an overflow would occur then self is returned.
2769        ///
2770        /// # Panics
2771        ///
2772        /// This function will panic if `rhs` is zero.
2773        ///
2774        /// # Examples
2775        ///
2776        /// ```
2777        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2778        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
2779        /// ```
2780        #[inline]
2781        #[stable(feature = "wrapping", since = "1.7.0")]
2782        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2783        #[must_use = "this returns the result of the operation, \
2784                      without modifying the original"]
2785        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2786            // Using `&` helps LLVM see that it is the same check made in division.
2787            if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2788                (self, true)
2789            } else {
2790                (self / rhs, false)
2791            }
2792        }
2793
2794        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2795        ///
2796        /// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
2797        /// occur. If an overflow would occur then `self` is returned.
2798        ///
2799        /// # Panics
2800        ///
2801        /// This function will panic if `rhs` is zero.
2802        ///
2803        /// # Examples
2804        ///
2805        /// ```
2806        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2807        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
2808        /// ```
2809        #[inline]
2810        #[stable(feature = "euclidean_division", since = "1.38.0")]
2811        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2812        #[must_use = "this returns the result of the operation, \
2813                      without modifying the original"]
2814        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2815            // Using `&` helps LLVM see that it is the same check made in division.
2816            if intrinsics::unlikely((self == Self::MIN) & (rhs == -1)) {
2817                (self, true)
2818            } else {
2819                (self.div_euclid(rhs), false)
2820            }
2821        }
2822
2823        /// Calculates the remainder when `self` is divided by `rhs`.
2824        ///
2825        /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2826        /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2827        ///
2828        /// # Panics
2829        ///
2830        /// This function will panic if `rhs` is zero.
2831        ///
2832        /// # Examples
2833        ///
2834        /// ```
2835        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2836        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
2837        /// ```
2838        #[inline]
2839        #[stable(feature = "wrapping", since = "1.7.0")]
2840        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2841        #[must_use = "this returns the result of the operation, \
2842                      without modifying the original"]
2843        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2844            if intrinsics::unlikely(rhs == -1) {
2845                (0, self == Self::MIN)
2846            } else {
2847                (self % rhs, false)
2848            }
2849        }
2850
2851
2852        /// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
2853        ///
2854        /// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
2855        /// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
2856        ///
2857        /// # Panics
2858        ///
2859        /// This function will panic if `rhs` is zero.
2860        ///
2861        /// # Examples
2862        ///
2863        /// ```
2864        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2865        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
2866        /// ```
2867        #[stable(feature = "euclidean_division", since = "1.38.0")]
2868        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2869        #[must_use = "this returns the result of the operation, \
2870                      without modifying the original"]
2871        #[inline]
2872        #[track_caller]
2873        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2874            if intrinsics::unlikely(rhs == -1) {
2875                (0, self == Self::MIN)
2876            } else {
2877                (self.rem_euclid(rhs), false)
2878            }
2879        }
2880
2881
2882        /// Negates self, overflowing if this is equal to the minimum value.
2883        ///
2884        /// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
2885        /// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
2886        /// minimum value will be returned again and `true` will be returned for an overflow happening.
2887        ///
2888        /// # Examples
2889        ///
2890        /// ```
2891        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
2892        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
2893        /// ```
2894        #[inline]
2895        #[stable(feature = "wrapping", since = "1.7.0")]
2896        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2897        #[must_use = "this returns the result of the operation, \
2898                      without modifying the original"]
2899        #[allow(unused_attributes)]
2900        pub const fn overflowing_neg(self) -> (Self, bool) {
2901            if intrinsics::unlikely(self == Self::MIN) {
2902                (Self::MIN, true)
2903            } else {
2904                (-self, false)
2905            }
2906        }
2907
2908        /// Shifts self left by `rhs` bits.
2909        ///
2910        /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2911        /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2912        /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2913        ///
2914        /// # Examples
2915        ///
2916        /// ```
2917        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
2918        /// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
2919        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2920        /// ```
2921        #[stable(feature = "wrapping", since = "1.7.0")]
2922        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2923        #[must_use = "this returns the result of the operation, \
2924                      without modifying the original"]
2925        #[inline]
2926        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2927            (self.wrapping_shl(rhs), rhs >= Self::BITS)
2928        }
2929
2930        /// Shifts self right by `rhs` bits.
2931        ///
2932        /// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
2933        /// value was larger than or equal to the number of bits. If the shift value is too large, then value is
2934        /// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
2935        ///
2936        /// # Examples
2937        ///
2938        /// ```
2939        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2940        /// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
2941        /// ```
2942        #[stable(feature = "wrapping", since = "1.7.0")]
2943        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2944        #[must_use = "this returns the result of the operation, \
2945                      without modifying the original"]
2946        #[inline]
2947        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2948            (self.wrapping_shr(rhs), rhs >= Self::BITS)
2949        }
2950
2951        /// Computes the absolute value of `self`.
2952        ///
2953        /// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
2954        /// happened. If self is the minimum value
2955        #[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
2956        /// then the minimum value will be returned again and true will be returned
2957        /// for an overflow happening.
2958        ///
2959        /// # Examples
2960        ///
2961        /// ```
2962        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
2963        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
2964        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
2965        /// ```
2966        #[stable(feature = "no_panic_abs", since = "1.13.0")]
2967        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
2968        #[must_use = "this returns the result of the operation, \
2969                      without modifying the original"]
2970        #[inline]
2971        pub const fn overflowing_abs(self) -> (Self, bool) {
2972            (self.wrapping_abs(), self == Self::MIN)
2973        }
2974
2975        /// Raises self to the power of `exp`, using exponentiation by squaring.
2976        ///
2977        /// Returns a tuple of the exponentiation along with a bool indicating
2978        /// whether an overflow happened.
2979        ///
2980        /// # Examples
2981        ///
2982        /// ```
2983        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
2984        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".overflowing_pow(0), (1, false));")]
2985        /// assert_eq!(3i8.overflowing_pow(5), (-13, true));
2986        /// ```
2987        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2988        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2989        #[must_use = "this returns the result of the operation, \
2990                      without modifying the original"]
2991        #[inline]
2992        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
2993            if exp == 0 {
2994                return (1,false);
2995            }
2996            let mut base = self;
2997            let mut acc: Self = 1;
2998            let mut overflown = false;
2999            // Scratch space for storing results of overflowing_mul.
3000            let mut r;
3001
3002            loop {
3003                if (exp & 1) == 1 {
3004                    r = acc.overflowing_mul(base);
3005                    // since exp!=0, finally the exp must be 1.
3006                    if exp == 1 {
3007                        r.1 |= overflown;
3008                        return r;
3009                    }
3010                    acc = r.0;
3011                    overflown |= r.1;
3012                }
3013                exp /= 2;
3014                r = base.overflowing_mul(base);
3015                base = r.0;
3016                overflown |= r.1;
3017            }
3018        }
3019
3020        /// Raises self to the power of `exp`, using exponentiation by squaring.
3021        ///
3022        /// # Examples
3023        ///
3024        /// ```
3025        #[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
3026        ///
3027        /// assert_eq!(x.pow(5), 32);
3028        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".pow(0), 1);")]
3029        /// ```
3030        #[stable(feature = "rust1", since = "1.0.0")]
3031        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3032        #[must_use = "this returns the result of the operation, \
3033                      without modifying the original"]
3034        #[inline]
3035        #[rustc_inherit_overflow_checks]
3036        pub const fn pow(self, mut exp: u32) -> Self {
3037            if exp == 0 {
3038                return 1;
3039            }
3040            let mut base = self;
3041            let mut acc = 1;
3042
3043            if intrinsics::is_val_statically_known(exp) {
3044                while exp > 1 {
3045                    if (exp & 1) == 1 {
3046                        acc = acc * base;
3047                    }
3048                    exp /= 2;
3049                    base = base * base;
3050                }
3051
3052                // since exp!=0, finally the exp must be 1.
3053                // Deal with the final bit of the exponent separately, since
3054                // squaring the base afterwards is not necessary and may cause a
3055                // needless overflow.
3056                acc * base
3057            } else {
3058                // This is faster than the above when the exponent is not known
3059                // at compile time. We can't use the same code for the constant
3060                // exponent case because LLVM is currently unable to unroll
3061                // this loop.
3062                loop {
3063                    if (exp & 1) == 1 {
3064                        acc = acc * base;
3065                        // since exp!=0, finally the exp must be 1.
3066                        if exp == 1 {
3067                            return acc;
3068                        }
3069                    }
3070                    exp /= 2;
3071                    base = base * base;
3072                }
3073            }
3074        }
3075
3076        /// Returns the square root of the number, rounded down.
3077        ///
3078        /// # Panics
3079        ///
3080        /// This function will panic if `self` is negative.
3081        ///
3082        /// # Examples
3083        ///
3084        /// ```
3085        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3086        /// ```
3087        #[stable(feature = "isqrt", since = "1.84.0")]
3088        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3089        #[must_use = "this returns the result of the operation, \
3090                      without modifying the original"]
3091        #[inline]
3092        #[track_caller]
3093        pub const fn isqrt(self) -> Self {
3094            match self.checked_isqrt() {
3095                Some(sqrt) => sqrt,
3096                None => crate::num::int_sqrt::panic_for_negative_argument(),
3097            }
3098        }
3099
3100        /// Calculates the quotient of Euclidean division of `self` by `rhs`.
3101        ///
3102        /// This computes the integer `q` such that `self = q * rhs + r`, with
3103        /// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
3104        ///
3105        /// In other words, the result is `self / rhs` rounded to the integer `q`
3106        /// such that `self >= q * rhs`.
3107        /// If `self > 0`, this is equal to rounding towards zero (the default in Rust);
3108        /// if `self < 0`, this is equal to rounding away from zero (towards +/- infinity).
3109        /// If `rhs > 0`, this is equal to rounding towards -infinity;
3110        /// if `rhs < 0`, this is equal to rounding towards +infinity.
3111        ///
3112        /// # Panics
3113        ///
3114        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3115        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3116        ///
3117        /// # Examples
3118        ///
3119        /// ```
3120        #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3121        /// let b = 4;
3122        ///
3123        /// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
3124        /// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
3125        /// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
3126        /// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
3127        /// ```
3128        #[stable(feature = "euclidean_division", since = "1.38.0")]
3129        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3130        #[must_use = "this returns the result of the operation, \
3131                      without modifying the original"]
3132        #[inline]
3133        #[track_caller]
3134        pub const fn div_euclid(self, rhs: Self) -> Self {
3135            let q = self / rhs;
3136            if self % rhs < 0 {
3137                return if rhs > 0 { q - 1 } else { q + 1 }
3138            }
3139            q
3140        }
3141
3142
3143        /// Calculates the least nonnegative remainder of `self (mod rhs)`.
3144        ///
3145        /// This is done as if by the Euclidean division algorithm -- given
3146        /// `r = self.rem_euclid(rhs)`, the result satisfies
3147        /// `self = rhs * self.div_euclid(rhs) + r` and `0 <= r < abs(rhs)`.
3148        ///
3149        /// # Panics
3150        ///
3151        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN` and
3152        /// `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3153        ///
3154        /// # Examples
3155        ///
3156        /// ```
3157        #[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
3158        /// let b = 4;
3159        ///
3160        /// assert_eq!(a.rem_euclid(b), 3);
3161        /// assert_eq!((-a).rem_euclid(b), 1);
3162        /// assert_eq!(a.rem_euclid(-b), 3);
3163        /// assert_eq!((-a).rem_euclid(-b), 1);
3164        /// ```
3165        ///
3166        /// This will panic:
3167        /// ```should_panic
3168        #[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.rem_euclid(-1);")]
3169        /// ```
3170        #[doc(alias = "modulo", alias = "mod")]
3171        #[stable(feature = "euclidean_division", since = "1.38.0")]
3172        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3173        #[must_use = "this returns the result of the operation, \
3174                      without modifying the original"]
3175        #[inline]
3176        #[track_caller]
3177        pub const fn rem_euclid(self, rhs: Self) -> Self {
3178            let r = self % rhs;
3179            if r < 0 {
3180                // Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
3181                // If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
3182                // and is clearly equivalent, because `r` is negative.
3183                // Otherwise, `rhs` is `Self::MIN`, then we have
3184                // `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
3185                // to `r.wrapping_add(Self::MIN)`, which is equivalent to
3186                // `r - Self::MIN`, which is what we wanted (and will not overflow
3187                // for negative `r`).
3188                r.wrapping_add(rhs.wrapping_abs())
3189            } else {
3190                r
3191            }
3192        }
3193
3194        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3195        ///
3196        /// # Panics
3197        ///
3198        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3199        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3200        ///
3201        /// # Examples
3202        ///
3203        /// ```
3204        /// #![feature(int_roundings)]
3205        #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3206        /// let b = 3;
3207        ///
3208        /// assert_eq!(a.div_floor(b), 2);
3209        /// assert_eq!(a.div_floor(-b), -3);
3210        /// assert_eq!((-a).div_floor(b), -3);
3211        /// assert_eq!((-a).div_floor(-b), 2);
3212        /// ```
3213        #[unstable(feature = "int_roundings", issue = "88581")]
3214        #[must_use = "this returns the result of the operation, \
3215                      without modifying the original"]
3216        #[inline]
3217        #[track_caller]
3218        pub const fn div_floor(self, rhs: Self) -> Self {
3219            let d = self / rhs;
3220            let r = self % rhs;
3221
3222            // If the remainder is non-zero, we need to subtract one if the
3223            // signs of self and rhs differ, as this means we rounded upwards
3224            // instead of downwards. We do this branchlessly by creating a mask
3225            // which is all-ones iff the signs differ, and 0 otherwise. Then by
3226            // adding this mask (which corresponds to the signed value -1), we
3227            // get our correction.
3228            let correction = (self ^ rhs) >> (Self::BITS - 1);
3229            if r != 0 {
3230                d + correction
3231            } else {
3232                d
3233            }
3234        }
3235
3236        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3237        ///
3238        /// # Panics
3239        ///
3240        /// This function will panic if `rhs` is zero or if `self` is `Self::MIN`
3241        /// and `rhs` is -1. This behavior is not affected by the `overflow-checks` flag.
3242        ///
3243        /// # Examples
3244        ///
3245        /// ```
3246        /// #![feature(int_roundings)]
3247        #[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
3248        /// let b = 3;
3249        ///
3250        /// assert_eq!(a.div_ceil(b), 3);
3251        /// assert_eq!(a.div_ceil(-b), -2);
3252        /// assert_eq!((-a).div_ceil(b), -2);
3253        /// assert_eq!((-a).div_ceil(-b), 3);
3254        /// ```
3255        #[unstable(feature = "int_roundings", issue = "88581")]
3256        #[must_use = "this returns the result of the operation, \
3257                      without modifying the original"]
3258        #[inline]
3259        #[track_caller]
3260        pub const fn div_ceil(self, rhs: Self) -> Self {
3261            let d = self / rhs;
3262            let r = self % rhs;
3263
3264            // When remainder is non-zero we have a.div_ceil(b) == 1 + a.div_floor(b),
3265            // so we can re-use the algorithm from div_floor, just adding 1.
3266            let correction = 1 + ((self ^ rhs) >> (Self::BITS - 1));
3267            if r != 0 {
3268                d + correction
3269            } else {
3270                d
3271            }
3272        }
3273
3274        /// If `rhs` is positive, calculates the smallest value greater than or
3275        /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3276        /// calculates the largest value less than or equal to `self` that is a
3277        /// multiple of `rhs`.
3278        ///
3279        /// # Panics
3280        ///
3281        /// This function will panic if `rhs` is zero.
3282        ///
3283        /// ## Overflow behavior
3284        ///
3285        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3286        /// mode) and wrap if overflow checks are disabled (default in release mode).
3287        ///
3288        /// # Examples
3289        ///
3290        /// ```
3291        /// #![feature(int_roundings)]
3292        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3293        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3294        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3295        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
3296        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3297        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
3298        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
3299        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
3300        /// ```
3301        #[unstable(feature = "int_roundings", issue = "88581")]
3302        #[must_use = "this returns the result of the operation, \
3303                      without modifying the original"]
3304        #[inline]
3305        #[rustc_inherit_overflow_checks]
3306        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3307            // This would otherwise fail when calculating `r` when self == T::MIN.
3308            if rhs == -1 {
3309                return self;
3310            }
3311
3312            let r = self % rhs;
3313            let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3314                r + rhs
3315            } else {
3316                r
3317            };
3318
3319            if m == 0 {
3320                self
3321            } else {
3322                self + (rhs - m)
3323            }
3324        }
3325
3326        /// If `rhs` is positive, calculates the smallest value greater than or
3327        /// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
3328        /// calculates the largest value less than or equal to `self` that is a
3329        /// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
3330        /// would result in overflow.
3331        ///
3332        /// # Examples
3333        ///
3334        /// ```
3335        /// #![feature(int_roundings)]
3336        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3337        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3338        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3339        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
3340        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3341        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
3342        #[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
3343        #[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
3344        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3345        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3346        /// ```
3347        #[unstable(feature = "int_roundings", issue = "88581")]
3348        #[must_use = "this returns the result of the operation, \
3349                      without modifying the original"]
3350        #[inline]
3351        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3352            // This would otherwise fail when calculating `r` when self == T::MIN.
3353            if rhs == -1 {
3354                return Some(self);
3355            }
3356
3357            let r = try_opt!(self.checked_rem(rhs));
3358            let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
3359                // r + rhs cannot overflow because they have opposite signs
3360                r + rhs
3361            } else {
3362                r
3363            };
3364
3365            if m == 0 {
3366                Some(self)
3367            } else {
3368                // rhs - m cannot overflow because m has the same sign as rhs
3369                self.checked_add(rhs - m)
3370            }
3371        }
3372
3373        /// Returns the logarithm of the number with respect to an arbitrary base,
3374        /// rounded down.
3375        ///
3376        /// This method might not be optimized owing to implementation details;
3377        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
3378        /// can produce results more efficiently for base 10.
3379        ///
3380        /// # Panics
3381        ///
3382        /// This function will panic if `self` is less than or equal to zero,
3383        /// or if `base` is less than 2.
3384        ///
3385        /// # Examples
3386        ///
3387        /// ```
3388        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
3389        /// ```
3390        #[stable(feature = "int_log", since = "1.67.0")]
3391        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3392        #[must_use = "this returns the result of the operation, \
3393                      without modifying the original"]
3394        #[inline]
3395        #[track_caller]
3396        pub const fn ilog(self, base: Self) -> u32 {
3397            assert!(base >= 2, "base of integer logarithm must be at least 2");
3398            if let Some(log) = self.checked_ilog(base) {
3399                log
3400            } else {
3401                int_log10::panic_for_nonpositive_argument()
3402            }
3403        }
3404
3405        /// Returns the base 2 logarithm of the number, rounded down.
3406        ///
3407        /// # Panics
3408        ///
3409        /// This function will panic if `self` is less than or equal to zero.
3410        ///
3411        /// # Examples
3412        ///
3413        /// ```
3414        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
3415        /// ```
3416        #[stable(feature = "int_log", since = "1.67.0")]
3417        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3418        #[must_use = "this returns the result of the operation, \
3419                      without modifying the original"]
3420        #[inline]
3421        #[track_caller]
3422        pub const fn ilog2(self) -> u32 {
3423            if let Some(log) = self.checked_ilog2() {
3424                log
3425            } else {
3426                int_log10::panic_for_nonpositive_argument()
3427            }
3428        }
3429
3430        /// Returns the base 10 logarithm of the number, rounded down.
3431        ///
3432        /// # Panics
3433        ///
3434        /// This function will panic if `self` is less than or equal to zero.
3435        ///
3436        /// # Example
3437        ///
3438        /// ```
3439        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
3440        /// ```
3441        #[stable(feature = "int_log", since = "1.67.0")]
3442        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3443        #[must_use = "this returns the result of the operation, \
3444                      without modifying the original"]
3445        #[inline]
3446        #[track_caller]
3447        pub const fn ilog10(self) -> u32 {
3448            if let Some(log) = self.checked_ilog10() {
3449                log
3450            } else {
3451                int_log10::panic_for_nonpositive_argument()
3452            }
3453        }
3454
3455        /// Returns the logarithm of the number with respect to an arbitrary base,
3456        /// rounded down.
3457        ///
3458        /// Returns `None` if the number is negative or zero, or if the base is not at least 2.
3459        ///
3460        /// This method might not be optimized owing to implementation details;
3461        /// `checked_ilog2` can produce results more efficiently for base 2, and
3462        /// `checked_ilog10` can produce results more efficiently for base 10.
3463        ///
3464        /// # Examples
3465        ///
3466        /// ```
3467        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
3468        /// ```
3469        #[stable(feature = "int_log", since = "1.67.0")]
3470        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3471        #[must_use = "this returns the result of the operation, \
3472                      without modifying the original"]
3473        #[inline]
3474        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
3475            if self <= 0 || base <= 1 {
3476                None
3477            } else {
3478                // Delegate to the unsigned implementation.
3479                // The condition makes sure that both casts are exact.
3480                (self as $UnsignedT).checked_ilog(base as $UnsignedT)
3481            }
3482        }
3483
3484        /// Returns the base 2 logarithm of the number, rounded down.
3485        ///
3486        /// Returns `None` if the number is negative or zero.
3487        ///
3488        /// # Examples
3489        ///
3490        /// ```
3491        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
3492        /// ```
3493        #[stable(feature = "int_log", since = "1.67.0")]
3494        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3495        #[must_use = "this returns the result of the operation, \
3496                      without modifying the original"]
3497        #[inline]
3498        pub const fn checked_ilog2(self) -> Option<u32> {
3499            if self <= 0 {
3500                None
3501            } else {
3502                // SAFETY: We just checked that this number is positive
3503                let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
3504                Some(log)
3505            }
3506        }
3507
3508        /// Returns the base 10 logarithm of the number, rounded down.
3509        ///
3510        /// Returns `None` if the number is negative or zero.
3511        ///
3512        /// # Example
3513        ///
3514        /// ```
3515        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
3516        /// ```
3517        #[stable(feature = "int_log", since = "1.67.0")]
3518        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
3519        #[must_use = "this returns the result of the operation, \
3520                      without modifying the original"]
3521        #[inline]
3522        pub const fn checked_ilog10(self) -> Option<u32> {
3523            if self > 0 {
3524                Some(int_log10::$ActualT(self as $ActualT))
3525            } else {
3526                None
3527            }
3528        }
3529
3530        /// Computes the absolute value of `self`.
3531        ///
3532        /// # Overflow behavior
3533        ///
3534        /// The absolute value of
3535        #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3536        /// cannot be represented as an
3537        #[doc = concat!("`", stringify!($SelfT), "`,")]
3538        /// and attempting to calculate it will cause an overflow. This means
3539        /// that code in debug mode will trigger a panic on this case and
3540        /// optimized code will return
3541        #[doc = concat!("`", stringify!($SelfT), "::MIN`")]
3542        /// without a panic. If you do not want this behavior, consider
3543        /// using [`unsigned_abs`](Self::unsigned_abs) instead.
3544        ///
3545        /// # Examples
3546        ///
3547        /// ```
3548        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
3549        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
3550        /// ```
3551        #[stable(feature = "rust1", since = "1.0.0")]
3552        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3553        #[allow(unused_attributes)]
3554        #[must_use = "this returns the result of the operation, \
3555                      without modifying the original"]
3556        #[inline]
3557        #[rustc_inherit_overflow_checks]
3558        pub const fn abs(self) -> Self {
3559            // Note that the #[rustc_inherit_overflow_checks] and #[inline]
3560            // above mean that the overflow semantics of the subtraction
3561            // depend on the crate we're being called from.
3562            if self.is_negative() {
3563                -self
3564            } else {
3565                self
3566            }
3567        }
3568
3569        /// Computes the absolute difference between `self` and `other`.
3570        ///
3571        /// This function always returns the correct answer without overflow or
3572        /// panics by returning an unsigned integer.
3573        ///
3574        /// # Examples
3575        ///
3576        /// ```
3577        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
3578        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
3579        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
3580        #[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
3581        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
3582        /// ```
3583        #[stable(feature = "int_abs_diff", since = "1.60.0")]
3584        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
3585        #[must_use = "this returns the result of the operation, \
3586                      without modifying the original"]
3587        #[inline]
3588        pub const fn abs_diff(self, other: Self) -> $UnsignedT {
3589            if self < other {
3590                // Converting a non-negative x from signed to unsigned by using
3591                // `x as U` is left unchanged, but a negative x is converted
3592                // to value x + 2^N. Thus if `s` and `o` are binary variables
3593                // respectively indicating whether `self` and `other` are
3594                // negative, we are computing the mathematical value:
3595                //
3596                //    (other + o*2^N) - (self + s*2^N)    mod  2^N
3597                //    other - self + (o-s)*2^N            mod  2^N
3598                //    other - self                        mod  2^N
3599                //
3600                // Finally, taking the mod 2^N of the mathematical value of
3601                // `other - self` does not change it as it already is
3602                // in the range [0, 2^N).
3603                (other as $UnsignedT).wrapping_sub(self as $UnsignedT)
3604            } else {
3605                (self as $UnsignedT).wrapping_sub(other as $UnsignedT)
3606            }
3607        }
3608
3609        /// Returns a number representing sign of `self`.
3610        ///
3611        ///  - `0` if the number is zero
3612        ///  - `1` if the number is positive
3613        ///  - `-1` if the number is negative
3614        ///
3615        /// # Examples
3616        ///
3617        /// ```
3618        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
3619        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
3620        #[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
3621        /// ```
3622        #[stable(feature = "rust1", since = "1.0.0")]
3623        #[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
3624        #[must_use = "this returns the result of the operation, \
3625                      without modifying the original"]
3626        #[inline(always)]
3627        pub const fn signum(self) -> Self {
3628            // Picking the right way to phrase this is complicated
3629            // (<https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>)
3630            // so delegate it to `Ord` which is already producing -1/0/+1
3631            // exactly like we need and can be the place to deal with the complexity.
3632
3633            crate::intrinsics::three_way_compare(self, 0) as Self
3634        }
3635
3636        /// Returns `true` if `self` is positive and `false` if the number is zero or
3637        /// negative.
3638        ///
3639        /// # Examples
3640        ///
3641        /// ```
3642        #[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
3643        #[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
3644        /// ```
3645        #[must_use]
3646        #[stable(feature = "rust1", since = "1.0.0")]
3647        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3648        #[inline(always)]
3649        pub const fn is_positive(self) -> bool { self > 0 }
3650
3651        /// Returns `true` if `self` is negative and `false` if the number is zero or
3652        /// positive.
3653        ///
3654        /// # Examples
3655        ///
3656        /// ```
3657        #[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
3658        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
3659        /// ```
3660        #[must_use]
3661        #[stable(feature = "rust1", since = "1.0.0")]
3662        #[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
3663        #[inline(always)]
3664        pub const fn is_negative(self) -> bool { self < 0 }
3665
3666        /// Returns the memory representation of this integer as a byte array in
3667        /// big-endian (network) byte order.
3668        ///
3669        #[doc = $to_xe_bytes_doc]
3670        ///
3671        /// # Examples
3672        ///
3673        /// ```
3674        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3675        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3676        /// ```
3677        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3678        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3679        #[must_use = "this returns the result of the operation, \
3680                      without modifying the original"]
3681        #[inline]
3682        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3683            self.to_be().to_ne_bytes()
3684        }
3685
3686        /// Returns the memory representation of this integer as a byte array in
3687        /// little-endian byte order.
3688        ///
3689        #[doc = $to_xe_bytes_doc]
3690        ///
3691        /// # Examples
3692        ///
3693        /// ```
3694        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3695        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3696        /// ```
3697        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3698        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3699        #[must_use = "this returns the result of the operation, \
3700                      without modifying the original"]
3701        #[inline]
3702        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3703            self.to_le().to_ne_bytes()
3704        }
3705
3706        /// Returns the memory representation of this integer as a byte array in
3707        /// native byte order.
3708        ///
3709        /// As the target platform's native endianness is used, portable code
3710        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3711        /// instead.
3712        ///
3713        #[doc = $to_xe_bytes_doc]
3714        ///
3715        /// [`to_be_bytes`]: Self::to_be_bytes
3716        /// [`to_le_bytes`]: Self::to_le_bytes
3717        ///
3718        /// # Examples
3719        ///
3720        /// ```
3721        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3722        /// assert_eq!(
3723        ///     bytes,
3724        ///     if cfg!(target_endian = "big") {
3725        #[doc = concat!("        ", $be_bytes)]
3726        ///     } else {
3727        #[doc = concat!("        ", $le_bytes)]
3728        ///     }
3729        /// );
3730        /// ```
3731        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3732        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3733        #[allow(unnecessary_transmutes)]
3734        // SAFETY: const sound because integers are plain old datatypes so we can always
3735        // transmute them to arrays of bytes
3736        #[must_use = "this returns the result of the operation, \
3737                      without modifying the original"]
3738        #[inline]
3739        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3740            // SAFETY: integers are plain old datatypes so we can always transmute them to
3741            // arrays of bytes
3742            unsafe { mem::transmute(self) }
3743        }
3744
3745        /// Creates an integer value from its representation as a byte array in
3746        /// big endian.
3747        ///
3748        #[doc = $from_xe_bytes_doc]
3749        ///
3750        /// # Examples
3751        ///
3752        /// ```
3753        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3754        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3755        /// ```
3756        ///
3757        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3758        ///
3759        /// ```
3760        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3761        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3762        ///     *input = rest;
3763        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3764        /// }
3765        /// ```
3766        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3767        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3768        #[must_use]
3769        #[inline]
3770        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3771            Self::from_be(Self::from_ne_bytes(bytes))
3772        }
3773
3774        /// Creates an integer value from its representation as a byte array in
3775        /// little endian.
3776        ///
3777        #[doc = $from_xe_bytes_doc]
3778        ///
3779        /// # Examples
3780        ///
3781        /// ```
3782        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3783        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3784        /// ```
3785        ///
3786        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3787        ///
3788        /// ```
3789        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3790        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3791        ///     *input = rest;
3792        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3793        /// }
3794        /// ```
3795        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3796        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3797        #[must_use]
3798        #[inline]
3799        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3800            Self::from_le(Self::from_ne_bytes(bytes))
3801        }
3802
3803        /// Creates an integer value from its memory representation as a byte
3804        /// array in native endianness.
3805        ///
3806        /// As the target platform's native endianness is used, portable code
3807        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3808        /// appropriate instead.
3809        ///
3810        /// [`from_be_bytes`]: Self::from_be_bytes
3811        /// [`from_le_bytes`]: Self::from_le_bytes
3812        ///
3813        #[doc = $from_xe_bytes_doc]
3814        ///
3815        /// # Examples
3816        ///
3817        /// ```
3818        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3819        #[doc = concat!("    ", $be_bytes)]
3820        /// } else {
3821        #[doc = concat!("    ", $le_bytes)]
3822        /// });
3823        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3824        /// ```
3825        ///
3826        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3827        ///
3828        /// ```
3829        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3830        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3831        ///     *input = rest;
3832        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3833        /// }
3834        /// ```
3835        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3836        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3837        #[allow(unnecessary_transmutes)]
3838        #[must_use]
3839        // SAFETY: const sound because integers are plain old datatypes so we can always
3840        // transmute to them
3841        #[inline]
3842        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3843            // SAFETY: integers are plain old datatypes so we can always transmute to them
3844            unsafe { mem::transmute(bytes) }
3845        }
3846
3847        /// New code should prefer to use
3848        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3849        ///
3850        /// Returns the smallest value that can be represented by this integer type.
3851        #[stable(feature = "rust1", since = "1.0.0")]
3852        #[inline(always)]
3853        #[rustc_promotable]
3854        #[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
3855        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3856        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3857        pub const fn min_value() -> Self {
3858            Self::MIN
3859        }
3860
3861        /// New code should prefer to use
3862        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3863        ///
3864        /// Returns the largest value that can be represented by this integer type.
3865        #[stable(feature = "rust1", since = "1.0.0")]
3866        #[inline(always)]
3867        #[rustc_promotable]
3868        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3869        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3870        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3871        pub const fn max_value() -> Self {
3872            Self::MAX
3873        }
3874    }
3875}