core/num/
f128.rs

1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21#[rustc_diagnostic_item = "f128_consts_mod"]
22pub mod consts {
23    // FIXME: replace with mathematical constants from cmath.
24
25    /// Archimedes' constant (π)
26    #[unstable(feature = "f128", issue = "116909")]
27    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
28
29    /// The full circle constant (τ)
30    ///
31    /// Equal to 2π.
32    #[unstable(feature = "f128", issue = "116909")]
33    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
34
35    /// The golden ratio (φ)
36    #[unstable(feature = "f128", issue = "116909")]
37    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
38    pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
39
40    /// The Euler-Mascheroni constant (γ)
41    #[unstable(feature = "f128", issue = "116909")]
42    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
43    pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
44
45    /// π/2
46    #[unstable(feature = "f128", issue = "116909")]
47    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
48
49    /// π/3
50    #[unstable(feature = "f128", issue = "116909")]
51    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
52
53    /// π/4
54    #[unstable(feature = "f128", issue = "116909")]
55    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
56
57    /// π/6
58    #[unstable(feature = "f128", issue = "116909")]
59    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
60
61    /// π/8
62    #[unstable(feature = "f128", issue = "116909")]
63    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
64
65    /// 1/π
66    #[unstable(feature = "f128", issue = "116909")]
67    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
68
69    /// 1/sqrt(π)
70    #[unstable(feature = "f128", issue = "116909")]
71    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
72    pub const FRAC_1_SQRT_PI: f128 =
73        0.564189583547756286948079451560772585844050629328998856844086_f128;
74
75    /// 1/sqrt(2π)
76    #[doc(alias = "FRAC_1_SQRT_TAU")]
77    #[unstable(feature = "f128", issue = "116909")]
78    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
79    pub const FRAC_1_SQRT_2PI: f128 =
80        0.398942280401432677939946059934381868475858631164934657665926_f128;
81
82    /// 2/π
83    #[unstable(feature = "f128", issue = "116909")]
84    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
85
86    /// 2/sqrt(π)
87    #[unstable(feature = "f128", issue = "116909")]
88    pub const FRAC_2_SQRT_PI: f128 =
89        1.12837916709551257389615890312154517168810125865799771368817_f128;
90
91    /// sqrt(2)
92    #[unstable(feature = "f128", issue = "116909")]
93    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
94
95    /// 1/sqrt(2)
96    #[unstable(feature = "f128", issue = "116909")]
97    pub const FRAC_1_SQRT_2: f128 =
98        0.707106781186547524400844362104849039284835937688474036588340_f128;
99
100    /// sqrt(3)
101    #[unstable(feature = "f128", issue = "116909")]
102    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
103    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
104
105    /// 1/sqrt(3)
106    #[unstable(feature = "f128", issue = "116909")]
107    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
108    pub const FRAC_1_SQRT_3: f128 =
109        0.577350269189625764509148780501957455647601751270126876018602_f128;
110
111    /// Euler's number (e)
112    #[unstable(feature = "f128", issue = "116909")]
113    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
114
115    /// log<sub>2</sub>(10)
116    #[unstable(feature = "f128", issue = "116909")]
117    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
118
119    /// log<sub>2</sub>(e)
120    #[unstable(feature = "f128", issue = "116909")]
121    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
122
123    /// log<sub>10</sub>(2)
124    #[unstable(feature = "f128", issue = "116909")]
125    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
126
127    /// log<sub>10</sub>(e)
128    #[unstable(feature = "f128", issue = "116909")]
129    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
130
131    /// ln(2)
132    #[unstable(feature = "f128", issue = "116909")]
133    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
134
135    /// ln(10)
136    #[unstable(feature = "f128", issue = "116909")]
137    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
138}
139
140impl f128 {
141    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
142    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
143
144    /// The radix or base of the internal representation of `f128`.
145    #[unstable(feature = "f128", issue = "116909")]
146    pub const RADIX: u32 = 2;
147
148    /// Number of significant digits in base 2.
149    ///
150    /// Note that the size of the mantissa in the bitwise representation is one
151    /// smaller than this since the leading 1 is not stored explicitly.
152    #[unstable(feature = "f128", issue = "116909")]
153    pub const MANTISSA_DIGITS: u32 = 113;
154
155    /// Approximate number of significant digits in base 10.
156    ///
157    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
158    /// significant digits can be converted to `f128` and back without loss.
159    ///
160    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
161    ///
162    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
163    #[unstable(feature = "f128", issue = "116909")]
164    pub const DIGITS: u32 = 33;
165
166    /// [Machine epsilon] value for `f128`.
167    ///
168    /// This is the difference between `1.0` and the next larger representable number.
169    ///
170    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
171    ///
172    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
173    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
174    #[unstable(feature = "f128", issue = "116909")]
175    #[rustc_diagnostic_item = "f128_epsilon"]
176    pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
177
178    /// Smallest finite `f128` value.
179    ///
180    /// Equal to &minus;[`MAX`].
181    ///
182    /// [`MAX`]: f128::MAX
183    #[unstable(feature = "f128", issue = "116909")]
184    pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
185    /// Smallest positive normal `f128` value.
186    ///
187    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
188    ///
189    /// [`MIN_EXP`]: f128::MIN_EXP
190    #[unstable(feature = "f128", issue = "116909")]
191    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
192    /// Largest finite `f128` value.
193    ///
194    /// Equal to
195    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
196    ///
197    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
198    /// [`MAX_EXP`]: f128::MAX_EXP
199    #[unstable(feature = "f128", issue = "116909")]
200    pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
201
202    /// One greater than the minimum possible *normal* power of 2 exponent
203    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
204    ///
205    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
206    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
207    /// In other words, all normal numbers representable by this type are
208    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
209    #[unstable(feature = "f128", issue = "116909")]
210    pub const MIN_EXP: i32 = -16_381;
211    /// One greater than the maximum possible power of 2 exponent
212    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
213    ///
214    /// This corresponds to the exact maximum possible power of 2 exponent
215    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
216    /// In other words, all numbers representable by this type are
217    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
218    #[unstable(feature = "f128", issue = "116909")]
219    pub const MAX_EXP: i32 = 16_384;
220
221    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
222    ///
223    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
224    ///
225    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
226    #[unstable(feature = "f128", issue = "116909")]
227    pub const MIN_10_EXP: i32 = -4_931;
228    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
229    ///
230    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
231    ///
232    /// [`MAX`]: f128::MAX
233    #[unstable(feature = "f128", issue = "116909")]
234    pub const MAX_10_EXP: i32 = 4_932;
235
236    /// Not a Number (NaN).
237    ///
238    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
239    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
240    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
241    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
242    /// info.
243    ///
244    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
245    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
246    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
247    /// The concrete bit pattern may change across Rust versions and target platforms.
248    #[allow(clippy::eq_op)]
249    #[rustc_diagnostic_item = "f128_nan"]
250    #[unstable(feature = "f128", issue = "116909")]
251    pub const NAN: f128 = 0.0_f128 / 0.0_f128;
252
253    /// Infinity (∞).
254    #[unstable(feature = "f128", issue = "116909")]
255    pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
256
257    /// Negative infinity (−∞).
258    #[unstable(feature = "f128", issue = "116909")]
259    pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
260
261    /// Sign bit
262    pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
263
264    /// Exponent mask
265    pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
266
267    /// Mantissa mask
268    pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
269
270    /// Minimum representable positive value (min subnormal)
271    const TINY_BITS: u128 = 0x1;
272
273    /// Minimum representable negative value (min negative subnormal)
274    const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
275
276    /// Returns `true` if this value is NaN.
277    ///
278    /// ```
279    /// #![feature(f128)]
280    /// # // FIXME(f16_f128): remove when `unordtf2` is available
281    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
282    ///
283    /// let nan = f128::NAN;
284    /// let f = 7.0_f128;
285    ///
286    /// assert!(nan.is_nan());
287    /// assert!(!f.is_nan());
288    /// # }
289    /// ```
290    #[inline]
291    #[must_use]
292    #[unstable(feature = "f128", issue = "116909")]
293    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
294    pub const fn is_nan(self) -> bool {
295        self != self
296    }
297
298    /// Returns `true` if this value is positive infinity or negative infinity, and
299    /// `false` otherwise.
300    ///
301    /// ```
302    /// #![feature(f128)]
303    /// # // FIXME(f16_f128): remove when `eqtf2` is available
304    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
305    ///
306    /// let f = 7.0f128;
307    /// let inf = f128::INFINITY;
308    /// let neg_inf = f128::NEG_INFINITY;
309    /// let nan = f128::NAN;
310    ///
311    /// assert!(!f.is_infinite());
312    /// assert!(!nan.is_infinite());
313    ///
314    /// assert!(inf.is_infinite());
315    /// assert!(neg_inf.is_infinite());
316    /// # }
317    /// ```
318    #[inline]
319    #[must_use]
320    #[unstable(feature = "f128", issue = "116909")]
321    pub const fn is_infinite(self) -> bool {
322        (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
323    }
324
325    /// Returns `true` if this number is neither infinite nor NaN.
326    ///
327    /// ```
328    /// #![feature(f128)]
329    /// # // FIXME(f16_f128): remove when `lttf2` is available
330    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
331    ///
332    /// let f = 7.0f128;
333    /// let inf: f128 = f128::INFINITY;
334    /// let neg_inf: f128 = f128::NEG_INFINITY;
335    /// let nan: f128 = f128::NAN;
336    ///
337    /// assert!(f.is_finite());
338    ///
339    /// assert!(!nan.is_finite());
340    /// assert!(!inf.is_finite());
341    /// assert!(!neg_inf.is_finite());
342    /// # }
343    /// ```
344    #[inline]
345    #[must_use]
346    #[unstable(feature = "f128", issue = "116909")]
347    #[rustc_const_unstable(feature = "f128", issue = "116909")]
348    pub const fn is_finite(self) -> bool {
349        // There's no need to handle NaN separately: if self is NaN,
350        // the comparison is not true, exactly as desired.
351        self.abs() < Self::INFINITY
352    }
353
354    /// Returns `true` if the number is [subnormal].
355    ///
356    /// ```
357    /// #![feature(f128)]
358    /// # // FIXME(f16_f128): remove when `eqtf2` is available
359    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
360    ///
361    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
362    /// let max = f128::MAX;
363    /// let lower_than_min = 1.0e-4960_f128;
364    /// let zero = 0.0_f128;
365    ///
366    /// assert!(!min.is_subnormal());
367    /// assert!(!max.is_subnormal());
368    ///
369    /// assert!(!zero.is_subnormal());
370    /// assert!(!f128::NAN.is_subnormal());
371    /// assert!(!f128::INFINITY.is_subnormal());
372    /// // Values between `0` and `min` are Subnormal.
373    /// assert!(lower_than_min.is_subnormal());
374    /// # }
375    /// ```
376    ///
377    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
378    #[inline]
379    #[must_use]
380    #[unstable(feature = "f128", issue = "116909")]
381    pub const fn is_subnormal(self) -> bool {
382        matches!(self.classify(), FpCategory::Subnormal)
383    }
384
385    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
386    ///
387    /// ```
388    /// #![feature(f128)]
389    /// # // FIXME(f16_f128): remove when `eqtf2` is available
390    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
391    ///
392    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
393    /// let max = f128::MAX;
394    /// let lower_than_min = 1.0e-4960_f128;
395    /// let zero = 0.0_f128;
396    ///
397    /// assert!(min.is_normal());
398    /// assert!(max.is_normal());
399    ///
400    /// assert!(!zero.is_normal());
401    /// assert!(!f128::NAN.is_normal());
402    /// assert!(!f128::INFINITY.is_normal());
403    /// // Values between `0` and `min` are Subnormal.
404    /// assert!(!lower_than_min.is_normal());
405    /// # }
406    /// ```
407    ///
408    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
409    #[inline]
410    #[must_use]
411    #[unstable(feature = "f128", issue = "116909")]
412    pub const fn is_normal(self) -> bool {
413        matches!(self.classify(), FpCategory::Normal)
414    }
415
416    /// Returns the floating point category of the number. If only one property
417    /// is going to be tested, it is generally faster to use the specific
418    /// predicate instead.
419    ///
420    /// ```
421    /// #![feature(f128)]
422    /// # // FIXME(f16_f128): remove when `eqtf2` is available
423    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
424    ///
425    /// use std::num::FpCategory;
426    ///
427    /// let num = 12.4_f128;
428    /// let inf = f128::INFINITY;
429    ///
430    /// assert_eq!(num.classify(), FpCategory::Normal);
431    /// assert_eq!(inf.classify(), FpCategory::Infinite);
432    /// # }
433    /// ```
434    #[inline]
435    #[unstable(feature = "f128", issue = "116909")]
436    pub const fn classify(self) -> FpCategory {
437        let bits = self.to_bits();
438        match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
439            (0, Self::EXP_MASK) => FpCategory::Infinite,
440            (_, Self::EXP_MASK) => FpCategory::Nan,
441            (0, 0) => FpCategory::Zero,
442            (_, 0) => FpCategory::Subnormal,
443            _ => FpCategory::Normal,
444        }
445    }
446
447    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
448    /// positive sign bit and positive infinity.
449    ///
450    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
451    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
452    /// conserved over arithmetic operations, the result of `is_sign_positive` on
453    /// a NaN might produce an unexpected or non-portable result. See the [specification
454    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
455    /// if you need fully portable behavior (will return `false` for all NaNs).
456    ///
457    /// ```
458    /// #![feature(f128)]
459    ///
460    /// let f = 7.0_f128;
461    /// let g = -7.0_f128;
462    ///
463    /// assert!(f.is_sign_positive());
464    /// assert!(!g.is_sign_positive());
465    /// ```
466    #[inline]
467    #[must_use]
468    #[unstable(feature = "f128", issue = "116909")]
469    pub const fn is_sign_positive(self) -> bool {
470        !self.is_sign_negative()
471    }
472
473    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
474    /// negative sign bit and negative infinity.
475    ///
476    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
477    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
478    /// conserved over arithmetic operations, the result of `is_sign_negative` on
479    /// a NaN might produce an unexpected or non-portable result. See the [specification
480    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
481    /// if you need fully portable behavior (will return `false` for all NaNs).
482    ///
483    /// ```
484    /// #![feature(f128)]
485    ///
486    /// let f = 7.0_f128;
487    /// let g = -7.0_f128;
488    ///
489    /// assert!(!f.is_sign_negative());
490    /// assert!(g.is_sign_negative());
491    /// ```
492    #[inline]
493    #[must_use]
494    #[unstable(feature = "f128", issue = "116909")]
495    pub const fn is_sign_negative(self) -> bool {
496        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
497        // applies to zeros and NaNs as well.
498        // SAFETY: This is just transmuting to get the sign bit, it's fine.
499        (self.to_bits() & (1 << 127)) != 0
500    }
501
502    /// Returns the least number greater than `self`.
503    ///
504    /// Let `TINY` be the smallest representable positive `f128`. Then,
505    ///  - if `self.is_nan()`, this returns `self`;
506    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
507    ///  - if `self` is `-TINY`, this returns -0.0;
508    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
509    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
510    ///  - otherwise the unique least value greater than `self` is returned.
511    ///
512    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
513    /// is finite `x == x.next_up().next_down()` also holds.
514    ///
515    /// ```rust
516    /// #![feature(f128)]
517    /// # // FIXME(f16_f128): remove when `eqtf2` is available
518    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
519    ///
520    /// // f128::EPSILON is the difference between 1.0 and the next number up.
521    /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
522    /// // But not for most numbers.
523    /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
524    /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
525    /// # }
526    /// ```
527    ///
528    /// This operation corresponds to IEEE-754 `nextUp`.
529    ///
530    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
531    /// [`INFINITY`]: Self::INFINITY
532    /// [`MIN`]: Self::MIN
533    /// [`MAX`]: Self::MAX
534    #[inline]
535    #[doc(alias = "nextUp")]
536    #[unstable(feature = "f128", issue = "116909")]
537    pub const fn next_up(self) -> Self {
538        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
539        // denormals to zero. This is in general unsound and unsupported, but here
540        // we do our best to still produce the correct result on such targets.
541        let bits = self.to_bits();
542        if self.is_nan() || bits == Self::INFINITY.to_bits() {
543            return self;
544        }
545
546        let abs = bits & !Self::SIGN_MASK;
547        let next_bits = if abs == 0 {
548            Self::TINY_BITS
549        } else if bits == abs {
550            bits + 1
551        } else {
552            bits - 1
553        };
554        Self::from_bits(next_bits)
555    }
556
557    /// Returns the greatest number less than `self`.
558    ///
559    /// Let `TINY` be the smallest representable positive `f128`. Then,
560    ///  - if `self.is_nan()`, this returns `self`;
561    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
562    ///  - if `self` is `TINY`, this returns 0.0;
563    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
564    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
565    ///  - otherwise the unique greatest value less than `self` is returned.
566    ///
567    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
568    /// is finite `x == x.next_down().next_up()` also holds.
569    ///
570    /// ```rust
571    /// #![feature(f128)]
572    /// # // FIXME(f16_f128): remove when `eqtf2` is available
573    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
574    ///
575    /// let x = 1.0f128;
576    /// // Clamp value into range [0, 1).
577    /// let clamped = x.clamp(0.0, 1.0f128.next_down());
578    /// assert!(clamped < 1.0);
579    /// assert_eq!(clamped.next_up(), 1.0);
580    /// # }
581    /// ```
582    ///
583    /// This operation corresponds to IEEE-754 `nextDown`.
584    ///
585    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
586    /// [`INFINITY`]: Self::INFINITY
587    /// [`MIN`]: Self::MIN
588    /// [`MAX`]: Self::MAX
589    #[inline]
590    #[doc(alias = "nextDown")]
591    #[unstable(feature = "f128", issue = "116909")]
592    pub const fn next_down(self) -> Self {
593        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
594        // denormals to zero. This is in general unsound and unsupported, but here
595        // we do our best to still produce the correct result on such targets.
596        let bits = self.to_bits();
597        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
598            return self;
599        }
600
601        let abs = bits & !Self::SIGN_MASK;
602        let next_bits = if abs == 0 {
603            Self::NEG_TINY_BITS
604        } else if bits == abs {
605            bits - 1
606        } else {
607            bits + 1
608        };
609        Self::from_bits(next_bits)
610    }
611
612    /// Takes the reciprocal (inverse) of a number, `1/x`.
613    ///
614    /// ```
615    /// #![feature(f128)]
616    /// # // FIXME(f16_f128): remove when `eqtf2` is available
617    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
618    ///
619    /// let x = 2.0_f128;
620    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
621    ///
622    /// assert!(abs_difference <= f128::EPSILON);
623    /// # }
624    /// ```
625    #[inline]
626    #[unstable(feature = "f128", issue = "116909")]
627    #[must_use = "this returns the result of the operation, without modifying the original"]
628    pub const fn recip(self) -> Self {
629        1.0 / self
630    }
631
632    /// Converts radians to degrees.
633    ///
634    /// # Unspecified precision
635    ///
636    /// The precision of this function is non-deterministic. This means it varies by platform,
637    /// Rust version, and can even differ within the same execution from one invocation to the next.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// #![feature(f128)]
643    /// # // FIXME(f16_f128): remove when `eqtf2` is available
644    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
645    ///
646    /// let angle = std::f128::consts::PI;
647    ///
648    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
649    /// assert!(abs_difference <= f128::EPSILON);
650    /// # }
651    /// ```
652    #[inline]
653    #[unstable(feature = "f128", issue = "116909")]
654    #[must_use = "this returns the result of the operation, without modifying the original"]
655    pub const fn to_degrees(self) -> Self {
656        // The division here is correctly rounded with respect to the true value of 180/π.
657        // Although π is irrational and already rounded, the double rounding happens
658        // to produce correct result for f128.
659        const PIS_IN_180: f128 = 180.0 / consts::PI;
660        self * PIS_IN_180
661    }
662
663    /// Converts degrees to radians.
664    ///
665    /// # Unspecified precision
666    ///
667    /// The precision of this function is non-deterministic. This means it varies by platform,
668    /// Rust version, and can even differ within the same execution from one invocation to the next.
669    ///
670    /// # Examples
671    ///
672    /// ```
673    /// #![feature(f128)]
674    /// # // FIXME(f16_f128): remove when `eqtf2` is available
675    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
676    ///
677    /// let angle = 180.0f128;
678    ///
679    /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
680    ///
681    /// assert!(abs_difference <= 1e-30);
682    /// # }
683    /// ```
684    #[inline]
685    #[unstable(feature = "f128", issue = "116909")]
686    #[must_use = "this returns the result of the operation, without modifying the original"]
687    pub const fn to_radians(self) -> f128 {
688        // Use a literal to avoid double rounding, consts::PI is already rounded,
689        // and dividing would round again.
690        const RADS_PER_DEG: f128 =
691            0.0174532925199432957692369076848861271344287188854172545609719_f128;
692        self * RADS_PER_DEG
693    }
694
695    /// Returns the maximum of the two numbers, ignoring NaN.
696    ///
697    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
698    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
699    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
700    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
701    /// non-deterministically.
702    ///
703    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
704    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
705    /// follows the IEEE 754-2008 semantics for `maxNum`.
706    ///
707    /// ```
708    /// #![feature(f128)]
709    /// # // Using aarch64 because `reliable_f128_math` is needed
710    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
711    ///
712    /// let x = 1.0f128;
713    /// let y = 2.0f128;
714    ///
715    /// assert_eq!(x.max(y), y);
716    /// assert_eq!(x.max(f128::NAN), x);
717    /// # }
718    /// ```
719    #[inline]
720    #[unstable(feature = "f128", issue = "116909")]
721    #[rustc_const_unstable(feature = "f128", issue = "116909")]
722    #[must_use = "this returns the result of the comparison, without modifying either input"]
723    pub const fn max(self, other: f128) -> f128 {
724        intrinsics::maxnumf128(self, other)
725    }
726
727    /// Returns the minimum of the two numbers, ignoring NaN.
728    ///
729    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
730    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
731    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
732    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
733    /// non-deterministically.
734    ///
735    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
736    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
737    /// follows the IEEE 754-2008 semantics for `minNum`.
738    ///
739    /// ```
740    /// #![feature(f128)]
741    /// # // Using aarch64 because `reliable_f128_math` is needed
742    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
743    ///
744    /// let x = 1.0f128;
745    /// let y = 2.0f128;
746    ///
747    /// assert_eq!(x.min(y), x);
748    /// assert_eq!(x.min(f128::NAN), x);
749    /// # }
750    /// ```
751    #[inline]
752    #[unstable(feature = "f128", issue = "116909")]
753    #[rustc_const_unstable(feature = "f128", issue = "116909")]
754    #[must_use = "this returns the result of the comparison, without modifying either input"]
755    pub const fn min(self, other: f128) -> f128 {
756        intrinsics::minnumf128(self, other)
757    }
758
759    /// Returns the maximum of the two numbers, propagating NaN.
760    ///
761    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
762    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
763    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
764    /// non-NaN inputs.
765    ///
766    /// This is in contrast to [`f128::max`] which only returns NaN when *both* arguments are NaN,
767    /// and which does not reliably order `-0.0` and `+0.0`.
768    ///
769    /// This follows the IEEE 754-2019 semantics for `maximum`.
770    ///
771    /// ```
772    /// #![feature(f128)]
773    /// #![feature(float_minimum_maximum)]
774    /// # // Using aarch64 because `reliable_f128_math` is needed
775    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
776    ///
777    /// let x = 1.0f128;
778    /// let y = 2.0f128;
779    ///
780    /// assert_eq!(x.maximum(y), y);
781    /// assert!(x.maximum(f128::NAN).is_nan());
782    /// # }
783    /// ```
784    #[inline]
785    #[unstable(feature = "f128", issue = "116909")]
786    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
787    #[must_use = "this returns the result of the comparison, without modifying either input"]
788    pub const fn maximum(self, other: f128) -> f128 {
789        intrinsics::maximumf128(self, other)
790    }
791
792    /// Returns the minimum of the two numbers, propagating NaN.
793    ///
794    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
795    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
796    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
797    /// non-NaN inputs.
798    ///
799    /// This is in contrast to [`f128::min`] which only returns NaN when *both* arguments are NaN,
800    /// and which does not reliably order `-0.0` and `+0.0`.
801    ///
802    /// This follows the IEEE 754-2019 semantics for `minimum`.
803    ///
804    /// ```
805    /// #![feature(f128)]
806    /// #![feature(float_minimum_maximum)]
807    /// # // Using aarch64 because `reliable_f128_math` is needed
808    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
809    ///
810    /// let x = 1.0f128;
811    /// let y = 2.0f128;
812    ///
813    /// assert_eq!(x.minimum(y), x);
814    /// assert!(x.minimum(f128::NAN).is_nan());
815    /// # }
816    /// ```
817    #[inline]
818    #[unstable(feature = "f128", issue = "116909")]
819    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
820    #[must_use = "this returns the result of the comparison, without modifying either input"]
821    pub const fn minimum(self, other: f128) -> f128 {
822        intrinsics::minimumf128(self, other)
823    }
824
825    /// Calculates the midpoint (average) between `self` and `rhs`.
826    ///
827    /// This returns NaN when *either* argument is NaN or if a combination of
828    /// +inf and -inf is provided as arguments.
829    ///
830    /// # Examples
831    ///
832    /// ```
833    /// #![feature(f128)]
834    /// # // Using aarch64 because `reliable_f128_math` is needed
835    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
836    ///
837    /// assert_eq!(1f128.midpoint(4.0), 2.5);
838    /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
839    /// # }
840    /// ```
841    #[inline]
842    #[doc(alias = "average")]
843    #[unstable(feature = "f128", issue = "116909")]
844    #[rustc_const_unstable(feature = "f128", issue = "116909")]
845    pub const fn midpoint(self, other: f128) -> f128 {
846        const HI: f128 = f128::MAX / 2.;
847
848        let (a, b) = (self, other);
849        let abs_a = a.abs();
850        let abs_b = b.abs();
851
852        if abs_a <= HI && abs_b <= HI {
853            // Overflow is impossible
854            (a + b) / 2.
855        } else {
856            (a / 2.) + (b / 2.)
857        }
858    }
859
860    /// Rounds toward zero and converts to any primitive integer type,
861    /// assuming that the value is finite and fits in that type.
862    ///
863    /// ```
864    /// #![feature(f128)]
865    /// # // FIXME(f16_f128): remove when `float*itf` is available
866    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
867    ///
868    /// let value = 4.6_f128;
869    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
870    /// assert_eq!(rounded, 4);
871    ///
872    /// let value = -128.9_f128;
873    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
874    /// assert_eq!(rounded, i8::MIN);
875    /// # }
876    /// ```
877    ///
878    /// # Safety
879    ///
880    /// The value must:
881    ///
882    /// * Not be `NaN`
883    /// * Not be infinite
884    /// * Be representable in the return type `Int`, after truncating off its fractional part
885    #[inline]
886    #[unstable(feature = "f128", issue = "116909")]
887    #[must_use = "this returns the result of the operation, without modifying the original"]
888    pub unsafe fn to_int_unchecked<Int>(self) -> Int
889    where
890        Self: FloatToInt<Int>,
891    {
892        // SAFETY: the caller must uphold the safety contract for
893        // `FloatToInt::to_int_unchecked`.
894        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
895    }
896
897    /// Raw transmutation to `u128`.
898    ///
899    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
900    ///
901    /// See [`from_bits`](#method.from_bits) for some discussion of the
902    /// portability of this operation (there are almost no issues).
903    ///
904    /// Note that this function is distinct from `as` casting, which attempts to
905    /// preserve the *numeric* value, and not the bitwise value.
906    ///
907    /// ```
908    /// #![feature(f128)]
909    ///
910    /// # // FIXME(f16_f128): enable this once const casting works
911    /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
912    /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
913    /// ```
914    #[inline]
915    #[unstable(feature = "f128", issue = "116909")]
916    #[must_use = "this returns the result of the operation, without modifying the original"]
917    #[allow(unnecessary_transmutes)]
918    pub const fn to_bits(self) -> u128 {
919        // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
920        unsafe { mem::transmute(self) }
921    }
922
923    /// Raw transmutation from `u128`.
924    ///
925    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
926    /// It turns out this is incredibly portable, for two reasons:
927    ///
928    /// * Floats and Ints have the same endianness on all supported platforms.
929    /// * IEEE 754 very precisely specifies the bit layout of floats.
930    ///
931    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
932    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
933    /// (notably x86 and ARM) picked the interpretation that was ultimately
934    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
935    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
936    ///
937    /// Rather than trying to preserve signaling-ness cross-platform, this
938    /// implementation favors preserving the exact bits. This means that
939    /// any payloads encoded in NaNs will be preserved even if the result of
940    /// this method is sent over the network from an x86 machine to a MIPS one.
941    ///
942    /// If the results of this method are only manipulated by the same
943    /// architecture that produced them, then there is no portability concern.
944    ///
945    /// If the input isn't NaN, then there is no portability concern.
946    ///
947    /// If you don't care about signalingness (very likely), then there is no
948    /// portability concern.
949    ///
950    /// Note that this function is distinct from `as` casting, which attempts to
951    /// preserve the *numeric* value, and not the bitwise value.
952    ///
953    /// ```
954    /// #![feature(f128)]
955    /// #  // FIXME(f16_f128): remove when `eqtf2` is available
956    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
957    ///
958    /// let v = f128::from_bits(0x40029000000000000000000000000000);
959    /// assert_eq!(v, 12.5);
960    /// # }
961    /// ```
962    #[inline]
963    #[must_use]
964    #[unstable(feature = "f128", issue = "116909")]
965    #[allow(unnecessary_transmutes)]
966    pub const fn from_bits(v: u128) -> Self {
967        // It turns out the safety issues with sNaN were overblown! Hooray!
968        // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
969        unsafe { mem::transmute(v) }
970    }
971
972    /// Returns the memory representation of this floating point number as a byte array in
973    /// big-endian (network) byte order.
974    ///
975    /// See [`from_bits`](Self::from_bits) for some discussion of the
976    /// portability of this operation (there are almost no issues).
977    ///
978    /// # Examples
979    ///
980    /// ```
981    /// #![feature(f128)]
982    ///
983    /// let bytes = 12.5f128.to_be_bytes();
984    /// assert_eq!(
985    ///     bytes,
986    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
987    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
988    /// );
989    /// ```
990    #[inline]
991    #[unstable(feature = "f128", issue = "116909")]
992    #[must_use = "this returns the result of the operation, without modifying the original"]
993    pub const fn to_be_bytes(self) -> [u8; 16] {
994        self.to_bits().to_be_bytes()
995    }
996
997    /// Returns the memory representation of this floating point number as a byte array in
998    /// little-endian byte order.
999    ///
1000    /// See [`from_bits`](Self::from_bits) for some discussion of the
1001    /// portability of this operation (there are almost no issues).
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// #![feature(f128)]
1007    ///
1008    /// let bytes = 12.5f128.to_le_bytes();
1009    /// assert_eq!(
1010    ///     bytes,
1011    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1012    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1013    /// );
1014    /// ```
1015    #[inline]
1016    #[unstable(feature = "f128", issue = "116909")]
1017    #[must_use = "this returns the result of the operation, without modifying the original"]
1018    pub const fn to_le_bytes(self) -> [u8; 16] {
1019        self.to_bits().to_le_bytes()
1020    }
1021
1022    /// Returns the memory representation of this floating point number as a byte array in
1023    /// native byte order.
1024    ///
1025    /// As the target platform's native endianness is used, portable code
1026    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1027    ///
1028    /// [`to_be_bytes`]: f128::to_be_bytes
1029    /// [`to_le_bytes`]: f128::to_le_bytes
1030    ///
1031    /// See [`from_bits`](Self::from_bits) for some discussion of the
1032    /// portability of this operation (there are almost no issues).
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```
1037    /// #![feature(f128)]
1038    ///
1039    /// let bytes = 12.5f128.to_ne_bytes();
1040    /// assert_eq!(
1041    ///     bytes,
1042    ///     if cfg!(target_endian = "big") {
1043    ///         [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1044    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1045    ///     } else {
1046    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1047    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1048    ///     }
1049    /// );
1050    /// ```
1051    #[inline]
1052    #[unstable(feature = "f128", issue = "116909")]
1053    #[must_use = "this returns the result of the operation, without modifying the original"]
1054    pub const fn to_ne_bytes(self) -> [u8; 16] {
1055        self.to_bits().to_ne_bytes()
1056    }
1057
1058    /// Creates a floating point value from its representation as a byte array in big endian.
1059    ///
1060    /// See [`from_bits`](Self::from_bits) for some discussion of the
1061    /// portability of this operation (there are almost no issues).
1062    ///
1063    /// # Examples
1064    ///
1065    /// ```
1066    /// #![feature(f128)]
1067    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1068    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1069    ///
1070    /// let value = f128::from_be_bytes(
1071    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1072    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1073    /// );
1074    /// assert_eq!(value, 12.5);
1075    /// # }
1076    /// ```
1077    #[inline]
1078    #[must_use]
1079    #[unstable(feature = "f128", issue = "116909")]
1080    pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1081        Self::from_bits(u128::from_be_bytes(bytes))
1082    }
1083
1084    /// Creates a floating point value from its representation as a byte array in little endian.
1085    ///
1086    /// See [`from_bits`](Self::from_bits) for some discussion of the
1087    /// portability of this operation (there are almost no issues).
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// #![feature(f128)]
1093    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1094    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1095    ///
1096    /// let value = f128::from_le_bytes(
1097    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1098    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1099    /// );
1100    /// assert_eq!(value, 12.5);
1101    /// # }
1102    /// ```
1103    #[inline]
1104    #[must_use]
1105    #[unstable(feature = "f128", issue = "116909")]
1106    pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1107        Self::from_bits(u128::from_le_bytes(bytes))
1108    }
1109
1110    /// Creates a floating point value from its representation as a byte array in native endian.
1111    ///
1112    /// As the target platform's native endianness is used, portable code
1113    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1114    /// appropriate instead.
1115    ///
1116    /// [`from_be_bytes`]: f128::from_be_bytes
1117    /// [`from_le_bytes`]: f128::from_le_bytes
1118    ///
1119    /// See [`from_bits`](Self::from_bits) for some discussion of the
1120    /// portability of this operation (there are almost no issues).
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// #![feature(f128)]
1126    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1127    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1128    ///
1129    /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1130    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1131    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1132    /// } else {
1133    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1134    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1135    /// });
1136    /// assert_eq!(value, 12.5);
1137    /// # }
1138    /// ```
1139    #[inline]
1140    #[must_use]
1141    #[unstable(feature = "f128", issue = "116909")]
1142    pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1143        Self::from_bits(u128::from_ne_bytes(bytes))
1144    }
1145
1146    /// Returns the ordering between `self` and `other`.
1147    ///
1148    /// Unlike the standard partial comparison between floating point numbers,
1149    /// this comparison always produces an ordering in accordance to
1150    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1151    /// floating point standard. The values are ordered in the following sequence:
1152    ///
1153    /// - negative quiet NaN
1154    /// - negative signaling NaN
1155    /// - negative infinity
1156    /// - negative numbers
1157    /// - negative subnormal numbers
1158    /// - negative zero
1159    /// - positive zero
1160    /// - positive subnormal numbers
1161    /// - positive numbers
1162    /// - positive infinity
1163    /// - positive signaling NaN
1164    /// - positive quiet NaN.
1165    ///
1166    /// The ordering established by this function does not always agree with the
1167    /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1168    /// they consider negative and positive zero equal, while `total_cmp`
1169    /// doesn't.
1170    ///
1171    /// The interpretation of the signaling NaN bit follows the definition in
1172    /// the IEEE 754 standard, which may not match the interpretation by some of
1173    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1174    ///
1175    /// # Example
1176    ///
1177    /// ```
1178    /// #![feature(f128)]
1179    ///
1180    /// struct GoodBoy {
1181    ///     name: &'static str,
1182    ///     weight: f128,
1183    /// }
1184    ///
1185    /// let mut bois = vec![
1186    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1187    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1188    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1189    ///     GoodBoy { name: "Chonk", weight: f128::INFINITY },
1190    ///     GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1191    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1192    /// ];
1193    ///
1194    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1195    ///
1196    /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1197    /// if f128::NAN.is_sign_negative() {
1198    ///     bois.into_iter().map(|b| b.weight)
1199    ///         .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1200    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1201    /// } else {
1202    ///     bois.into_iter().map(|b| b.weight)
1203    ///         .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1204    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1205    /// }
1206    /// ```
1207    #[inline]
1208    #[must_use]
1209    #[unstable(feature = "f128", issue = "116909")]
1210    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1211    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1212        let mut left = self.to_bits() as i128;
1213        let mut right = other.to_bits() as i128;
1214
1215        // In case of negatives, flip all the bits except the sign
1216        // to achieve a similar layout as two's complement integers
1217        //
1218        // Why does this work? IEEE 754 floats consist of three fields:
1219        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1220        // fields as a whole have the property that their bitwise order is
1221        // equal to the numeric magnitude where the magnitude is defined.
1222        // The magnitude is not normally defined on NaN values, but
1223        // IEEE 754 totalOrder defines the NaN values also to follow the
1224        // bitwise order. This leads to order explained in the doc comment.
1225        // However, the representation of magnitude is the same for negative
1226        // and positive numbers – only the sign bit is different.
1227        // To easily compare the floats as signed integers, we need to
1228        // flip the exponent and mantissa bits in case of negative numbers.
1229        // We effectively convert the numbers to "two's complement" form.
1230        //
1231        // To do the flipping, we construct a mask and XOR against it.
1232        // We branchlessly calculate an "all-ones except for the sign bit"
1233        // mask from negative-signed values: right shifting sign-extends
1234        // the integer, so we "fill" the mask with sign bits, and then
1235        // convert to unsigned to push one more zero bit.
1236        // On positive values, the mask is all zeros, so it's a no-op.
1237        left ^= (((left >> 127) as u128) >> 1) as i128;
1238        right ^= (((right >> 127) as u128) >> 1) as i128;
1239
1240        left.cmp(&right)
1241    }
1242
1243    /// Restrict a value to a certain interval unless it is NaN.
1244    ///
1245    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1246    /// less than `min`. Otherwise this returns `self`.
1247    ///
1248    /// Note that this function returns NaN if the initial value was NaN as
1249    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1250    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1251    ///
1252    /// # Panics
1253    ///
1254    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1255    ///
1256    /// # Examples
1257    ///
1258    /// ```
1259    /// #![feature(f128)]
1260    /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1261    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1262    ///
1263    /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1264    /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1265    /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1266    /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1267    ///
1268    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1269    /// assert!((0.0f128).clamp(-0.0, -0.0) == 0.0);
1270    /// assert!((1.0f128).clamp(-0.0, 0.0) == 0.0);
1271    /// // This is definitely a negative zero.
1272    /// assert!((-1.0f128).clamp(-0.0, 1.0).is_sign_negative());
1273    /// # }
1274    /// ```
1275    #[inline]
1276    #[unstable(feature = "f128", issue = "116909")]
1277    #[must_use = "method returns a new number and does not mutate the original value"]
1278    pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1279        const_assert!(
1280            min <= max,
1281            "min > max, or either was NaN",
1282            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1283            min: f128,
1284            max: f128,
1285        );
1286
1287        if self < min {
1288            self = min;
1289        }
1290        if self > max {
1291            self = max;
1292        }
1293        self
1294    }
1295
1296    /// Clamps this number to a symmetric range centered around zero.
1297    ///
1298    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1299    ///
1300    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1301    /// explicit about the intent.
1302    ///
1303    /// # Panics
1304    ///
1305    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1306    ///
1307    /// # Examples
1308    ///
1309    /// ```
1310    /// #![feature(f128)]
1311    /// #![feature(clamp_magnitude)]
1312    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1313    /// assert_eq!(5.0f128.clamp_magnitude(3.0), 3.0);
1314    /// assert_eq!((-5.0f128).clamp_magnitude(3.0), -3.0);
1315    /// assert_eq!(2.0f128.clamp_magnitude(3.0), 2.0);
1316    /// assert_eq!((-2.0f128).clamp_magnitude(3.0), -2.0);
1317    /// # }
1318    /// ```
1319    #[inline]
1320    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1321    #[must_use = "this returns the clamped value and does not modify the original"]
1322    pub fn clamp_magnitude(self, limit: f128) -> f128 {
1323        assert!(limit >= 0.0, "limit must be non-negative");
1324        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1325        self.clamp(-limit, limit)
1326    }
1327
1328    /// Computes the absolute value of `self`.
1329    ///
1330    /// This function always returns the precise result.
1331    ///
1332    /// # Examples
1333    ///
1334    /// ```
1335    /// #![feature(f128)]
1336    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1337    ///
1338    /// let x = 3.5_f128;
1339    /// let y = -3.5_f128;
1340    ///
1341    /// assert_eq!(x.abs(), x);
1342    /// assert_eq!(y.abs(), -y);
1343    ///
1344    /// assert!(f128::NAN.abs().is_nan());
1345    /// # }
1346    /// ```
1347    #[inline]
1348    #[unstable(feature = "f128", issue = "116909")]
1349    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1350    #[must_use = "method returns a new number and does not mutate the original value"]
1351    pub const fn abs(self) -> Self {
1352        // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1353        // We don't do this now because LLVM has lowering bugs for f128 math.
1354        Self::from_bits(self.to_bits() & !(1 << 127))
1355    }
1356
1357    /// Returns a number that represents the sign of `self`.
1358    ///
1359    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1360    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1361    /// - NaN if the number is NaN
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// #![feature(f128)]
1367    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1368    ///
1369    /// let f = 3.5_f128;
1370    ///
1371    /// assert_eq!(f.signum(), 1.0);
1372    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1373    ///
1374    /// assert!(f128::NAN.signum().is_nan());
1375    /// # }
1376    /// ```
1377    #[inline]
1378    #[unstable(feature = "f128", issue = "116909")]
1379    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1380    #[must_use = "method returns a new number and does not mutate the original value"]
1381    pub const fn signum(self) -> f128 {
1382        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1383    }
1384
1385    /// Returns a number composed of the magnitude of `self` and the sign of
1386    /// `sign`.
1387    ///
1388    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1389    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1390    /// returned.
1391    ///
1392    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1393    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1394    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1395    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1396    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1397    /// info.
1398    ///
1399    /// # Examples
1400    ///
1401    /// ```
1402    /// #![feature(f128)]
1403    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1404    ///
1405    /// let f = 3.5_f128;
1406    ///
1407    /// assert_eq!(f.copysign(0.42), 3.5_f128);
1408    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1409    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1410    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1411    ///
1412    /// assert!(f128::NAN.copysign(1.0).is_nan());
1413    /// # }
1414    /// ```
1415    #[inline]
1416    #[unstable(feature = "f128", issue = "116909")]
1417    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1418    #[must_use = "method returns a new number and does not mutate the original value"]
1419    pub const fn copysign(self, sign: f128) -> f128 {
1420        intrinsics::copysignf128(self, sign)
1421    }
1422
1423    /// Float addition that allows optimizations based on algebraic rules.
1424    ///
1425    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1426    #[must_use = "method returns a new number and does not mutate the original value"]
1427    #[unstable(feature = "float_algebraic", issue = "136469")]
1428    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1429    #[inline]
1430    pub const fn algebraic_add(self, rhs: f128) -> f128 {
1431        intrinsics::fadd_algebraic(self, rhs)
1432    }
1433
1434    /// Float subtraction that allows optimizations based on algebraic rules.
1435    ///
1436    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1437    #[must_use = "method returns a new number and does not mutate the original value"]
1438    #[unstable(feature = "float_algebraic", issue = "136469")]
1439    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1440    #[inline]
1441    pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1442        intrinsics::fsub_algebraic(self, rhs)
1443    }
1444
1445    /// Float multiplication that allows optimizations based on algebraic rules.
1446    ///
1447    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1448    #[must_use = "method returns a new number and does not mutate the original value"]
1449    #[unstable(feature = "float_algebraic", issue = "136469")]
1450    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1451    #[inline]
1452    pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1453        intrinsics::fmul_algebraic(self, rhs)
1454    }
1455
1456    /// Float division that allows optimizations based on algebraic rules.
1457    ///
1458    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1459    #[must_use = "method returns a new number and does not mutate the original value"]
1460    #[unstable(feature = "float_algebraic", issue = "136469")]
1461    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1462    #[inline]
1463    pub const fn algebraic_div(self, rhs: f128) -> f128 {
1464        intrinsics::fdiv_algebraic(self, rhs)
1465    }
1466
1467    /// Float remainder that allows optimizations based on algebraic rules.
1468    ///
1469    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1470    #[must_use = "method returns a new number and does not mutate the original value"]
1471    #[unstable(feature = "float_algebraic", issue = "136469")]
1472    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1473    #[inline]
1474    pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1475        intrinsics::frem_algebraic(self, rhs)
1476    }
1477}
1478
1479// Functions in this module fall into `core_float_math`
1480// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1481// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1482// #[unstable(feature = "core_float_math", issue = "137578")]
1483#[cfg(not(test))]
1484#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1485impl f128 {
1486    /// Returns the largest integer less than or equal to `self`.
1487    ///
1488    /// This function always returns the precise result.
1489    ///
1490    /// # Examples
1491    ///
1492    /// ```
1493    /// #![feature(f128)]
1494    /// # #[cfg(not(miri))]
1495    /// # #[cfg(target_has_reliable_f128_math)] {
1496    ///
1497    /// let f = 3.7_f128;
1498    /// let g = 3.0_f128;
1499    /// let h = -3.7_f128;
1500    ///
1501    /// assert_eq!(f.floor(), 3.0);
1502    /// assert_eq!(g.floor(), 3.0);
1503    /// assert_eq!(h.floor(), -4.0);
1504    /// # }
1505    /// ```
1506    #[inline]
1507    #[rustc_allow_incoherent_impl]
1508    #[unstable(feature = "f128", issue = "116909")]
1509    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1510    #[must_use = "method returns a new number and does not mutate the original value"]
1511    pub const fn floor(self) -> f128 {
1512        intrinsics::floorf128(self)
1513    }
1514
1515    /// Returns the smallest integer greater than or equal to `self`.
1516    ///
1517    /// This function always returns the precise result.
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// #![feature(f128)]
1523    /// # #[cfg(not(miri))]
1524    /// # #[cfg(target_has_reliable_f128_math)] {
1525    ///
1526    /// let f = 3.01_f128;
1527    /// let g = 4.0_f128;
1528    ///
1529    /// assert_eq!(f.ceil(), 4.0);
1530    /// assert_eq!(g.ceil(), 4.0);
1531    /// # }
1532    /// ```
1533    #[inline]
1534    #[doc(alias = "ceiling")]
1535    #[rustc_allow_incoherent_impl]
1536    #[unstable(feature = "f128", issue = "116909")]
1537    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1538    #[must_use = "method returns a new number and does not mutate the original value"]
1539    pub const fn ceil(self) -> f128 {
1540        intrinsics::ceilf128(self)
1541    }
1542
1543    /// Returns the nearest integer to `self`. If a value is half-way between two
1544    /// integers, round away from `0.0`.
1545    ///
1546    /// This function always returns the precise result.
1547    ///
1548    /// # Examples
1549    ///
1550    /// ```
1551    /// #![feature(f128)]
1552    /// # #[cfg(not(miri))]
1553    /// # #[cfg(target_has_reliable_f128_math)] {
1554    ///
1555    /// let f = 3.3_f128;
1556    /// let g = -3.3_f128;
1557    /// let h = -3.7_f128;
1558    /// let i = 3.5_f128;
1559    /// let j = 4.5_f128;
1560    ///
1561    /// assert_eq!(f.round(), 3.0);
1562    /// assert_eq!(g.round(), -3.0);
1563    /// assert_eq!(h.round(), -4.0);
1564    /// assert_eq!(i.round(), 4.0);
1565    /// assert_eq!(j.round(), 5.0);
1566    /// # }
1567    /// ```
1568    #[inline]
1569    #[rustc_allow_incoherent_impl]
1570    #[unstable(feature = "f128", issue = "116909")]
1571    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1572    #[must_use = "method returns a new number and does not mutate the original value"]
1573    pub const fn round(self) -> f128 {
1574        intrinsics::roundf128(self)
1575    }
1576
1577    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1578    /// with an even least significant digit.
1579    ///
1580    /// This function always returns the precise result.
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// #![feature(f128)]
1586    /// # #[cfg(not(miri))]
1587    /// # #[cfg(target_has_reliable_f128_math)] {
1588    ///
1589    /// let f = 3.3_f128;
1590    /// let g = -3.3_f128;
1591    /// let h = 3.5_f128;
1592    /// let i = 4.5_f128;
1593    ///
1594    /// assert_eq!(f.round_ties_even(), 3.0);
1595    /// assert_eq!(g.round_ties_even(), -3.0);
1596    /// assert_eq!(h.round_ties_even(), 4.0);
1597    /// assert_eq!(i.round_ties_even(), 4.0);
1598    /// # }
1599    /// ```
1600    #[inline]
1601    #[rustc_allow_incoherent_impl]
1602    #[unstable(feature = "f128", issue = "116909")]
1603    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1604    #[must_use = "method returns a new number and does not mutate the original value"]
1605    pub const fn round_ties_even(self) -> f128 {
1606        intrinsics::round_ties_even_f128(self)
1607    }
1608
1609    /// Returns the integer part of `self`.
1610    /// This means that non-integer numbers are always truncated towards zero.
1611    ///
1612    /// This function always returns the precise result.
1613    ///
1614    /// # Examples
1615    ///
1616    /// ```
1617    /// #![feature(f128)]
1618    /// # #[cfg(not(miri))]
1619    /// # #[cfg(target_has_reliable_f128_math)] {
1620    ///
1621    /// let f = 3.7_f128;
1622    /// let g = 3.0_f128;
1623    /// let h = -3.7_f128;
1624    ///
1625    /// assert_eq!(f.trunc(), 3.0);
1626    /// assert_eq!(g.trunc(), 3.0);
1627    /// assert_eq!(h.trunc(), -3.0);
1628    /// # }
1629    /// ```
1630    #[inline]
1631    #[doc(alias = "truncate")]
1632    #[rustc_allow_incoherent_impl]
1633    #[unstable(feature = "f128", issue = "116909")]
1634    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1635    #[must_use = "method returns a new number and does not mutate the original value"]
1636    pub const fn trunc(self) -> f128 {
1637        intrinsics::truncf128(self)
1638    }
1639
1640    /// Returns the fractional part of `self`.
1641    ///
1642    /// This function always returns the precise result.
1643    ///
1644    /// # Examples
1645    ///
1646    /// ```
1647    /// #![feature(f128)]
1648    /// # #[cfg(not(miri))]
1649    /// # #[cfg(target_has_reliable_f128_math)] {
1650    ///
1651    /// let x = 3.6_f128;
1652    /// let y = -3.6_f128;
1653    /// let abs_difference_x = (x.fract() - 0.6).abs();
1654    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1655    ///
1656    /// assert!(abs_difference_x <= f128::EPSILON);
1657    /// assert!(abs_difference_y <= f128::EPSILON);
1658    /// # }
1659    /// ```
1660    #[inline]
1661    #[rustc_allow_incoherent_impl]
1662    #[unstable(feature = "f128", issue = "116909")]
1663    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1664    #[must_use = "method returns a new number and does not mutate the original value"]
1665    pub const fn fract(self) -> f128 {
1666        self - self.trunc()
1667    }
1668
1669    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1670    /// error, yielding a more accurate result than an unfused multiply-add.
1671    ///
1672    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1673    /// the target architecture has a dedicated `fma` CPU instruction. However,
1674    /// this is not always true, and will be heavily dependant on designing
1675    /// algorithms with specific target hardware in mind.
1676    ///
1677    /// # Precision
1678    ///
1679    /// The result of this operation is guaranteed to be the rounded
1680    /// infinite-precision result. It is specified by IEEE 754 as
1681    /// `fusedMultiplyAdd` and guaranteed not to change.
1682    ///
1683    /// # Examples
1684    ///
1685    /// ```
1686    /// #![feature(f128)]
1687    /// # #[cfg(not(miri))]
1688    /// # #[cfg(target_has_reliable_f128_math)] {
1689    ///
1690    /// let m = 10.0_f128;
1691    /// let x = 4.0_f128;
1692    /// let b = 60.0_f128;
1693    ///
1694    /// assert_eq!(m.mul_add(x, b), 100.0);
1695    /// assert_eq!(m * x + b, 100.0);
1696    ///
1697    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1698    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1699    /// let minus_one = -1.0_f128;
1700    ///
1701    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1702    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1703    /// // Different rounding with the non-fused multiply and add.
1704    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1705    /// # }
1706    /// ```
1707    #[inline]
1708    #[rustc_allow_incoherent_impl]
1709    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
1710    #[unstable(feature = "f128", issue = "116909")]
1711    #[must_use = "method returns a new number and does not mutate the original value"]
1712    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1713    pub const fn mul_add(self, a: f128, b: f128) -> f128 {
1714        intrinsics::fmaf128(self, a, b)
1715    }
1716
1717    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1718    ///
1719    /// This computes the integer `n` such that
1720    /// `self = n * rhs + self.rem_euclid(rhs)`.
1721    /// In other words, the result is `self / rhs` rounded to the integer `n`
1722    /// such that `self >= n * rhs`.
1723    ///
1724    /// # Precision
1725    ///
1726    /// The result of this operation is guaranteed to be the rounded
1727    /// infinite-precision result.
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// #![feature(f128)]
1733    /// # #[cfg(not(miri))]
1734    /// # #[cfg(target_has_reliable_f128_math)] {
1735    ///
1736    /// let a: f128 = 7.0;
1737    /// let b = 4.0;
1738    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1739    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1740    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1741    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1742    /// # }
1743    /// ```
1744    #[inline]
1745    #[rustc_allow_incoherent_impl]
1746    #[unstable(feature = "f128", issue = "116909")]
1747    #[must_use = "method returns a new number and does not mutate the original value"]
1748    pub fn div_euclid(self, rhs: f128) -> f128 {
1749        let q = (self / rhs).trunc();
1750        if self % rhs < 0.0 {
1751            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1752        }
1753        q
1754    }
1755
1756    /// Calculates the least nonnegative remainder of `self` when
1757    /// divided by `rhs`.
1758    ///
1759    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1760    /// most cases. However, due to a floating point round-off error it can
1761    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1762    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1763    /// This result is not an element of the function's codomain, but it is the
1764    /// closest floating point number in the real numbers and thus fulfills the
1765    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1766    /// approximately.
1767    ///
1768    /// # Precision
1769    ///
1770    /// The result of this operation is guaranteed to be the rounded
1771    /// infinite-precision result.
1772    ///
1773    /// # Examples
1774    ///
1775    /// ```
1776    /// #![feature(f128)]
1777    /// # #[cfg(not(miri))]
1778    /// # #[cfg(target_has_reliable_f128_math)] {
1779    ///
1780    /// let a: f128 = 7.0;
1781    /// let b = 4.0;
1782    /// assert_eq!(a.rem_euclid(b), 3.0);
1783    /// assert_eq!((-a).rem_euclid(b), 1.0);
1784    /// assert_eq!(a.rem_euclid(-b), 3.0);
1785    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1786    /// // limitation due to round-off error
1787    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1788    /// # }
1789    /// ```
1790    #[inline]
1791    #[rustc_allow_incoherent_impl]
1792    #[doc(alias = "modulo", alias = "mod")]
1793    #[unstable(feature = "f128", issue = "116909")]
1794    #[must_use = "method returns a new number and does not mutate the original value"]
1795    pub fn rem_euclid(self, rhs: f128) -> f128 {
1796        let r = self % rhs;
1797        if r < 0.0 { r + rhs.abs() } else { r }
1798    }
1799
1800    /// Raises a number to an integer power.
1801    ///
1802    /// Using this function is generally faster than using `powf`.
1803    /// It might have a different sequence of rounding operations than `powf`,
1804    /// so the results are not guaranteed to agree.
1805    ///
1806    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
1807    /// example, `f128::powi(f128::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
1808    /// NaN, then the result is non-deterministically either a NaN or the result that the
1809    /// corresponding quiet NaN would produce.
1810    ///
1811    /// # Unspecified precision
1812    ///
1813    /// The precision of this function is non-deterministic. This means it varies by platform,
1814    /// Rust version, and can even differ within the same execution from one invocation to the next.
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// #![feature(f128)]
1820    /// # #[cfg(not(miri))]
1821    /// # #[cfg(target_has_reliable_f128_math)] {
1822    ///
1823    /// let x = 2.0_f128;
1824    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1825    /// assert!(abs_difference <= f128::EPSILON);
1826    ///
1827    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1828    /// assert_eq!(f128::powi(0.0, 0), 1.0);
1829    /// # }
1830    /// ```
1831    #[inline]
1832    #[rustc_allow_incoherent_impl]
1833    #[unstable(feature = "f128", issue = "116909")]
1834    #[must_use = "method returns a new number and does not mutate the original value"]
1835    pub fn powi(self, n: i32) -> f128 {
1836        intrinsics::powif128(self, n)
1837    }
1838
1839    /// Returns the square root of a number.
1840    ///
1841    /// Returns NaN if `self` is a negative number other than `-0.0`.
1842    ///
1843    /// # Precision
1844    ///
1845    /// The result of this operation is guaranteed to be the rounded
1846    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1847    /// and guaranteed not to change.
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// #![feature(f128)]
1853    /// # #[cfg(not(miri))]
1854    /// # #[cfg(target_has_reliable_f128_math)] {
1855    ///
1856    /// let positive = 4.0_f128;
1857    /// let negative = -4.0_f128;
1858    /// let negative_zero = -0.0_f128;
1859    ///
1860    /// assert_eq!(positive.sqrt(), 2.0);
1861    /// assert!(negative.sqrt().is_nan());
1862    /// assert!(negative_zero.sqrt() == negative_zero);
1863    /// # }
1864    /// ```
1865    #[inline]
1866    #[doc(alias = "squareRoot")]
1867    #[rustc_allow_incoherent_impl]
1868    #[unstable(feature = "f128", issue = "116909")]
1869    #[must_use = "method returns a new number and does not mutate the original value"]
1870    pub fn sqrt(self) -> f128 {
1871        intrinsics::sqrtf128(self)
1872    }
1873}