core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, PointerLike, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260
261mod lazy;
262mod once;
263
264#[stable(feature = "lazy_cell", since = "1.80.0")]
265pub use lazy::LazyCell;
266#[stable(feature = "once_cell", since = "1.70.0")]
267pub use once::OnceCell;
268
269/// A mutable memory location.
270///
271/// # Memory layout
272///
273/// `Cell<T>` has the same [memory layout and caveats as
274/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
275/// `Cell<T>` has the same in-memory representation as its inner type `T`.
276///
277/// # Examples
278///
279/// In this example, you can see that `Cell<T>` enables mutation inside an
280/// immutable struct. In other words, it enables "interior mutability".
281///
282/// ```
283/// use std::cell::Cell;
284///
285/// struct SomeStruct {
286///     regular_field: u8,
287///     special_field: Cell<u8>,
288/// }
289///
290/// let my_struct = SomeStruct {
291///     regular_field: 0,
292///     special_field: Cell::new(1),
293/// };
294///
295/// let new_value = 100;
296///
297/// // ERROR: `my_struct` is immutable
298/// // my_struct.regular_field = new_value;
299///
300/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
301/// // which can always be mutated
302/// my_struct.special_field.set(new_value);
303/// assert_eq!(my_struct.special_field.get(), new_value);
304/// ```
305///
306/// See the [module-level documentation](self) for more.
307#[rustc_diagnostic_item = "Cell"]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[repr(transparent)]
310#[rustc_pub_transparent]
311pub struct Cell<T: ?Sized> {
312    value: UnsafeCell<T>,
313}
314
315#[stable(feature = "rust1", since = "1.0.0")]
316unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
317
318// Note that this negative impl isn't strictly necessary for correctness,
319// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
320// However, given how important `Cell`'s `!Sync`-ness is,
321// having an explicit negative impl is nice for documentation purposes
322// and results in nicer error messages.
323#[stable(feature = "rust1", since = "1.0.0")]
324impl<T: ?Sized> !Sync for Cell<T> {}
325
326#[stable(feature = "rust1", since = "1.0.0")]
327impl<T: Copy> Clone for Cell<T> {
328    #[inline]
329    fn clone(&self) -> Cell<T> {
330        Cell::new(self.get())
331    }
332}
333
334#[stable(feature = "rust1", since = "1.0.0")]
335impl<T: Default> Default for Cell<T> {
336    /// Creates a `Cell<T>`, with the `Default` value for T.
337    #[inline]
338    fn default() -> Cell<T> {
339        Cell::new(Default::default())
340    }
341}
342
343#[stable(feature = "rust1", since = "1.0.0")]
344impl<T: PartialEq + Copy> PartialEq for Cell<T> {
345    #[inline]
346    fn eq(&self, other: &Cell<T>) -> bool {
347        self.get() == other.get()
348    }
349}
350
351#[stable(feature = "cell_eq", since = "1.2.0")]
352impl<T: Eq + Copy> Eq for Cell<T> {}
353
354#[stable(feature = "cell_ord", since = "1.10.0")]
355impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
356    #[inline]
357    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
358        self.get().partial_cmp(&other.get())
359    }
360
361    #[inline]
362    fn lt(&self, other: &Cell<T>) -> bool {
363        self.get() < other.get()
364    }
365
366    #[inline]
367    fn le(&self, other: &Cell<T>) -> bool {
368        self.get() <= other.get()
369    }
370
371    #[inline]
372    fn gt(&self, other: &Cell<T>) -> bool {
373        self.get() > other.get()
374    }
375
376    #[inline]
377    fn ge(&self, other: &Cell<T>) -> bool {
378        self.get() >= other.get()
379    }
380}
381
382#[stable(feature = "cell_ord", since = "1.10.0")]
383impl<T: Ord + Copy> Ord for Cell<T> {
384    #[inline]
385    fn cmp(&self, other: &Cell<T>) -> Ordering {
386        self.get().cmp(&other.get())
387    }
388}
389
390#[stable(feature = "cell_from", since = "1.12.0")]
391impl<T> From<T> for Cell<T> {
392    /// Creates a new `Cell<T>` containing the given value.
393    fn from(t: T) -> Cell<T> {
394        Cell::new(t)
395    }
396}
397
398impl<T> Cell<T> {
399    /// Creates a new `Cell` containing the given value.
400    ///
401    /// # Examples
402    ///
403    /// ```
404    /// use std::cell::Cell;
405    ///
406    /// let c = Cell::new(5);
407    /// ```
408    #[stable(feature = "rust1", since = "1.0.0")]
409    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
410    #[inline]
411    pub const fn new(value: T) -> Cell<T> {
412        Cell { value: UnsafeCell::new(value) }
413    }
414
415    /// Sets the contained value.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::cell::Cell;
421    ///
422    /// let c = Cell::new(5);
423    ///
424    /// c.set(10);
425    /// ```
426    #[inline]
427    #[stable(feature = "rust1", since = "1.0.0")]
428    pub fn set(&self, val: T) {
429        self.replace(val);
430    }
431
432    /// Swaps the values of two `Cell`s.
433    ///
434    /// The difference with `std::mem::swap` is that this function doesn't
435    /// require a `&mut` reference.
436    ///
437    /// # Panics
438    ///
439    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
440    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
441    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
442    ///
443    /// # Examples
444    ///
445    /// ```
446    /// use std::cell::Cell;
447    ///
448    /// let c1 = Cell::new(5i32);
449    /// let c2 = Cell::new(10i32);
450    /// c1.swap(&c2);
451    /// assert_eq!(10, c1.get());
452    /// assert_eq!(5, c2.get());
453    /// ```
454    #[inline]
455    #[stable(feature = "move_cell", since = "1.17.0")]
456    pub fn swap(&self, other: &Self) {
457        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
458        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
459        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
460            let src_usize = src.addr();
461            let dst_usize = dst.addr();
462            let diff = src_usize.abs_diff(dst_usize);
463            diff >= size_of::<T>()
464        }
465
466        if ptr::eq(self, other) {
467            // Swapping wouldn't change anything.
468            return;
469        }
470        if !is_nonoverlapping(self, other) {
471            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
472            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
473        }
474        // SAFETY: This can be risky if called from separate threads, but `Cell`
475        // is `!Sync` so this won't happen. This also won't invalidate any
476        // pointers since `Cell` makes sure nothing else will be pointing into
477        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
478        // so `swap` will just properly copy two full values of type `T` back and forth.
479        unsafe {
480            mem::swap(&mut *self.value.get(), &mut *other.value.get());
481        }
482    }
483
484    /// Replaces the contained value with `val`, and returns the old contained value.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// use std::cell::Cell;
490    ///
491    /// let cell = Cell::new(5);
492    /// assert_eq!(cell.get(), 5);
493    /// assert_eq!(cell.replace(10), 5);
494    /// assert_eq!(cell.get(), 10);
495    /// ```
496    #[inline]
497    #[stable(feature = "move_cell", since = "1.17.0")]
498    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
499    #[rustc_confusables("swap")]
500    pub const fn replace(&self, val: T) -> T {
501        // SAFETY: This can cause data races if called from a separate thread,
502        // but `Cell` is `!Sync` so this won't happen.
503        mem::replace(unsafe { &mut *self.value.get() }, val)
504    }
505
506    /// Unwraps the value, consuming the cell.
507    ///
508    /// # Examples
509    ///
510    /// ```
511    /// use std::cell::Cell;
512    ///
513    /// let c = Cell::new(5);
514    /// let five = c.into_inner();
515    ///
516    /// assert_eq!(five, 5);
517    /// ```
518    #[stable(feature = "move_cell", since = "1.17.0")]
519    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
520    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
521    pub const fn into_inner(self) -> T {
522        self.value.into_inner()
523    }
524}
525
526impl<T: Copy> Cell<T> {
527    /// Returns a copy of the contained value.
528    ///
529    /// # Examples
530    ///
531    /// ```
532    /// use std::cell::Cell;
533    ///
534    /// let c = Cell::new(5);
535    ///
536    /// let five = c.get();
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
541    pub const fn get(&self) -> T {
542        // SAFETY: This can cause data races if called from a separate thread,
543        // but `Cell` is `!Sync` so this won't happen.
544        unsafe { *self.value.get() }
545    }
546
547    /// Updates the contained value using a function.
548    ///
549    /// # Examples
550    ///
551    /// ```
552    /// use std::cell::Cell;
553    ///
554    /// let c = Cell::new(5);
555    /// c.update(|x| x + 1);
556    /// assert_eq!(c.get(), 6);
557    /// ```
558    #[inline]
559    #[stable(feature = "cell_update", since = "1.88.0")]
560    pub fn update(&self, f: impl FnOnce(T) -> T) {
561        let old = self.get();
562        self.set(f(old));
563    }
564}
565
566impl<T: ?Sized> Cell<T> {
567    /// Returns a raw pointer to the underlying data in this cell.
568    ///
569    /// # Examples
570    ///
571    /// ```
572    /// use std::cell::Cell;
573    ///
574    /// let c = Cell::new(5);
575    ///
576    /// let ptr = c.as_ptr();
577    /// ```
578    #[inline]
579    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
580    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
581    #[rustc_as_ptr]
582    #[rustc_never_returns_null_ptr]
583    pub const fn as_ptr(&self) -> *mut T {
584        self.value.get()
585    }
586
587    /// Returns a mutable reference to the underlying data.
588    ///
589    /// This call borrows `Cell` mutably (at compile-time) which guarantees
590    /// that we possess the only reference.
591    ///
592    /// However be cautious: this method expects `self` to be mutable, which is
593    /// generally not the case when using a `Cell`. If you require interior
594    /// mutability by reference, consider using `RefCell` which provides
595    /// run-time checked mutable borrows through its [`borrow_mut`] method.
596    ///
597    /// [`borrow_mut`]: RefCell::borrow_mut()
598    ///
599    /// # Examples
600    ///
601    /// ```
602    /// use std::cell::Cell;
603    ///
604    /// let mut c = Cell::new(5);
605    /// *c.get_mut() += 1;
606    ///
607    /// assert_eq!(c.get(), 6);
608    /// ```
609    #[inline]
610    #[stable(feature = "cell_get_mut", since = "1.11.0")]
611    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
612    pub const fn get_mut(&mut self) -> &mut T {
613        self.value.get_mut()
614    }
615
616    /// Returns a `&Cell<T>` from a `&mut T`
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// use std::cell::Cell;
622    ///
623    /// let slice: &mut [i32] = &mut [1, 2, 3];
624    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
625    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
626    ///
627    /// assert_eq!(slice_cell.len(), 3);
628    /// ```
629    #[inline]
630    #[stable(feature = "as_cell", since = "1.37.0")]
631    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
632    pub const fn from_mut(t: &mut T) -> &Cell<T> {
633        // SAFETY: `&mut` ensures unique access.
634        unsafe { &*(t as *mut T as *const Cell<T>) }
635    }
636}
637
638impl<T: Default> Cell<T> {
639    /// Takes the value of the cell, leaving `Default::default()` in its place.
640    ///
641    /// # Examples
642    ///
643    /// ```
644    /// use std::cell::Cell;
645    ///
646    /// let c = Cell::new(5);
647    /// let five = c.take();
648    ///
649    /// assert_eq!(five, 5);
650    /// assert_eq!(c.into_inner(), 0);
651    /// ```
652    #[stable(feature = "move_cell", since = "1.17.0")]
653    pub fn take(&self) -> T {
654        self.replace(Default::default())
655    }
656}
657
658#[unstable(feature = "coerce_unsized", issue = "18598")]
659impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
660
661// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
662// and become dyn-compatible method receivers.
663// Note that currently `Cell` itself cannot be a method receiver
664// because it does not implement Deref.
665// In other words:
666// `self: Cell<&Self>` won't work
667// `self: CellWrapper<Self>` becomes possible
668#[unstable(feature = "dispatch_from_dyn", issue = "none")]
669impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
670
671#[unstable(feature = "pointer_like_trait", issue = "none")]
672impl<T: PointerLike> PointerLike for Cell<T> {}
673
674impl<T> Cell<[T]> {
675    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
676    ///
677    /// # Examples
678    ///
679    /// ```
680    /// use std::cell::Cell;
681    ///
682    /// let slice: &mut [i32] = &mut [1, 2, 3];
683    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
684    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
685    ///
686    /// assert_eq!(slice_cell.len(), 3);
687    /// ```
688    #[stable(feature = "as_cell", since = "1.37.0")]
689    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
690    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
691        // SAFETY: `Cell<T>` has the same memory layout as `T`.
692        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
693    }
694}
695
696impl<T, const N: usize> Cell<[T; N]> {
697    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
698    ///
699    /// # Examples
700    ///
701    /// ```
702    /// #![feature(as_array_of_cells)]
703    /// use std::cell::Cell;
704    ///
705    /// let mut array: [i32; 3] = [1, 2, 3];
706    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
707    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
708    /// ```
709    #[unstable(feature = "as_array_of_cells", issue = "88248")]
710    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
711        // SAFETY: `Cell<T>` has the same memory layout as `T`.
712        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
713    }
714}
715
716/// A mutable memory location with dynamically checked borrow rules
717///
718/// See the [module-level documentation](self) for more.
719#[rustc_diagnostic_item = "RefCell"]
720#[stable(feature = "rust1", since = "1.0.0")]
721pub struct RefCell<T: ?Sized> {
722    borrow: Cell<BorrowCounter>,
723    // Stores the location of the earliest currently active borrow.
724    // This gets updated whenever we go from having zero borrows
725    // to having a single borrow. When a borrow occurs, this gets included
726    // in the generated `BorrowError`/`BorrowMutError`
727    #[cfg(feature = "debug_refcell")]
728    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
729    value: UnsafeCell<T>,
730}
731
732/// An error returned by [`RefCell::try_borrow`].
733#[stable(feature = "try_borrow", since = "1.13.0")]
734#[non_exhaustive]
735#[derive(Debug)]
736pub struct BorrowError {
737    #[cfg(feature = "debug_refcell")]
738    location: &'static crate::panic::Location<'static>,
739}
740
741#[stable(feature = "try_borrow", since = "1.13.0")]
742impl Display for BorrowError {
743    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
744        #[cfg(feature = "debug_refcell")]
745        let res = write!(
746            f,
747            "RefCell already mutably borrowed; a previous borrow was at {}",
748            self.location
749        );
750
751        #[cfg(not(feature = "debug_refcell"))]
752        let res = Display::fmt("RefCell already mutably borrowed", f);
753
754        res
755    }
756}
757
758/// An error returned by [`RefCell::try_borrow_mut`].
759#[stable(feature = "try_borrow", since = "1.13.0")]
760#[non_exhaustive]
761#[derive(Debug)]
762pub struct BorrowMutError {
763    #[cfg(feature = "debug_refcell")]
764    location: &'static crate::panic::Location<'static>,
765}
766
767#[stable(feature = "try_borrow", since = "1.13.0")]
768impl Display for BorrowMutError {
769    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
770        #[cfg(feature = "debug_refcell")]
771        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
772
773        #[cfg(not(feature = "debug_refcell"))]
774        let res = Display::fmt("RefCell already borrowed", f);
775
776        res
777    }
778}
779
780// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
781#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
782#[track_caller]
783#[cold]
784fn panic_already_borrowed(err: BorrowMutError) -> ! {
785    panic!("{err}")
786}
787
788// This ensures the panicking code is outlined from `borrow` for `RefCell`.
789#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
790#[track_caller]
791#[cold]
792fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
793    panic!("{err}")
794}
795
796// Positive values represent the number of `Ref` active. Negative values
797// represent the number of `RefMut` active. Multiple `RefMut`s can only be
798// active at a time if they refer to distinct, nonoverlapping components of a
799// `RefCell` (e.g., different ranges of a slice).
800//
801// `Ref` and `RefMut` are both two words in size, and so there will likely never
802// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
803// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
804// However, this is not a guarantee, as a pathological program could repeatedly
805// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
806// explicitly check for overflow and underflow in order to avoid unsafety, or at
807// least behave correctly in the event that overflow or underflow happens (e.g.,
808// see BorrowRef::new).
809type BorrowCounter = isize;
810const UNUSED: BorrowCounter = 0;
811
812#[inline(always)]
813fn is_writing(x: BorrowCounter) -> bool {
814    x < UNUSED
815}
816
817#[inline(always)]
818fn is_reading(x: BorrowCounter) -> bool {
819    x > UNUSED
820}
821
822impl<T> RefCell<T> {
823    /// Creates a new `RefCell` containing `value`.
824    ///
825    /// # Examples
826    ///
827    /// ```
828    /// use std::cell::RefCell;
829    ///
830    /// let c = RefCell::new(5);
831    /// ```
832    #[stable(feature = "rust1", since = "1.0.0")]
833    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
834    #[inline]
835    pub const fn new(value: T) -> RefCell<T> {
836        RefCell {
837            value: UnsafeCell::new(value),
838            borrow: Cell::new(UNUSED),
839            #[cfg(feature = "debug_refcell")]
840            borrowed_at: Cell::new(None),
841        }
842    }
843
844    /// Consumes the `RefCell`, returning the wrapped value.
845    ///
846    /// # Examples
847    ///
848    /// ```
849    /// use std::cell::RefCell;
850    ///
851    /// let c = RefCell::new(5);
852    ///
853    /// let five = c.into_inner();
854    /// ```
855    #[stable(feature = "rust1", since = "1.0.0")]
856    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
857    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
858    #[inline]
859    pub const fn into_inner(self) -> T {
860        // Since this function takes `self` (the `RefCell`) by value, the
861        // compiler statically verifies that it is not currently borrowed.
862        self.value.into_inner()
863    }
864
865    /// Replaces the wrapped value with a new one, returning the old value,
866    /// without deinitializing either one.
867    ///
868    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
869    ///
870    /// # Panics
871    ///
872    /// Panics if the value is currently borrowed.
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// use std::cell::RefCell;
878    /// let cell = RefCell::new(5);
879    /// let old_value = cell.replace(6);
880    /// assert_eq!(old_value, 5);
881    /// assert_eq!(cell, RefCell::new(6));
882    /// ```
883    #[inline]
884    #[stable(feature = "refcell_replace", since = "1.24.0")]
885    #[track_caller]
886    #[rustc_confusables("swap")]
887    pub fn replace(&self, t: T) -> T {
888        mem::replace(&mut *self.borrow_mut(), t)
889    }
890
891    /// Replaces the wrapped value with a new one computed from `f`, returning
892    /// the old value, without deinitializing either one.
893    ///
894    /// # Panics
895    ///
896    /// Panics if the value is currently borrowed.
897    ///
898    /// # Examples
899    ///
900    /// ```
901    /// use std::cell::RefCell;
902    /// let cell = RefCell::new(5);
903    /// let old_value = cell.replace_with(|&mut old| old + 1);
904    /// assert_eq!(old_value, 5);
905    /// assert_eq!(cell, RefCell::new(6));
906    /// ```
907    #[inline]
908    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
909    #[track_caller]
910    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
911        let mut_borrow = &mut *self.borrow_mut();
912        let replacement = f(mut_borrow);
913        mem::replace(mut_borrow, replacement)
914    }
915
916    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
917    /// without deinitializing either one.
918    ///
919    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
920    ///
921    /// # Panics
922    ///
923    /// Panics if the value in either `RefCell` is currently borrowed, or
924    /// if `self` and `other` point to the same `RefCell`.
925    ///
926    /// # Examples
927    ///
928    /// ```
929    /// use std::cell::RefCell;
930    /// let c = RefCell::new(5);
931    /// let d = RefCell::new(6);
932    /// c.swap(&d);
933    /// assert_eq!(c, RefCell::new(6));
934    /// assert_eq!(d, RefCell::new(5));
935    /// ```
936    #[inline]
937    #[stable(feature = "refcell_swap", since = "1.24.0")]
938    pub fn swap(&self, other: &Self) {
939        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
940    }
941}
942
943impl<T: ?Sized> RefCell<T> {
944    /// Immutably borrows the wrapped value.
945    ///
946    /// The borrow lasts until the returned `Ref` exits scope. Multiple
947    /// immutable borrows can be taken out at the same time.
948    ///
949    /// # Panics
950    ///
951    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
952    /// [`try_borrow`](#method.try_borrow).
953    ///
954    /// # Examples
955    ///
956    /// ```
957    /// use std::cell::RefCell;
958    ///
959    /// let c = RefCell::new(5);
960    ///
961    /// let borrowed_five = c.borrow();
962    /// let borrowed_five2 = c.borrow();
963    /// ```
964    ///
965    /// An example of panic:
966    ///
967    /// ```should_panic
968    /// use std::cell::RefCell;
969    ///
970    /// let c = RefCell::new(5);
971    ///
972    /// let m = c.borrow_mut();
973    /// let b = c.borrow(); // this causes a panic
974    /// ```
975    #[stable(feature = "rust1", since = "1.0.0")]
976    #[inline]
977    #[track_caller]
978    pub fn borrow(&self) -> Ref<'_, T> {
979        match self.try_borrow() {
980            Ok(b) => b,
981            Err(err) => panic_already_mutably_borrowed(err),
982        }
983    }
984
985    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
986    /// borrowed.
987    ///
988    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
989    /// taken out at the same time.
990    ///
991    /// This is the non-panicking variant of [`borrow`](#method.borrow).
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// use std::cell::RefCell;
997    ///
998    /// let c = RefCell::new(5);
999    ///
1000    /// {
1001    ///     let m = c.borrow_mut();
1002    ///     assert!(c.try_borrow().is_err());
1003    /// }
1004    ///
1005    /// {
1006    ///     let m = c.borrow();
1007    ///     assert!(c.try_borrow().is_ok());
1008    /// }
1009    /// ```
1010    #[stable(feature = "try_borrow", since = "1.13.0")]
1011    #[inline]
1012    #[cfg_attr(feature = "debug_refcell", track_caller)]
1013    pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1014        match BorrowRef::new(&self.borrow) {
1015            Some(b) => {
1016                #[cfg(feature = "debug_refcell")]
1017                {
1018                    // `borrowed_at` is always the *first* active borrow
1019                    if b.borrow.get() == 1 {
1020                        self.borrowed_at.set(Some(crate::panic::Location::caller()));
1021                    }
1022                }
1023
1024                // SAFETY: `BorrowRef` ensures that there is only immutable access
1025                // to the value while borrowed.
1026                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1027                Ok(Ref { value, borrow: b })
1028            }
1029            None => Err(BorrowError {
1030                // If a borrow occurred, then we must already have an outstanding borrow,
1031                // so `borrowed_at` will be `Some`
1032                #[cfg(feature = "debug_refcell")]
1033                location: self.borrowed_at.get().unwrap(),
1034            }),
1035        }
1036    }
1037
1038    /// Mutably borrows the wrapped value.
1039    ///
1040    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1041    /// from it exit scope. The value cannot be borrowed while this borrow is
1042    /// active.
1043    ///
1044    /// # Panics
1045    ///
1046    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1047    /// [`try_borrow_mut`](#method.try_borrow_mut).
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// use std::cell::RefCell;
1053    ///
1054    /// let c = RefCell::new("hello".to_owned());
1055    ///
1056    /// *c.borrow_mut() = "bonjour".to_owned();
1057    ///
1058    /// assert_eq!(&*c.borrow(), "bonjour");
1059    /// ```
1060    ///
1061    /// An example of panic:
1062    ///
1063    /// ```should_panic
1064    /// use std::cell::RefCell;
1065    ///
1066    /// let c = RefCell::new(5);
1067    /// let m = c.borrow();
1068    ///
1069    /// let b = c.borrow_mut(); // this causes a panic
1070    /// ```
1071    #[stable(feature = "rust1", since = "1.0.0")]
1072    #[inline]
1073    #[track_caller]
1074    pub fn borrow_mut(&self) -> RefMut<'_, T> {
1075        match self.try_borrow_mut() {
1076            Ok(b) => b,
1077            Err(err) => panic_already_borrowed(err),
1078        }
1079    }
1080
1081    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1082    ///
1083    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1084    /// from it exit scope. The value cannot be borrowed while this borrow is
1085    /// active.
1086    ///
1087    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// use std::cell::RefCell;
1093    ///
1094    /// let c = RefCell::new(5);
1095    ///
1096    /// {
1097    ///     let m = c.borrow();
1098    ///     assert!(c.try_borrow_mut().is_err());
1099    /// }
1100    ///
1101    /// assert!(c.try_borrow_mut().is_ok());
1102    /// ```
1103    #[stable(feature = "try_borrow", since = "1.13.0")]
1104    #[inline]
1105    #[cfg_attr(feature = "debug_refcell", track_caller)]
1106    pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1107        match BorrowRefMut::new(&self.borrow) {
1108            Some(b) => {
1109                #[cfg(feature = "debug_refcell")]
1110                {
1111                    self.borrowed_at.set(Some(crate::panic::Location::caller()));
1112                }
1113
1114                // SAFETY: `BorrowRefMut` guarantees unique access.
1115                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1116                Ok(RefMut { value, borrow: b, marker: PhantomData })
1117            }
1118            None => Err(BorrowMutError {
1119                // If a borrow occurred, then we must already have an outstanding borrow,
1120                // so `borrowed_at` will be `Some`
1121                #[cfg(feature = "debug_refcell")]
1122                location: self.borrowed_at.get().unwrap(),
1123            }),
1124        }
1125    }
1126
1127    /// Returns a raw pointer to the underlying data in this cell.
1128    ///
1129    /// # Examples
1130    ///
1131    /// ```
1132    /// use std::cell::RefCell;
1133    ///
1134    /// let c = RefCell::new(5);
1135    ///
1136    /// let ptr = c.as_ptr();
1137    /// ```
1138    #[inline]
1139    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1140    #[rustc_as_ptr]
1141    #[rustc_never_returns_null_ptr]
1142    pub fn as_ptr(&self) -> *mut T {
1143        self.value.get()
1144    }
1145
1146    /// Returns a mutable reference to the underlying data.
1147    ///
1148    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1149    /// that no borrows to the underlying data exist. The dynamic checks inherent
1150    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1151    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1152    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1153    /// consider using the unstable [`undo_leak`] method.
1154    ///
1155    /// This method can only be called if `RefCell` can be mutably borrowed,
1156    /// which in general is only the case directly after the `RefCell` has
1157    /// been created. In these situations, skipping the aforementioned dynamic
1158    /// borrowing checks may yield better ergonomics and runtime-performance.
1159    ///
1160    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1161    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1162    ///
1163    /// [`borrow_mut`]: RefCell::borrow_mut()
1164    /// [`forget()`]: mem::forget
1165    /// [`undo_leak`]: RefCell::undo_leak()
1166    ///
1167    /// # Examples
1168    ///
1169    /// ```
1170    /// use std::cell::RefCell;
1171    ///
1172    /// let mut c = RefCell::new(5);
1173    /// *c.get_mut() += 1;
1174    ///
1175    /// assert_eq!(c, RefCell::new(6));
1176    /// ```
1177    #[inline]
1178    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1179    pub fn get_mut(&mut self) -> &mut T {
1180        self.value.get_mut()
1181    }
1182
1183    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1184    ///
1185    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1186    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1187    /// if some `Ref` or `RefMut` borrows have been leaked.
1188    ///
1189    /// [`get_mut`]: RefCell::get_mut()
1190    ///
1191    /// # Examples
1192    ///
1193    /// ```
1194    /// #![feature(cell_leak)]
1195    /// use std::cell::RefCell;
1196    ///
1197    /// let mut c = RefCell::new(0);
1198    /// std::mem::forget(c.borrow_mut());
1199    ///
1200    /// assert!(c.try_borrow().is_err());
1201    /// c.undo_leak();
1202    /// assert!(c.try_borrow().is_ok());
1203    /// ```
1204    #[unstable(feature = "cell_leak", issue = "69099")]
1205    pub fn undo_leak(&mut self) -> &mut T {
1206        *self.borrow.get_mut() = UNUSED;
1207        self.get_mut()
1208    }
1209
1210    /// Immutably borrows the wrapped value, returning an error if the value is
1211    /// currently mutably borrowed.
1212    ///
1213    /// # Safety
1214    ///
1215    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1216    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1217    /// borrowing the `RefCell` while the reference returned by this method
1218    /// is alive is undefined behavior.
1219    ///
1220    /// # Examples
1221    ///
1222    /// ```
1223    /// use std::cell::RefCell;
1224    ///
1225    /// let c = RefCell::new(5);
1226    ///
1227    /// {
1228    ///     let m = c.borrow_mut();
1229    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1230    /// }
1231    ///
1232    /// {
1233    ///     let m = c.borrow();
1234    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1235    /// }
1236    /// ```
1237    #[stable(feature = "borrow_state", since = "1.37.0")]
1238    #[inline]
1239    pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1240        if !is_writing(self.borrow.get()) {
1241            // SAFETY: We check that nobody is actively writing now, but it is
1242            // the caller's responsibility to ensure that nobody writes until
1243            // the returned reference is no longer in use.
1244            // Also, `self.value.get()` refers to the value owned by `self`
1245            // and is thus guaranteed to be valid for the lifetime of `self`.
1246            Ok(unsafe { &*self.value.get() })
1247        } else {
1248            Err(BorrowError {
1249                // If a borrow occurred, then we must already have an outstanding borrow,
1250                // so `borrowed_at` will be `Some`
1251                #[cfg(feature = "debug_refcell")]
1252                location: self.borrowed_at.get().unwrap(),
1253            })
1254        }
1255    }
1256}
1257
1258impl<T: Default> RefCell<T> {
1259    /// Takes the wrapped value, leaving `Default::default()` in its place.
1260    ///
1261    /// # Panics
1262    ///
1263    /// Panics if the value is currently borrowed.
1264    ///
1265    /// # Examples
1266    ///
1267    /// ```
1268    /// use std::cell::RefCell;
1269    ///
1270    /// let c = RefCell::new(5);
1271    /// let five = c.take();
1272    ///
1273    /// assert_eq!(five, 5);
1274    /// assert_eq!(c.into_inner(), 0);
1275    /// ```
1276    #[stable(feature = "refcell_take", since = "1.50.0")]
1277    pub fn take(&self) -> T {
1278        self.replace(Default::default())
1279    }
1280}
1281
1282#[stable(feature = "rust1", since = "1.0.0")]
1283unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1284
1285#[stable(feature = "rust1", since = "1.0.0")]
1286impl<T: ?Sized> !Sync for RefCell<T> {}
1287
1288#[stable(feature = "rust1", since = "1.0.0")]
1289impl<T: Clone> Clone for RefCell<T> {
1290    /// # Panics
1291    ///
1292    /// Panics if the value is currently mutably borrowed.
1293    #[inline]
1294    #[track_caller]
1295    fn clone(&self) -> RefCell<T> {
1296        RefCell::new(self.borrow().clone())
1297    }
1298
1299    /// # Panics
1300    ///
1301    /// Panics if `source` is currently mutably borrowed.
1302    #[inline]
1303    #[track_caller]
1304    fn clone_from(&mut self, source: &Self) {
1305        self.get_mut().clone_from(&source.borrow())
1306    }
1307}
1308
1309#[stable(feature = "rust1", since = "1.0.0")]
1310impl<T: Default> Default for RefCell<T> {
1311    /// Creates a `RefCell<T>`, with the `Default` value for T.
1312    #[inline]
1313    fn default() -> RefCell<T> {
1314        RefCell::new(Default::default())
1315    }
1316}
1317
1318#[stable(feature = "rust1", since = "1.0.0")]
1319impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1320    /// # Panics
1321    ///
1322    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1323    #[inline]
1324    fn eq(&self, other: &RefCell<T>) -> bool {
1325        *self.borrow() == *other.borrow()
1326    }
1327}
1328
1329#[stable(feature = "cell_eq", since = "1.2.0")]
1330impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1331
1332#[stable(feature = "cell_ord", since = "1.10.0")]
1333impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1334    /// # Panics
1335    ///
1336    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1337    #[inline]
1338    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1339        self.borrow().partial_cmp(&*other.borrow())
1340    }
1341
1342    /// # Panics
1343    ///
1344    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1345    #[inline]
1346    fn lt(&self, other: &RefCell<T>) -> bool {
1347        *self.borrow() < *other.borrow()
1348    }
1349
1350    /// # Panics
1351    ///
1352    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1353    #[inline]
1354    fn le(&self, other: &RefCell<T>) -> bool {
1355        *self.borrow() <= *other.borrow()
1356    }
1357
1358    /// # Panics
1359    ///
1360    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1361    #[inline]
1362    fn gt(&self, other: &RefCell<T>) -> bool {
1363        *self.borrow() > *other.borrow()
1364    }
1365
1366    /// # Panics
1367    ///
1368    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1369    #[inline]
1370    fn ge(&self, other: &RefCell<T>) -> bool {
1371        *self.borrow() >= *other.borrow()
1372    }
1373}
1374
1375#[stable(feature = "cell_ord", since = "1.10.0")]
1376impl<T: ?Sized + Ord> Ord for RefCell<T> {
1377    /// # Panics
1378    ///
1379    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1380    #[inline]
1381    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1382        self.borrow().cmp(&*other.borrow())
1383    }
1384}
1385
1386#[stable(feature = "cell_from", since = "1.12.0")]
1387impl<T> From<T> for RefCell<T> {
1388    /// Creates a new `RefCell<T>` containing the given value.
1389    fn from(t: T) -> RefCell<T> {
1390        RefCell::new(t)
1391    }
1392}
1393
1394#[unstable(feature = "coerce_unsized", issue = "18598")]
1395impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1396
1397struct BorrowRef<'b> {
1398    borrow: &'b Cell<BorrowCounter>,
1399}
1400
1401impl<'b> BorrowRef<'b> {
1402    #[inline]
1403    fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1404        let b = borrow.get().wrapping_add(1);
1405        if !is_reading(b) {
1406            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1407            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1408            //    due to Rust's reference aliasing rules
1409            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1410            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1411            //    an additional read borrow because isize can't represent so many read borrows
1412            //    (this can only happen if you mem::forget more than a small constant amount of
1413            //    `Ref`s, which is not good practice)
1414            None
1415        } else {
1416            // Incrementing borrow can result in a reading value (> 0) in these cases:
1417            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1418            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1419            //    is large enough to represent having one more read borrow
1420            borrow.set(b);
1421            Some(BorrowRef { borrow })
1422        }
1423    }
1424}
1425
1426impl Drop for BorrowRef<'_> {
1427    #[inline]
1428    fn drop(&mut self) {
1429        let borrow = self.borrow.get();
1430        debug_assert!(is_reading(borrow));
1431        self.borrow.set(borrow - 1);
1432    }
1433}
1434
1435impl Clone for BorrowRef<'_> {
1436    #[inline]
1437    fn clone(&self) -> Self {
1438        // Since this Ref exists, we know the borrow flag
1439        // is a reading borrow.
1440        let borrow = self.borrow.get();
1441        debug_assert!(is_reading(borrow));
1442        // Prevent the borrow counter from overflowing into
1443        // a writing borrow.
1444        assert!(borrow != BorrowCounter::MAX);
1445        self.borrow.set(borrow + 1);
1446        BorrowRef { borrow: self.borrow }
1447    }
1448}
1449
1450/// Wraps a borrowed reference to a value in a `RefCell` box.
1451/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1452///
1453/// See the [module-level documentation](self) for more.
1454#[stable(feature = "rust1", since = "1.0.0")]
1455#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1456#[rustc_diagnostic_item = "RefCellRef"]
1457pub struct Ref<'b, T: ?Sized + 'b> {
1458    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1459    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1460    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1461    value: NonNull<T>,
1462    borrow: BorrowRef<'b>,
1463}
1464
1465#[stable(feature = "rust1", since = "1.0.0")]
1466impl<T: ?Sized> Deref for Ref<'_, T> {
1467    type Target = T;
1468
1469    #[inline]
1470    fn deref(&self) -> &T {
1471        // SAFETY: the value is accessible as long as we hold our borrow.
1472        unsafe { self.value.as_ref() }
1473    }
1474}
1475
1476#[unstable(feature = "deref_pure_trait", issue = "87121")]
1477unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1478
1479impl<'b, T: ?Sized> Ref<'b, T> {
1480    /// Copies a `Ref`.
1481    ///
1482    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1483    ///
1484    /// This is an associated function that needs to be used as
1485    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1486    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1487    /// a `RefCell`.
1488    #[stable(feature = "cell_extras", since = "1.15.0")]
1489    #[must_use]
1490    #[inline]
1491    pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1492        Ref { value: orig.value, borrow: orig.borrow.clone() }
1493    }
1494
1495    /// Makes a new `Ref` for a component of the borrowed data.
1496    ///
1497    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1498    ///
1499    /// This is an associated function that needs to be used as `Ref::map(...)`.
1500    /// A method would interfere with methods of the same name on the contents
1501    /// of a `RefCell` used through `Deref`.
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```
1506    /// use std::cell::{RefCell, Ref};
1507    ///
1508    /// let c = RefCell::new((5, 'b'));
1509    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1510    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1511    /// assert_eq!(*b2, 5)
1512    /// ```
1513    #[stable(feature = "cell_map", since = "1.8.0")]
1514    #[inline]
1515    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1516    where
1517        F: FnOnce(&T) -> &U,
1518    {
1519        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1520    }
1521
1522    /// Makes a new `Ref` for an optional component of the borrowed data. The
1523    /// original guard is returned as an `Err(..)` if the closure returns
1524    /// `None`.
1525    ///
1526    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1527    ///
1528    /// This is an associated function that needs to be used as
1529    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1530    /// name on the contents of a `RefCell` used through `Deref`.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// use std::cell::{RefCell, Ref};
1536    ///
1537    /// let c = RefCell::new(vec![1, 2, 3]);
1538    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1539    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1540    /// assert_eq!(*b2.unwrap(), 2);
1541    /// ```
1542    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1543    #[inline]
1544    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1545    where
1546        F: FnOnce(&T) -> Option<&U>,
1547    {
1548        match f(&*orig) {
1549            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1550            None => Err(orig),
1551        }
1552    }
1553
1554    /// Splits a `Ref` into multiple `Ref`s for different components of the
1555    /// borrowed data.
1556    ///
1557    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1558    ///
1559    /// This is an associated function that needs to be used as
1560    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1561    /// name on the contents of a `RefCell` used through `Deref`.
1562    ///
1563    /// # Examples
1564    ///
1565    /// ```
1566    /// use std::cell::{Ref, RefCell};
1567    ///
1568    /// let cell = RefCell::new([1, 2, 3, 4]);
1569    /// let borrow = cell.borrow();
1570    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1571    /// assert_eq!(*begin, [1, 2]);
1572    /// assert_eq!(*end, [3, 4]);
1573    /// ```
1574    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1575    #[inline]
1576    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1577    where
1578        F: FnOnce(&T) -> (&U, &V),
1579    {
1580        let (a, b) = f(&*orig);
1581        let borrow = orig.borrow.clone();
1582        (
1583            Ref { value: NonNull::from(a), borrow },
1584            Ref { value: NonNull::from(b), borrow: orig.borrow },
1585        )
1586    }
1587
1588    /// Converts into a reference to the underlying data.
1589    ///
1590    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1591    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1592    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1593    /// have occurred in total.
1594    ///
1595    /// This is an associated function that needs to be used as
1596    /// `Ref::leak(...)`. A method would interfere with methods of the
1597    /// same name on the contents of a `RefCell` used through `Deref`.
1598    ///
1599    /// # Examples
1600    ///
1601    /// ```
1602    /// #![feature(cell_leak)]
1603    /// use std::cell::{RefCell, Ref};
1604    /// let cell = RefCell::new(0);
1605    ///
1606    /// let value = Ref::leak(cell.borrow());
1607    /// assert_eq!(*value, 0);
1608    ///
1609    /// assert!(cell.try_borrow().is_ok());
1610    /// assert!(cell.try_borrow_mut().is_err());
1611    /// ```
1612    #[unstable(feature = "cell_leak", issue = "69099")]
1613    pub fn leak(orig: Ref<'b, T>) -> &'b T {
1614        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1615        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1616        // unique reference to the borrowed RefCell. No further mutable references can be created
1617        // from the original cell.
1618        mem::forget(orig.borrow);
1619        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1620        unsafe { orig.value.as_ref() }
1621    }
1622}
1623
1624#[unstable(feature = "coerce_unsized", issue = "18598")]
1625impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1626
1627#[stable(feature = "std_guard_impls", since = "1.20.0")]
1628impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1630        (**self).fmt(f)
1631    }
1632}
1633
1634impl<'b, T: ?Sized> RefMut<'b, T> {
1635    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1636    /// variant.
1637    ///
1638    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1639    ///
1640    /// This is an associated function that needs to be used as
1641    /// `RefMut::map(...)`. A method would interfere with methods of the same
1642    /// name on the contents of a `RefCell` used through `Deref`.
1643    ///
1644    /// # Examples
1645    ///
1646    /// ```
1647    /// use std::cell::{RefCell, RefMut};
1648    ///
1649    /// let c = RefCell::new((5, 'b'));
1650    /// {
1651    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1652    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1653    ///     assert_eq!(*b2, 5);
1654    ///     *b2 = 42;
1655    /// }
1656    /// assert_eq!(*c.borrow(), (42, 'b'));
1657    /// ```
1658    #[stable(feature = "cell_map", since = "1.8.0")]
1659    #[inline]
1660    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1661    where
1662        F: FnOnce(&mut T) -> &mut U,
1663    {
1664        let value = NonNull::from(f(&mut *orig));
1665        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1666    }
1667
1668    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1669    /// original guard is returned as an `Err(..)` if the closure returns
1670    /// `None`.
1671    ///
1672    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1673    ///
1674    /// This is an associated function that needs to be used as
1675    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1676    /// same name on the contents of a `RefCell` used through `Deref`.
1677    ///
1678    /// # Examples
1679    ///
1680    /// ```
1681    /// use std::cell::{RefCell, RefMut};
1682    ///
1683    /// let c = RefCell::new(vec![1, 2, 3]);
1684    ///
1685    /// {
1686    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1687    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1688    ///
1689    ///     if let Ok(mut b2) = b2 {
1690    ///         *b2 += 2;
1691    ///     }
1692    /// }
1693    ///
1694    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1695    /// ```
1696    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1697    #[inline]
1698    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1699    where
1700        F: FnOnce(&mut T) -> Option<&mut U>,
1701    {
1702        // SAFETY: function holds onto an exclusive reference for the duration
1703        // of its call through `orig`, and the pointer is only de-referenced
1704        // inside of the function call never allowing the exclusive reference to
1705        // escape.
1706        match f(&mut *orig) {
1707            Some(value) => {
1708                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1709            }
1710            None => Err(orig),
1711        }
1712    }
1713
1714    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1715    /// borrowed data.
1716    ///
1717    /// The underlying `RefCell` will remain mutably borrowed until both
1718    /// returned `RefMut`s go out of scope.
1719    ///
1720    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1721    ///
1722    /// This is an associated function that needs to be used as
1723    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1724    /// same name on the contents of a `RefCell` used through `Deref`.
1725    ///
1726    /// # Examples
1727    ///
1728    /// ```
1729    /// use std::cell::{RefCell, RefMut};
1730    ///
1731    /// let cell = RefCell::new([1, 2, 3, 4]);
1732    /// let borrow = cell.borrow_mut();
1733    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1734    /// assert_eq!(*begin, [1, 2]);
1735    /// assert_eq!(*end, [3, 4]);
1736    /// begin.copy_from_slice(&[4, 3]);
1737    /// end.copy_from_slice(&[2, 1]);
1738    /// ```
1739    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1740    #[inline]
1741    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1742        mut orig: RefMut<'b, T>,
1743        f: F,
1744    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1745    where
1746        F: FnOnce(&mut T) -> (&mut U, &mut V),
1747    {
1748        let borrow = orig.borrow.clone();
1749        let (a, b) = f(&mut *orig);
1750        (
1751            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1752            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1753        )
1754    }
1755
1756    /// Converts into a mutable reference to the underlying data.
1757    ///
1758    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1759    /// mutably borrowed, making the returned reference the only to the interior.
1760    ///
1761    /// This is an associated function that needs to be used as
1762    /// `RefMut::leak(...)`. A method would interfere with methods of the
1763    /// same name on the contents of a `RefCell` used through `Deref`.
1764    ///
1765    /// # Examples
1766    ///
1767    /// ```
1768    /// #![feature(cell_leak)]
1769    /// use std::cell::{RefCell, RefMut};
1770    /// let cell = RefCell::new(0);
1771    ///
1772    /// let value = RefMut::leak(cell.borrow_mut());
1773    /// assert_eq!(*value, 0);
1774    /// *value = 1;
1775    ///
1776    /// assert!(cell.try_borrow_mut().is_err());
1777    /// ```
1778    #[unstable(feature = "cell_leak", issue = "69099")]
1779    pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1780        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1781        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1782        // require a unique reference to the borrowed RefCell. No further references can be created
1783        // from the original cell within that lifetime, making the current borrow the only
1784        // reference for the remaining lifetime.
1785        mem::forget(orig.borrow);
1786        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1787        unsafe { orig.value.as_mut() }
1788    }
1789}
1790
1791struct BorrowRefMut<'b> {
1792    borrow: &'b Cell<BorrowCounter>,
1793}
1794
1795impl Drop for BorrowRefMut<'_> {
1796    #[inline]
1797    fn drop(&mut self) {
1798        let borrow = self.borrow.get();
1799        debug_assert!(is_writing(borrow));
1800        self.borrow.set(borrow + 1);
1801    }
1802}
1803
1804impl<'b> BorrowRefMut<'b> {
1805    #[inline]
1806    fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
1807        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1808        // mutable reference, and so there must currently be no existing
1809        // references. Thus, while clone increments the mutable refcount, here
1810        // we explicitly only allow going from UNUSED to UNUSED - 1.
1811        match borrow.get() {
1812            UNUSED => {
1813                borrow.set(UNUSED - 1);
1814                Some(BorrowRefMut { borrow })
1815            }
1816            _ => None,
1817        }
1818    }
1819
1820    // Clones a `BorrowRefMut`.
1821    //
1822    // This is only valid if each `BorrowRefMut` is used to track a mutable
1823    // reference to a distinct, nonoverlapping range of the original object.
1824    // This isn't in a Clone impl so that code doesn't call this implicitly.
1825    #[inline]
1826    fn clone(&self) -> BorrowRefMut<'b> {
1827        let borrow = self.borrow.get();
1828        debug_assert!(is_writing(borrow));
1829        // Prevent the borrow counter from underflowing.
1830        assert!(borrow != BorrowCounter::MIN);
1831        self.borrow.set(borrow - 1);
1832        BorrowRefMut { borrow: self.borrow }
1833    }
1834}
1835
1836/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1837///
1838/// See the [module-level documentation](self) for more.
1839#[stable(feature = "rust1", since = "1.0.0")]
1840#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1841#[rustc_diagnostic_item = "RefCellRefMut"]
1842pub struct RefMut<'b, T: ?Sized + 'b> {
1843    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1844    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1845    value: NonNull<T>,
1846    borrow: BorrowRefMut<'b>,
1847    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1848    marker: PhantomData<&'b mut T>,
1849}
1850
1851#[stable(feature = "rust1", since = "1.0.0")]
1852impl<T: ?Sized> Deref for RefMut<'_, T> {
1853    type Target = T;
1854
1855    #[inline]
1856    fn deref(&self) -> &T {
1857        // SAFETY: the value is accessible as long as we hold our borrow.
1858        unsafe { self.value.as_ref() }
1859    }
1860}
1861
1862#[stable(feature = "rust1", since = "1.0.0")]
1863impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1864    #[inline]
1865    fn deref_mut(&mut self) -> &mut T {
1866        // SAFETY: the value is accessible as long as we hold our borrow.
1867        unsafe { self.value.as_mut() }
1868    }
1869}
1870
1871#[unstable(feature = "deref_pure_trait", issue = "87121")]
1872unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1873
1874#[unstable(feature = "coerce_unsized", issue = "18598")]
1875impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1876
1877#[stable(feature = "std_guard_impls", since = "1.20.0")]
1878impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1879    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1880        (**self).fmt(f)
1881    }
1882}
1883
1884/// The core primitive for interior mutability in Rust.
1885///
1886/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1887/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1888/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1889/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1890/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1891///
1892/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1893/// use `UnsafeCell` to wrap their data.
1894///
1895/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1896/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1897/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1898///
1899/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
1900/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
1901/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
1902/// [`core::sync::atomic`].
1903///
1904/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1905/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1906/// correctly.
1907///
1908/// [`.get()`]: `UnsafeCell::get`
1909/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
1910///
1911/// # Aliasing rules
1912///
1913/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1914///
1915/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1916/// you must not access the data in any way that contradicts that reference for the remainder of
1917/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1918/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1919/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1920/// T` reference that is released to safe code, then you must not access the data within the
1921/// `UnsafeCell` until that reference expires.
1922///
1923/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1924/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1925/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1926/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1927/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
1928/// *every part of it* (including padding) is inside an `UnsafeCell`.
1929///
1930///     However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1931/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1932/// memory has not yet been deallocated.
1933///
1934/// To assist with proper design, the following scenarios are explicitly declared legal
1935/// for single-threaded code:
1936///
1937/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1938/// references, but not with a `&mut T`
1939///
1940/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1941/// co-exist with it. A `&mut T` must always be unique.
1942///
1943/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1944/// `&UnsafeCell<T>` references alias the cell) is
1945/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1946/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1947/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1948/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1949/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1950/// may be aliased for the duration of that `&mut` borrow.
1951/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1952/// a `&mut T`.
1953///
1954/// [`.get_mut()`]: `UnsafeCell::get_mut`
1955///
1956/// # Memory layout
1957///
1958/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1959/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1960/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1961/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1962/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1963/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1964/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1965/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1966/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1967/// thus this can cause distortions in the type size in these cases.
1968///
1969/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1970/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
1971/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1972/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
1973/// same memory layout, the following is not allowed and undefined behavior:
1974///
1975/// ```rust,compile_fail
1976/// # use std::cell::UnsafeCell;
1977/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
1978///   let t = ptr as *const UnsafeCell<T> as *mut T;
1979///   // This is undefined behavior, because the `*mut T` pointer
1980///   // was not obtained through `.get()` nor `.raw_get()`:
1981///   unsafe { &mut *t }
1982/// }
1983/// ```
1984///
1985/// Instead, do this:
1986///
1987/// ```rust
1988/// # use std::cell::UnsafeCell;
1989/// // Safety: the caller must ensure that there are no references that
1990/// // point to the *contents* of the `UnsafeCell`.
1991/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
1992///   unsafe { &mut *ptr.get() }
1993/// }
1994/// ```
1995///
1996/// Converting in the other direction from a `&mut T`
1997/// to an `&UnsafeCell<T>` is allowed:
1998///
1999/// ```rust
2000/// # use std::cell::UnsafeCell;
2001/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2002///   let t = ptr as *mut T as *const UnsafeCell<T>;
2003///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2004///   unsafe { &*t }
2005/// }
2006/// ```
2007///
2008/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2009/// [`.raw_get()`]: `UnsafeCell::raw_get`
2010///
2011/// # Examples
2012///
2013/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2014/// there being multiple references aliasing the cell:
2015///
2016/// ```
2017/// use std::cell::UnsafeCell;
2018///
2019/// let x: UnsafeCell<i32> = 42.into();
2020/// // Get multiple / concurrent / shared references to the same `x`.
2021/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2022///
2023/// unsafe {
2024///     // SAFETY: within this scope there are no other references to `x`'s contents,
2025///     // so ours is effectively unique.
2026///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2027///     *p1_exclusive += 27; //                                     |
2028/// } // <---------- cannot go beyond this point -------------------+
2029///
2030/// unsafe {
2031///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2032///     // so we can have multiple shared accesses concurrently.
2033///     let p2_shared: &i32 = &*p2.get();
2034///     assert_eq!(*p2_shared, 42 + 27);
2035///     let p1_shared: &i32 = &*p1.get();
2036///     assert_eq!(*p1_shared, *p2_shared);
2037/// }
2038/// ```
2039///
2040/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2041/// implies exclusive access to its `T`:
2042///
2043/// ```rust
2044/// #![forbid(unsafe_code)] // with exclusive accesses,
2045///                         // `UnsafeCell` is a transparent no-op wrapper,
2046///                         // so no need for `unsafe` here.
2047/// use std::cell::UnsafeCell;
2048///
2049/// let mut x: UnsafeCell<i32> = 42.into();
2050///
2051/// // Get a compile-time-checked unique reference to `x`.
2052/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2053/// // With an exclusive reference, we can mutate the contents for free.
2054/// *p_unique.get_mut() = 0;
2055/// // Or, equivalently:
2056/// x = UnsafeCell::new(0);
2057///
2058/// // When we own the value, we can extract the contents for free.
2059/// let contents: i32 = x.into_inner();
2060/// assert_eq!(contents, 0);
2061/// ```
2062#[lang = "unsafe_cell"]
2063#[stable(feature = "rust1", since = "1.0.0")]
2064#[repr(transparent)]
2065#[rustc_pub_transparent]
2066pub struct UnsafeCell<T: ?Sized> {
2067    value: T,
2068}
2069
2070#[stable(feature = "rust1", since = "1.0.0")]
2071impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2072
2073impl<T> UnsafeCell<T> {
2074    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2075    /// value.
2076    ///
2077    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2078    ///
2079    /// # Examples
2080    ///
2081    /// ```
2082    /// use std::cell::UnsafeCell;
2083    ///
2084    /// let uc = UnsafeCell::new(5);
2085    /// ```
2086    #[stable(feature = "rust1", since = "1.0.0")]
2087    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2088    #[inline(always)]
2089    pub const fn new(value: T) -> UnsafeCell<T> {
2090        UnsafeCell { value }
2091    }
2092
2093    /// Unwraps the value, consuming the cell.
2094    ///
2095    /// # Examples
2096    ///
2097    /// ```
2098    /// use std::cell::UnsafeCell;
2099    ///
2100    /// let uc = UnsafeCell::new(5);
2101    ///
2102    /// let five = uc.into_inner();
2103    /// ```
2104    #[inline(always)]
2105    #[stable(feature = "rust1", since = "1.0.0")]
2106    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2107    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2108    pub const fn into_inner(self) -> T {
2109        self.value
2110    }
2111
2112    /// Replace the value in this `UnsafeCell` and return the old value.
2113    ///
2114    /// # Safety
2115    ///
2116    /// The caller must take care to avoid aliasing and data races.
2117    ///
2118    /// - It is Undefined Behavior to allow calls to race with
2119    ///   any other access to the wrapped value.
2120    /// - It is Undefined Behavior to call this while any other
2121    ///   reference(s) to the wrapped value are alive.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// #![feature(unsafe_cell_access)]
2127    /// use std::cell::UnsafeCell;
2128    ///
2129    /// let uc = UnsafeCell::new(5);
2130    ///
2131    /// let old = unsafe { uc.replace(10) };
2132    /// assert_eq!(old, 5);
2133    /// ```
2134    #[inline]
2135    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2136    pub const unsafe fn replace(&self, value: T) -> T {
2137        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2138        unsafe { ptr::replace(self.get(), value) }
2139    }
2140}
2141
2142impl<T: ?Sized> UnsafeCell<T> {
2143    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2144    ///
2145    /// # Examples
2146    ///
2147    /// ```
2148    /// use std::cell::UnsafeCell;
2149    ///
2150    /// let mut val = 42;
2151    /// let uc = UnsafeCell::from_mut(&mut val);
2152    ///
2153    /// *uc.get_mut() -= 1;
2154    /// assert_eq!(*uc.get_mut(), 41);
2155    /// ```
2156    #[inline(always)]
2157    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2158    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2159    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2160        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2161        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2162    }
2163
2164    /// Gets a mutable pointer to the wrapped value.
2165    ///
2166    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2167    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2168    /// caveats.
2169    ///
2170    /// # Examples
2171    ///
2172    /// ```
2173    /// use std::cell::UnsafeCell;
2174    ///
2175    /// let uc = UnsafeCell::new(5);
2176    ///
2177    /// let five = uc.get();
2178    /// ```
2179    #[inline(always)]
2180    #[stable(feature = "rust1", since = "1.0.0")]
2181    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2182    #[rustc_as_ptr]
2183    #[rustc_never_returns_null_ptr]
2184    pub const fn get(&self) -> *mut T {
2185        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2186        // #[repr(transparent)]. This exploits std's special status, there is
2187        // no guarantee for user code that this will work in future versions of the compiler!
2188        self as *const UnsafeCell<T> as *const T as *mut T
2189    }
2190
2191    /// Returns a mutable reference to the underlying data.
2192    ///
2193    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2194    /// guarantees that we possess the only reference.
2195    ///
2196    /// # Examples
2197    ///
2198    /// ```
2199    /// use std::cell::UnsafeCell;
2200    ///
2201    /// let mut c = UnsafeCell::new(5);
2202    /// *c.get_mut() += 1;
2203    ///
2204    /// assert_eq!(*c.get_mut(), 6);
2205    /// ```
2206    #[inline(always)]
2207    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2208    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2209    pub const fn get_mut(&mut self) -> &mut T {
2210        &mut self.value
2211    }
2212
2213    /// Gets a mutable pointer to the wrapped value.
2214    /// The difference from [`get`] is that this function accepts a raw pointer,
2215    /// which is useful to avoid the creation of temporary references.
2216    ///
2217    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2218    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2219    /// caveats.
2220    ///
2221    /// [`get`]: UnsafeCell::get()
2222    ///
2223    /// # Examples
2224    ///
2225    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2226    /// calling `get` would require creating a reference to uninitialized data:
2227    ///
2228    /// ```
2229    /// use std::cell::UnsafeCell;
2230    /// use std::mem::MaybeUninit;
2231    ///
2232    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2233    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2234    /// // avoid below which references to uninitialized data
2235    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2236    /// let uc = unsafe { m.assume_init() };
2237    ///
2238    /// assert_eq!(uc.into_inner(), 5);
2239    /// ```
2240    #[inline(always)]
2241    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2242    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2243    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2244    pub const fn raw_get(this: *const Self) -> *mut T {
2245        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2246        // #[repr(transparent)]. This exploits std's special status, there is
2247        // no guarantee for user code that this will work in future versions of the compiler!
2248        this as *const T as *mut T
2249    }
2250
2251    /// Get a shared reference to the value within the `UnsafeCell`.
2252    ///
2253    /// # Safety
2254    ///
2255    /// - It is Undefined Behavior to call this while any mutable
2256    ///   reference to the wrapped value is alive.
2257    /// - Mutating the wrapped value while the returned
2258    ///   reference is alive is Undefined Behavior.
2259    ///
2260    /// # Examples
2261    ///
2262    /// ```
2263    /// #![feature(unsafe_cell_access)]
2264    /// use std::cell::UnsafeCell;
2265    ///
2266    /// let uc = UnsafeCell::new(5);
2267    ///
2268    /// let val = unsafe { uc.as_ref_unchecked() };
2269    /// assert_eq!(val, &5);
2270    /// ```
2271    #[inline]
2272    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2273    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2274        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2275        unsafe { self.get().as_ref_unchecked() }
2276    }
2277
2278    /// Get an exclusive reference to the value within the `UnsafeCell`.
2279    ///
2280    /// # Safety
2281    ///
2282    /// - It is Undefined Behavior to call this while any other
2283    ///   reference(s) to the wrapped value are alive.
2284    /// - Mutating the wrapped value through other means while the
2285    ///   returned reference is alive is Undefined Behavior.
2286    ///
2287    /// # Examples
2288    ///
2289    /// ```
2290    /// #![feature(unsafe_cell_access)]
2291    /// use std::cell::UnsafeCell;
2292    ///
2293    /// let uc = UnsafeCell::new(5);
2294    ///
2295    /// unsafe { *uc.as_mut_unchecked() += 1; }
2296    /// assert_eq!(uc.into_inner(), 6);
2297    /// ```
2298    #[inline]
2299    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2300    #[allow(clippy::mut_from_ref)]
2301    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2302        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2303        unsafe { self.get().as_mut_unchecked() }
2304    }
2305}
2306
2307#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2308impl<T: Default> Default for UnsafeCell<T> {
2309    /// Creates an `UnsafeCell`, with the `Default` value for T.
2310    fn default() -> UnsafeCell<T> {
2311        UnsafeCell::new(Default::default())
2312    }
2313}
2314
2315#[stable(feature = "cell_from", since = "1.12.0")]
2316impl<T> From<T> for UnsafeCell<T> {
2317    /// Creates a new `UnsafeCell<T>` containing the given value.
2318    fn from(t: T) -> UnsafeCell<T> {
2319        UnsafeCell::new(t)
2320    }
2321}
2322
2323#[unstable(feature = "coerce_unsized", issue = "18598")]
2324impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2325
2326// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2327// and become dyn-compatible method receivers.
2328// Note that currently `UnsafeCell` itself cannot be a method receiver
2329// because it does not implement Deref.
2330// In other words:
2331// `self: UnsafeCell<&Self>` won't work
2332// `self: UnsafeCellWrapper<Self>` becomes possible
2333#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2334impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2335
2336#[unstable(feature = "pointer_like_trait", issue = "none")]
2337impl<T: PointerLike> PointerLike for UnsafeCell<T> {}
2338
2339/// [`UnsafeCell`], but [`Sync`].
2340///
2341/// This is just an `UnsafeCell`, except it implements `Sync`
2342/// if `T` implements `Sync`.
2343///
2344/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2345/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2346/// shared between threads, if that's intentional.
2347/// Providing proper synchronization is still the task of the user,
2348/// making this type just as unsafe to use.
2349///
2350/// See [`UnsafeCell`] for details.
2351#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2352#[repr(transparent)]
2353#[rustc_diagnostic_item = "SyncUnsafeCell"]
2354#[rustc_pub_transparent]
2355pub struct SyncUnsafeCell<T: ?Sized> {
2356    value: UnsafeCell<T>,
2357}
2358
2359#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2360unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2361
2362#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2363impl<T> SyncUnsafeCell<T> {
2364    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2365    #[inline]
2366    pub const fn new(value: T) -> Self {
2367        Self { value: UnsafeCell { value } }
2368    }
2369
2370    /// Unwraps the value, consuming the cell.
2371    #[inline]
2372    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2373    pub const fn into_inner(self) -> T {
2374        self.value.into_inner()
2375    }
2376}
2377
2378#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2379impl<T: ?Sized> SyncUnsafeCell<T> {
2380    /// Gets a mutable pointer to the wrapped value.
2381    ///
2382    /// This can be cast to a pointer of any kind.
2383    /// Ensure that the access is unique (no active references, mutable or not)
2384    /// when casting to `&mut T`, and ensure that there are no mutations
2385    /// or mutable aliases going on when casting to `&T`
2386    #[inline]
2387    #[rustc_as_ptr]
2388    #[rustc_never_returns_null_ptr]
2389    pub const fn get(&self) -> *mut T {
2390        self.value.get()
2391    }
2392
2393    /// Returns a mutable reference to the underlying data.
2394    ///
2395    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2396    /// guarantees that we possess the only reference.
2397    #[inline]
2398    pub const fn get_mut(&mut self) -> &mut T {
2399        self.value.get_mut()
2400    }
2401
2402    /// Gets a mutable pointer to the wrapped value.
2403    ///
2404    /// See [`UnsafeCell::get`] for details.
2405    #[inline]
2406    pub const fn raw_get(this: *const Self) -> *mut T {
2407        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2408        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2409        // See UnsafeCell::raw_get.
2410        this as *const T as *mut T
2411    }
2412}
2413
2414#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2415impl<T: Default> Default for SyncUnsafeCell<T> {
2416    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2417    fn default() -> SyncUnsafeCell<T> {
2418        SyncUnsafeCell::new(Default::default())
2419    }
2420}
2421
2422#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2423impl<T> From<T> for SyncUnsafeCell<T> {
2424    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2425    fn from(t: T) -> SyncUnsafeCell<T> {
2426        SyncUnsafeCell::new(t)
2427    }
2428}
2429
2430#[unstable(feature = "coerce_unsized", issue = "18598")]
2431//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2432impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2433
2434// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2435// and become dyn-compatible method receivers.
2436// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2437// because it does not implement Deref.
2438// In other words:
2439// `self: SyncUnsafeCell<&Self>` won't work
2440// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2441#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2442//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2443impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2444
2445#[unstable(feature = "pointer_like_trait", issue = "none")]
2446impl<T: PointerLike> PointerLike for SyncUnsafeCell<T> {}
2447
2448#[allow(unused)]
2449fn assert_coerce_unsized(
2450    a: UnsafeCell<&i32>,
2451    b: SyncUnsafeCell<&i32>,
2452    c: Cell<&i32>,
2453    d: RefCell<&i32>,
2454) {
2455    let _: UnsafeCell<&dyn Send> = a;
2456    let _: SyncUnsafeCell<&dyn Send> = b;
2457    let _: Cell<&dyn Send> = c;
2458    let _: RefCell<&dyn Send> = d;
2459}
2460
2461#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2462unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2463
2464#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2465unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2466
2467#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2468unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2469
2470#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2471unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2472
2473#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2474unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2475
2476#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2477unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}