core/num/
uint_macros.rs

1macro_rules! uint_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        SignedT = $SignedT:ident,
6
7        // These are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        MAX = $MaxV:literal,
14        rot = $rot:literal,
15        rot_op = $rot_op:literal,
16        rot_result = $rot_result:literal,
17        fsh_op = $fsh_op:literal,
18        fshl_result = $fshl_result:literal,
19        fshr_result = $fshr_result:literal,
20        swap_op = $swap_op:literal,
21        swapped = $swapped:literal,
22        reversed = $reversed:literal,
23        le_bytes = $le_bytes:literal,
24        be_bytes = $be_bytes:literal,
25        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
26        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
27        bound_condition = $bound_condition:literal,
28    ) => {
29        /// The smallest value that can be represented by this integer type.
30        ///
31        /// # Examples
32        ///
33        /// ```
34        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
35        /// ```
36        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
37        pub const MIN: Self = 0;
38
39        /// The largest value that can be represented by this integer type
40        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
41        ///
42        /// # Examples
43        ///
44        /// ```
45        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
46        /// ```
47        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
48        pub const MAX: Self = !0;
49
50        /// The size of this integer type in bits.
51        ///
52        /// # Examples
53        ///
54        /// ```
55        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
56        /// ```
57        #[stable(feature = "int_bits_const", since = "1.53.0")]
58        pub const BITS: u32 = Self::MAX.count_ones();
59
60        /// Returns the number of ones in the binary representation of `self`.
61        ///
62        /// # Examples
63        ///
64        /// ```
65        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
66        /// assert_eq!(n.count_ones(), 3);
67        ///
68        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
69        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
70        ///
71        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
72        /// assert_eq!(zero.count_ones(), 0);
73        /// ```
74        #[stable(feature = "rust1", since = "1.0.0")]
75        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
76        #[doc(alias = "popcount")]
77        #[doc(alias = "popcnt")]
78        #[must_use = "this returns the result of the operation, \
79                      without modifying the original"]
80        #[inline(always)]
81        pub const fn count_ones(self) -> u32 {
82            return intrinsics::ctpop(self);
83        }
84
85        /// Returns the number of zeros in the binary representation of `self`.
86        ///
87        /// # Examples
88        ///
89        /// ```
90        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
91        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
92        ///
93        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
94        /// assert_eq!(max.count_zeros(), 0);
95        /// ```
96        #[stable(feature = "rust1", since = "1.0.0")]
97        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
98        #[must_use = "this returns the result of the operation, \
99                      without modifying the original"]
100        #[inline(always)]
101        pub const fn count_zeros(self) -> u32 {
102            (!self).count_ones()
103        }
104
105        /// Returns the number of leading zeros in the binary representation of `self`.
106        ///
107        /// Depending on what you're doing with the value, you might also be interested in the
108        /// [`ilog2`] function which returns a consistent number, even if the type widens.
109        ///
110        /// # Examples
111        ///
112        /// ```
113        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
114        /// assert_eq!(n.leading_zeros(), 2);
115        ///
116        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
117        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
118        ///
119        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
120        /// assert_eq!(max.leading_zeros(), 0);
121        /// ```
122        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
123        #[stable(feature = "rust1", since = "1.0.0")]
124        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
125        #[must_use = "this returns the result of the operation, \
126                      without modifying the original"]
127        #[inline(always)]
128        pub const fn leading_zeros(self) -> u32 {
129            return intrinsics::ctlz(self as $ActualT);
130        }
131
132        /// Returns the number of trailing zeros in the binary representation
133        /// of `self`.
134        ///
135        /// # Examples
136        ///
137        /// ```
138        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
139        /// assert_eq!(n.trailing_zeros(), 3);
140        ///
141        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
142        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
143        ///
144        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
145        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
146        /// ```
147        #[stable(feature = "rust1", since = "1.0.0")]
148        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
149        #[must_use = "this returns the result of the operation, \
150                      without modifying the original"]
151        #[inline(always)]
152        pub const fn trailing_zeros(self) -> u32 {
153            return intrinsics::cttz(self);
154        }
155
156        /// Returns the number of leading ones in the binary representation of `self`.
157        ///
158        /// # Examples
159        ///
160        /// ```
161        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
162        /// assert_eq!(n.leading_ones(), 2);
163        ///
164        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
165        /// assert_eq!(zero.leading_ones(), 0);
166        ///
167        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
168        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
169        /// ```
170        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
171        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
172        #[must_use = "this returns the result of the operation, \
173                      without modifying the original"]
174        #[inline(always)]
175        pub const fn leading_ones(self) -> u32 {
176            (!self).leading_zeros()
177        }
178
179        /// Returns the number of trailing ones in the binary representation
180        /// of `self`.
181        ///
182        /// # Examples
183        ///
184        /// ```
185        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
186        /// assert_eq!(n.trailing_ones(), 3);
187        ///
188        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
189        /// assert_eq!(zero.trailing_ones(), 0);
190        ///
191        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
192        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
193        /// ```
194        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
195        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
196        #[must_use = "this returns the result of the operation, \
197                      without modifying the original"]
198        #[inline(always)]
199        pub const fn trailing_ones(self) -> u32 {
200            (!self).trailing_zeros()
201        }
202
203        /// Returns the minimum number of bits required to represent `self`.
204        ///
205        /// This method returns zero if `self` is zero.
206        ///
207        /// # Examples
208        ///
209        /// ```
210        /// #![feature(uint_bit_width)]
211        ///
212        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".bit_width(), 0);")]
213        #[doc = concat!("assert_eq!(0b111_", stringify!($SelfT), ".bit_width(), 3);")]
214        #[doc = concat!("assert_eq!(0b1110_", stringify!($SelfT), ".bit_width(), 4);")]
215        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.bit_width(), ", stringify!($BITS), ");")]
216        /// ```
217        #[unstable(feature = "uint_bit_width", issue = "142326")]
218        #[must_use = "this returns the result of the operation, \
219                      without modifying the original"]
220        #[inline(always)]
221        pub const fn bit_width(self) -> u32 {
222            Self::BITS - self.leading_zeros()
223        }
224
225        /// Returns `self` with only the most significant bit set, or `0` if
226        /// the input is `0`.
227        ///
228        /// # Examples
229        ///
230        /// ```
231        /// #![feature(isolate_most_least_significant_one)]
232        ///
233        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
234        ///
235        /// assert_eq!(n.isolate_highest_one(), 0b_01000000);
236        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_highest_one(), 0);")]
237        /// ```
238        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
239        #[must_use = "this returns the result of the operation, \
240                      without modifying the original"]
241        #[inline(always)]
242        pub const fn isolate_highest_one(self) -> Self {
243            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
244        }
245
246        /// Returns `self` with only the least significant bit set, or `0` if
247        /// the input is `0`.
248        ///
249        /// # Examples
250        ///
251        /// ```
252        /// #![feature(isolate_most_least_significant_one)]
253        ///
254        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
255        ///
256        /// assert_eq!(n.isolate_lowest_one(), 0b_00000100);
257        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_lowest_one(), 0);")]
258        /// ```
259        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
260        #[must_use = "this returns the result of the operation, \
261                      without modifying the original"]
262        #[inline(always)]
263        pub const fn isolate_lowest_one(self) -> Self {
264            self & self.wrapping_neg()
265        }
266
267        /// Returns the index of the highest bit set to one in `self`, or `None`
268        /// if `self` is `0`.
269        ///
270        /// # Examples
271        ///
272        /// ```
273        /// #![feature(int_lowest_highest_one)]
274        ///
275        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".highest_one(), None);")]
276        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".highest_one(), Some(0));")]
277        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".highest_one(), Some(4));")]
278        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".highest_one(), Some(4));")]
279        /// ```
280        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
281        #[must_use = "this returns the result of the operation, \
282                      without modifying the original"]
283        #[inline(always)]
284        pub const fn highest_one(self) -> Option<u32> {
285            match NonZero::new(self) {
286                Some(v) => Some(v.highest_one()),
287                None => None,
288            }
289        }
290
291        /// Returns the index of the lowest bit set to one in `self`, or `None`
292        /// if `self` is `0`.
293        ///
294        /// # Examples
295        ///
296        /// ```
297        /// #![feature(int_lowest_highest_one)]
298        ///
299        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".lowest_one(), None);")]
300        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".lowest_one(), Some(0));")]
301        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".lowest_one(), Some(4));")]
302        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".lowest_one(), Some(0));")]
303        /// ```
304        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
305        #[must_use = "this returns the result of the operation, \
306                      without modifying the original"]
307        #[inline(always)]
308        pub const fn lowest_one(self) -> Option<u32> {
309            match NonZero::new(self) {
310                Some(v) => Some(v.lowest_one()),
311                None => None,
312            }
313        }
314
315        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
316        ///
317        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
318        /// the same.
319        ///
320        /// # Examples
321        ///
322        /// ```
323        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
324        ///
325        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
326        /// ```
327        #[stable(feature = "integer_sign_cast", since = "1.87.0")]
328        #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
329        #[must_use = "this returns the result of the operation, \
330                      without modifying the original"]
331        #[inline(always)]
332        pub const fn cast_signed(self) -> $SignedT {
333            self as $SignedT
334        }
335
336        /// Shifts the bits to the left by a specified amount, `n`,
337        /// wrapping the truncated bits to the end of the resulting integer.
338        ///
339        /// `rotate_left(n)` is equivalent to applying `rotate_left(1)` a total of `n` times. In
340        /// particular, a rotation by the number of bits in `self` returns the input value
341        /// unchanged.
342        ///
343        /// Please note this isn't the same operation as the `<<` shifting operator!
344        ///
345        /// # Examples
346        ///
347        /// ```
348        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
349        #[doc = concat!("let m = ", $rot_result, ";")]
350        ///
351        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
352        #[doc = concat!("assert_eq!(n.rotate_left(1024), n);")]
353        /// ```
354        #[stable(feature = "rust1", since = "1.0.0")]
355        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
356        #[must_use = "this returns the result of the operation, \
357                      without modifying the original"]
358        #[inline(always)]
359        #[rustc_allow_const_fn_unstable(const_trait_impl)] // for the intrinsic fallback
360        pub const fn rotate_left(self, n: u32) -> Self {
361            return intrinsics::rotate_left(self, n);
362        }
363
364        /// Shifts the bits to the right by a specified amount, `n`,
365        /// wrapping the truncated bits to the beginning of the resulting
366        /// integer.
367        ///
368        /// `rotate_right(n)` is equivalent to applying `rotate_right(1)` a total of `n` times. In
369        /// particular, a rotation by the number of bits in `self` returns the input value
370        /// unchanged.
371        ///
372        /// Please note this isn't the same operation as the `>>` shifting operator!
373        ///
374        /// # Examples
375        ///
376        /// ```
377        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
378        #[doc = concat!("let m = ", $rot_op, ";")]
379        ///
380        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
381        #[doc = concat!("assert_eq!(n.rotate_right(1024), n);")]
382        /// ```
383        #[stable(feature = "rust1", since = "1.0.0")]
384        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
385        #[must_use = "this returns the result of the operation, \
386                      without modifying the original"]
387        #[inline(always)]
388        #[rustc_allow_const_fn_unstable(const_trait_impl)] // for the intrinsic fallback
389        pub const fn rotate_right(self, n: u32) -> Self {
390            return intrinsics::rotate_right(self, n);
391        }
392
393        /// Performs a left funnel shift (concatenates `self` with `rhs`, with `self`
394        /// making up the most significant half, then shifts the combined value left
395        /// by `n`, and most significant half is extracted to produce the result).
396        ///
397        /// Please note this isn't the same operation as the `<<` shifting operator or
398        /// [`rotate_left`](Self::rotate_left), although `a.funnel_shl(a, n)` is *equivalent*
399        /// to `a.rotate_left(n)`.
400        ///
401        /// # Panics
402        ///
403        /// If `n` is greater than or equal to the number of bits in `self`
404        ///
405        /// # Examples
406        ///
407        /// Basic usage:
408        ///
409        /// ```
410        /// #![feature(funnel_shifts)]
411        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
412        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
413        #[doc = concat!("let m = ", $fshl_result, ";")]
414        ///
415        #[doc = concat!("assert_eq!(a.funnel_shl(b, ", $rot, "), m);")]
416        /// ```
417        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
418        #[unstable(feature = "funnel_shifts", issue = "145686")]
419        #[must_use = "this returns the result of the operation, \
420                      without modifying the original"]
421        #[inline(always)]
422        pub const fn funnel_shl(self, rhs: Self, n: u32) -> Self {
423            assert!(n < Self::BITS, "attempt to funnel shift left with overflow");
424            // SAFETY: just checked that `shift` is in-range
425            unsafe { intrinsics::unchecked_funnel_shl(self, rhs, n) }
426        }
427
428        /// Performs a right funnel shift (concatenates `self` and `rhs`, with `self`
429        /// making up the most significant half, then shifts the combined value right
430        /// by `n`, and least significant half is extracted to produce the result).
431        ///
432        /// Please note this isn't the same operation as the `>>` shifting operator or
433        /// [`rotate_right`](Self::rotate_right), although `a.funnel_shr(a, n)` is *equivalent*
434        /// to `a.rotate_right(n)`.
435        ///
436        /// # Panics
437        ///
438        /// If `n` is greater than or equal to the number of bits in `self`
439        ///
440        /// # Examples
441        ///
442        /// Basic usage:
443        ///
444        /// ```
445        /// #![feature(funnel_shifts)]
446        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
447        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
448        #[doc = concat!("let m = ", $fshr_result, ";")]
449        ///
450        #[doc = concat!("assert_eq!(a.funnel_shr(b, ", $rot, "), m);")]
451        /// ```
452        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
453        #[unstable(feature = "funnel_shifts", issue = "145686")]
454        #[must_use = "this returns the result of the operation, \
455                      without modifying the original"]
456        #[inline(always)]
457        pub const fn funnel_shr(self, rhs: Self, n: u32) -> Self {
458            assert!(n < Self::BITS, "attempt to funnel shift right with overflow");
459            // SAFETY: just checked that `shift` is in-range
460            unsafe { intrinsics::unchecked_funnel_shr(self, rhs, n) }
461        }
462
463        /// Reverses the byte order of the integer.
464        ///
465        /// # Examples
466        ///
467        /// ```
468        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
469        /// let m = n.swap_bytes();
470        ///
471        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
472        /// ```
473        #[stable(feature = "rust1", since = "1.0.0")]
474        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
475        #[must_use = "this returns the result of the operation, \
476                      without modifying the original"]
477        #[inline(always)]
478        pub const fn swap_bytes(self) -> Self {
479            intrinsics::bswap(self as $ActualT) as Self
480        }
481
482        /// Returns an integer with the bit locations specified by `mask` packed
483        /// contiguously into the least significant bits of the result.
484        /// ```
485        /// #![feature(uint_gather_scatter_bits)]
486        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b1011_1100;")]
487        ///
488        /// assert_eq!(n.gather_bits(0b0010_0100), 0b0000_0011);
489        /// assert_eq!(n.gather_bits(0xF0), 0b0000_1011);
490        /// ```
491        #[unstable(feature = "uint_gather_scatter_bits", issue = "149069")]
492        #[must_use = "this returns the result of the operation, \
493                      without modifying the original"]
494        #[inline]
495        pub const fn gather_bits(self, mask: Self) -> Self {
496            crate::num::int_bits::$ActualT::gather_impl(self as $ActualT, mask as $ActualT) as $SelfT
497        }
498
499        /// Returns an integer with the least significant bits of `self`
500        /// distributed to the bit locations specified by `mask`.
501        /// ```
502        /// #![feature(uint_gather_scatter_bits)]
503        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b1010_1101;")]
504        ///
505        /// assert_eq!(n.scatter_bits(0b0101_0101), 0b0101_0001);
506        /// assert_eq!(n.scatter_bits(0xF0), 0b1101_0000);
507        /// ```
508        #[unstable(feature = "uint_gather_scatter_bits", issue = "149069")]
509        #[must_use = "this returns the result of the operation, \
510                      without modifying the original"]
511        #[inline]
512        pub const fn scatter_bits(self, mask: Self) -> Self {
513            crate::num::int_bits::$ActualT::scatter_impl(self as $ActualT, mask as $ActualT) as $SelfT
514        }
515
516        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
517        ///                 second least-significant bit becomes second most-significant bit, etc.
518        ///
519        /// # Examples
520        ///
521        /// ```
522        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
523        /// let m = n.reverse_bits();
524        ///
525        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
526        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
527        /// ```
528        #[stable(feature = "reverse_bits", since = "1.37.0")]
529        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
530        #[must_use = "this returns the result of the operation, \
531                      without modifying the original"]
532        #[inline(always)]
533        pub const fn reverse_bits(self) -> Self {
534            intrinsics::bitreverse(self as $ActualT) as Self
535        }
536
537        /// Converts an integer from big endian to the target's endianness.
538        ///
539        /// On big endian this is a no-op. On little endian the bytes are
540        /// swapped.
541        ///
542        /// # Examples
543        ///
544        /// ```
545        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
546        ///
547        /// if cfg!(target_endian = "big") {
548        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
549        /// } else {
550        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
551        /// }
552        /// ```
553        #[stable(feature = "rust1", since = "1.0.0")]
554        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
555        #[must_use]
556        #[inline(always)]
557        pub const fn from_be(x: Self) -> Self {
558            #[cfg(target_endian = "big")]
559            {
560                x
561            }
562            #[cfg(not(target_endian = "big"))]
563            {
564                x.swap_bytes()
565            }
566        }
567
568        /// Converts an integer from little endian to the target's endianness.
569        ///
570        /// On little endian this is a no-op. On big endian the bytes are
571        /// swapped.
572        ///
573        /// # Examples
574        ///
575        /// ```
576        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
577        ///
578        /// if cfg!(target_endian = "little") {
579        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
580        /// } else {
581        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
582        /// }
583        /// ```
584        #[stable(feature = "rust1", since = "1.0.0")]
585        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
586        #[must_use]
587        #[inline(always)]
588        pub const fn from_le(x: Self) -> Self {
589            #[cfg(target_endian = "little")]
590            {
591                x
592            }
593            #[cfg(not(target_endian = "little"))]
594            {
595                x.swap_bytes()
596            }
597        }
598
599        /// Converts `self` to big endian from the target's endianness.
600        ///
601        /// On big endian this is a no-op. On little endian the bytes are
602        /// swapped.
603        ///
604        /// # Examples
605        ///
606        /// ```
607        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
608        ///
609        /// if cfg!(target_endian = "big") {
610        ///     assert_eq!(n.to_be(), n)
611        /// } else {
612        ///     assert_eq!(n.to_be(), n.swap_bytes())
613        /// }
614        /// ```
615        #[stable(feature = "rust1", since = "1.0.0")]
616        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
617        #[must_use = "this returns the result of the operation, \
618                      without modifying the original"]
619        #[inline(always)]
620        pub const fn to_be(self) -> Self { // or not to be?
621            #[cfg(target_endian = "big")]
622            {
623                self
624            }
625            #[cfg(not(target_endian = "big"))]
626            {
627                self.swap_bytes()
628            }
629        }
630
631        /// Converts `self` to little endian from the target's endianness.
632        ///
633        /// On little endian this is a no-op. On big endian the bytes are
634        /// swapped.
635        ///
636        /// # Examples
637        ///
638        /// ```
639        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
640        ///
641        /// if cfg!(target_endian = "little") {
642        ///     assert_eq!(n.to_le(), n)
643        /// } else {
644        ///     assert_eq!(n.to_le(), n.swap_bytes())
645        /// }
646        /// ```
647        #[stable(feature = "rust1", since = "1.0.0")]
648        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
649        #[must_use = "this returns the result of the operation, \
650                      without modifying the original"]
651        #[inline(always)]
652        pub const fn to_le(self) -> Self {
653            #[cfg(target_endian = "little")]
654            {
655                self
656            }
657            #[cfg(not(target_endian = "little"))]
658            {
659                self.swap_bytes()
660            }
661        }
662
663        /// Checked integer addition. Computes `self + rhs`, returning `None`
664        /// if overflow occurred.
665        ///
666        /// # Examples
667        ///
668        /// ```
669        #[doc = concat!(
670            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
671            "Some(", stringify!($SelfT), "::MAX - 1));"
672        )]
673        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
674        /// ```
675        #[stable(feature = "rust1", since = "1.0.0")]
676        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
677        #[must_use = "this returns the result of the operation, \
678                      without modifying the original"]
679        #[inline]
680        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
681            // This used to use `overflowing_add`, but that means it ends up being
682            // a `wrapping_add`, losing some optimization opportunities. Notably,
683            // phrasing it this way helps `.checked_add(1)` optimize to a check
684            // against `MAX` and a `add nuw`.
685            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
686            // LLVM is happy to re-form the intrinsic later if useful.
687
688            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
689                None
690            } else {
691                // SAFETY: Just checked it doesn't overflow
692                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
693            }
694        }
695
696        /// Strict integer addition. Computes `self + rhs`, panicking
697        /// if overflow occurred.
698        ///
699        /// # Panics
700        ///
701        /// ## Overflow behavior
702        ///
703        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
704        ///
705        /// # Examples
706        ///
707        /// ```
708        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
709        /// ```
710        ///
711        /// The following panics because of overflow:
712        ///
713        /// ```should_panic
714        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
715        /// ```
716        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
717        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
718        #[must_use = "this returns the result of the operation, \
719                      without modifying the original"]
720        #[inline]
721        #[track_caller]
722        pub const fn strict_add(self, rhs: Self) -> Self {
723            let (a, b) = self.overflowing_add(rhs);
724            if b { overflow_panic::add() } else { a }
725        }
726
727        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
728        /// cannot occur.
729        ///
730        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
731        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
732        ///
733        /// If you're just trying to avoid the panic in debug mode, then **do not**
734        /// use this.  Instead, you're looking for [`wrapping_add`].
735        ///
736        /// # Safety
737        ///
738        /// This results in undefined behavior when
739        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
740        /// i.e. when [`checked_add`] would return `None`.
741        ///
742        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
743        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
744        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
745        #[stable(feature = "unchecked_math", since = "1.79.0")]
746        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
747        #[must_use = "this returns the result of the operation, \
748                      without modifying the original"]
749        #[inline(always)]
750        #[track_caller]
751        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
752            assert_unsafe_precondition!(
753                check_language_ub,
754                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
755                (
756                    lhs: $SelfT = self,
757                    rhs: $SelfT = rhs,
758                ) => !lhs.overflowing_add(rhs).1,
759            );
760
761            // SAFETY: this is guaranteed to be safe by the caller.
762            unsafe {
763                intrinsics::unchecked_add(self, rhs)
764            }
765        }
766
767        /// Checked addition with a signed integer. Computes `self + rhs`,
768        /// returning `None` if overflow occurred.
769        ///
770        /// # Examples
771        ///
772        /// ```
773        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
774        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
775        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
776        /// ```
777        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
778        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
779        #[must_use = "this returns the result of the operation, \
780                      without modifying the original"]
781        #[inline]
782        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
783            let (a, b) = self.overflowing_add_signed(rhs);
784            if intrinsics::unlikely(b) { None } else { Some(a) }
785        }
786
787        /// Strict addition with a signed integer. Computes `self + rhs`,
788        /// panicking if overflow occurred.
789        ///
790        /// # Panics
791        ///
792        /// ## Overflow behavior
793        ///
794        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
795        ///
796        /// # Examples
797        ///
798        /// ```
799        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
800        /// ```
801        ///
802        /// The following panic because of overflow:
803        ///
804        /// ```should_panic
805        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
806        /// ```
807        ///
808        /// ```should_panic
809        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
810        /// ```
811        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
812        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
813        #[must_use = "this returns the result of the operation, \
814                      without modifying the original"]
815        #[inline]
816        #[track_caller]
817        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
818            let (a, b) = self.overflowing_add_signed(rhs);
819            if b { overflow_panic::add() } else { a }
820        }
821
822        /// Checked integer subtraction. Computes `self - rhs`, returning
823        /// `None` if overflow occurred.
824        ///
825        /// # Examples
826        ///
827        /// ```
828        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
829        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
830        /// ```
831        #[stable(feature = "rust1", since = "1.0.0")]
832        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
833        #[must_use = "this returns the result of the operation, \
834                      without modifying the original"]
835        #[inline]
836        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
837            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
838            // for *unsigned* subtraction and we just emit the manual check anyway.
839            // Thus, rather than using `overflowing_sub` that produces a wrapping
840            // subtraction, check it ourself so we can use an unchecked one.
841
842            if self < rhs {
843                None
844            } else {
845                // SAFETY: just checked this can't overflow
846                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
847            }
848        }
849
850        /// Strict integer subtraction. Computes `self - rhs`, panicking if
851        /// overflow occurred.
852        ///
853        /// # Panics
854        ///
855        /// ## Overflow behavior
856        ///
857        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
858        ///
859        /// # Examples
860        ///
861        /// ```
862        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
863        /// ```
864        ///
865        /// The following panics because of overflow:
866        ///
867        /// ```should_panic
868        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
869        /// ```
870        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
871        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
872        #[must_use = "this returns the result of the operation, \
873                      without modifying the original"]
874        #[inline]
875        #[track_caller]
876        pub const fn strict_sub(self, rhs: Self) -> Self {
877            let (a, b) = self.overflowing_sub(rhs);
878            if b { overflow_panic::sub() } else { a }
879        }
880
881        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
882        /// cannot occur.
883        ///
884        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
885        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
886        ///
887        /// If you're just trying to avoid the panic in debug mode, then **do not**
888        /// use this.  Instead, you're looking for [`wrapping_sub`].
889        ///
890        /// If you find yourself writing code like this:
891        ///
892        /// ```
893        /// # let foo = 30_u32;
894        /// # let bar = 20;
895        /// if foo >= bar {
896        ///     // SAFETY: just checked it will not overflow
897        ///     let diff = unsafe { foo.unchecked_sub(bar) };
898        ///     // ... use diff ...
899        /// }
900        /// ```
901        ///
902        /// Consider changing it to
903        ///
904        /// ```
905        /// # let foo = 30_u32;
906        /// # let bar = 20;
907        /// if let Some(diff) = foo.checked_sub(bar) {
908        ///     // ... use diff ...
909        /// }
910        /// ```
911        ///
912        /// As that does exactly the same thing -- including telling the optimizer
913        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
914        ///
915        /// # Safety
916        ///
917        /// This results in undefined behavior when
918        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
919        /// i.e. when [`checked_sub`] would return `None`.
920        ///
921        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
922        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
923        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
924        #[stable(feature = "unchecked_math", since = "1.79.0")]
925        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
926        #[must_use = "this returns the result of the operation, \
927                      without modifying the original"]
928        #[inline(always)]
929        #[track_caller]
930        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
931            assert_unsafe_precondition!(
932                check_language_ub,
933                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
934                (
935                    lhs: $SelfT = self,
936                    rhs: $SelfT = rhs,
937                ) => !lhs.overflowing_sub(rhs).1,
938            );
939
940            // SAFETY: this is guaranteed to be safe by the caller.
941            unsafe {
942                intrinsics::unchecked_sub(self, rhs)
943            }
944        }
945
946        /// Checked subtraction with a signed integer. Computes `self - rhs`,
947        /// returning `None` if overflow occurred.
948        ///
949        /// # Examples
950        ///
951        /// ```
952        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
953        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
954        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
955        /// ```
956        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
957        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
958        #[must_use = "this returns the result of the operation, \
959                      without modifying the original"]
960        #[inline]
961        pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
962            let (res, overflow) = self.overflowing_sub_signed(rhs);
963
964            if !overflow {
965                Some(res)
966            } else {
967                None
968            }
969        }
970
971        /// Strict subtraction with a signed integer. Computes `self - rhs`,
972        /// panicking if overflow occurred.
973        ///
974        /// # Panics
975        ///
976        /// ## Overflow behavior
977        ///
978        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
979        ///
980        /// # Examples
981        ///
982        /// ```
983        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".strict_sub_signed(2), 1);")]
984        /// ```
985        ///
986        /// The following panic because of overflow:
987        ///
988        /// ```should_panic
989        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_sub_signed(2);")]
990        /// ```
991        ///
992        /// ```should_panic
993        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX).strict_sub_signed(-1);")]
994        /// ```
995        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
996        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
997        #[must_use = "this returns the result of the operation, \
998                      without modifying the original"]
999        #[inline]
1000        #[track_caller]
1001        pub const fn strict_sub_signed(self, rhs: $SignedT) -> Self {
1002            let (a, b) = self.overflowing_sub_signed(rhs);
1003            if b { overflow_panic::sub() } else { a }
1004        }
1005
1006        #[doc = concat!(
1007            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
1008            stringify!($SignedT), "`], returning `None` if overflow occurred."
1009        )]
1010        ///
1011        /// # Examples
1012        ///
1013        /// ```
1014        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
1015        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
1016        #[doc = concat!(
1017            "assert_eq!(",
1018            stringify!($SelfT),
1019            "::MAX.checked_signed_diff(",
1020            stringify!($SignedT),
1021            "::MAX as ",
1022            stringify!($SelfT),
1023            "), None);"
1024        )]
1025        #[doc = concat!(
1026            "assert_eq!((",
1027            stringify!($SignedT),
1028            "::MAX as ",
1029            stringify!($SelfT),
1030            ").checked_signed_diff(",
1031            stringify!($SelfT),
1032            "::MAX), Some(",
1033            stringify!($SignedT),
1034            "::MIN));"
1035        )]
1036        #[doc = concat!(
1037            "assert_eq!((",
1038            stringify!($SignedT),
1039            "::MAX as ",
1040            stringify!($SelfT),
1041            " + 1).checked_signed_diff(0), None);"
1042        )]
1043        #[doc = concat!(
1044            "assert_eq!(",
1045            stringify!($SelfT),
1046            "::MAX.checked_signed_diff(",
1047            stringify!($SelfT),
1048            "::MAX), Some(0));"
1049        )]
1050        /// ```
1051        #[stable(feature = "unsigned_signed_diff", since = "1.91.0")]
1052        #[rustc_const_stable(feature = "unsigned_signed_diff", since = "1.91.0")]
1053        #[inline]
1054        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
1055            let res = self.wrapping_sub(rhs) as $SignedT;
1056            let overflow = (self >= rhs) == (res < 0);
1057
1058            if !overflow {
1059                Some(res)
1060            } else {
1061                None
1062            }
1063        }
1064
1065        /// Checked integer multiplication. Computes `self * rhs`, returning
1066        /// `None` if overflow occurred.
1067        ///
1068        /// # Examples
1069        ///
1070        /// ```
1071        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
1072        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
1073        /// ```
1074        #[stable(feature = "rust1", since = "1.0.0")]
1075        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1076        #[must_use = "this returns the result of the operation, \
1077                      without modifying the original"]
1078        #[inline]
1079        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
1080            let (a, b) = self.overflowing_mul(rhs);
1081            if intrinsics::unlikely(b) { None } else { Some(a) }
1082        }
1083
1084        /// Strict integer multiplication. Computes `self * rhs`, panicking if
1085        /// overflow occurred.
1086        ///
1087        /// # Panics
1088        ///
1089        /// ## Overflow behavior
1090        ///
1091        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1092        ///
1093        /// # Examples
1094        ///
1095        /// ```
1096        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
1097        /// ```
1098        ///
1099        /// The following panics because of overflow:
1100        ///
1101        /// ``` should_panic
1102        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
1103        /// ```
1104        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1105        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1106        #[must_use = "this returns the result of the operation, \
1107                      without modifying the original"]
1108        #[inline]
1109        #[track_caller]
1110        pub const fn strict_mul(self, rhs: Self) -> Self {
1111            let (a, b) = self.overflowing_mul(rhs);
1112            if b { overflow_panic::mul() } else { a }
1113        }
1114
1115        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
1116        /// cannot occur.
1117        ///
1118        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
1119        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
1120        ///
1121        /// If you're just trying to avoid the panic in debug mode, then **do not**
1122        /// use this.  Instead, you're looking for [`wrapping_mul`].
1123        ///
1124        /// # Safety
1125        ///
1126        /// This results in undefined behavior when
1127        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
1128        /// i.e. when [`checked_mul`] would return `None`.
1129        ///
1130        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
1131        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
1132        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
1133        #[stable(feature = "unchecked_math", since = "1.79.0")]
1134        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
1135        #[must_use = "this returns the result of the operation, \
1136                      without modifying the original"]
1137        #[inline(always)]
1138        #[track_caller]
1139        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
1140            assert_unsafe_precondition!(
1141                check_language_ub,
1142                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
1143                (
1144                    lhs: $SelfT = self,
1145                    rhs: $SelfT = rhs,
1146                ) => !lhs.overflowing_mul(rhs).1,
1147            );
1148
1149            // SAFETY: this is guaranteed to be safe by the caller.
1150            unsafe {
1151                intrinsics::unchecked_mul(self, rhs)
1152            }
1153        }
1154
1155        /// Checked integer division. Computes `self / rhs`, returning `None`
1156        /// if `rhs == 0`.
1157        ///
1158        /// # Examples
1159        ///
1160        /// ```
1161        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
1162        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
1163        /// ```
1164        #[stable(feature = "rust1", since = "1.0.0")]
1165        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1166        #[must_use = "this returns the result of the operation, \
1167                      without modifying the original"]
1168        #[inline]
1169        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
1170            if intrinsics::unlikely(rhs == 0) {
1171                None
1172            } else {
1173                // SAFETY: div by zero has been checked above and unsigned types have no other
1174                // failure modes for division
1175                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
1176            }
1177        }
1178
1179        /// Strict integer division. Computes `self / rhs`.
1180        ///
1181        /// Strict division on unsigned types is just normal division. There's no
1182        /// way overflow could ever happen. This function exists so that all
1183        /// operations are accounted for in the strict operations.
1184        ///
1185        /// # Panics
1186        ///
1187        /// This function will panic if `rhs` is zero.
1188        ///
1189        /// # Examples
1190        ///
1191        /// ```
1192        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
1193        /// ```
1194        ///
1195        /// The following panics because of division by zero:
1196        ///
1197        /// ```should_panic
1198        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
1199        /// ```
1200        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1201        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1202        #[must_use = "this returns the result of the operation, \
1203                      without modifying the original"]
1204        #[inline(always)]
1205        #[track_caller]
1206        pub const fn strict_div(self, rhs: Self) -> Self {
1207            self / rhs
1208        }
1209
1210        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
1211        /// if `rhs == 0`.
1212        ///
1213        /// # Examples
1214        ///
1215        /// ```
1216        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
1217        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
1218        /// ```
1219        #[stable(feature = "euclidean_division", since = "1.38.0")]
1220        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1221        #[must_use = "this returns the result of the operation, \
1222                      without modifying the original"]
1223        #[inline]
1224        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
1225            if intrinsics::unlikely(rhs == 0) {
1226                None
1227            } else {
1228                Some(self.div_euclid(rhs))
1229            }
1230        }
1231
1232        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
1233        ///
1234        /// Strict division on unsigned types is just normal division. There's no
1235        /// way overflow could ever happen. This function exists so that all
1236        /// operations are accounted for in the strict operations. Since, for the
1237        /// positive integers, all common definitions of division are equal, this
1238        /// is exactly equal to `self.strict_div(rhs)`.
1239        ///
1240        /// # Panics
1241        ///
1242        /// This function will panic if `rhs` is zero.
1243        ///
1244        /// # Examples
1245        ///
1246        /// ```
1247        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
1248        /// ```
1249        /// The following panics because of division by zero:
1250        ///
1251        /// ```should_panic
1252        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1253        /// ```
1254        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1255        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1256        #[must_use = "this returns the result of the operation, \
1257                      without modifying the original"]
1258        #[inline(always)]
1259        #[track_caller]
1260        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1261            self / rhs
1262        }
1263
1264        /// Checked integer division without remainder. Computes `self / rhs`,
1265        /// returning `None` if `rhs == 0` or if `self % rhs != 0`.
1266        ///
1267        /// # Examples
1268        ///
1269        /// ```
1270        /// #![feature(exact_div)]
1271        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(2), Some(32));")]
1272        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(32), Some(2));")]
1273        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(0), None);")]
1274        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".checked_div_exact(2), None);")]
1275        /// ```
1276        #[unstable(
1277            feature = "exact_div",
1278            issue = "139911",
1279        )]
1280        #[must_use = "this returns the result of the operation, \
1281                      without modifying the original"]
1282        #[inline]
1283        pub const fn checked_div_exact(self, rhs: Self) -> Option<Self> {
1284            if intrinsics::unlikely(rhs == 0) {
1285                None
1286            } else {
1287                // SAFETY: division by zero is checked above
1288                unsafe {
1289                    if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1290                        None
1291                    } else {
1292                        Some(intrinsics::exact_div(self, rhs))
1293                    }
1294                }
1295            }
1296        }
1297
1298        /// Integer division without remainder. Computes `self / rhs`, returning `None` if `self % rhs != 0`.
1299        ///
1300        /// # Panics
1301        ///
1302        /// This function will panic  if `rhs == 0`.
1303        ///
1304        /// # Examples
1305        ///
1306        /// ```
1307        /// #![feature(exact_div)]
1308        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(2), Some(32));")]
1309        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(32), Some(2));")]
1310        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".div_exact(2), None);")]
1311        /// ```
1312        #[unstable(
1313            feature = "exact_div",
1314            issue = "139911",
1315        )]
1316        #[must_use = "this returns the result of the operation, \
1317                      without modifying the original"]
1318        #[inline]
1319        #[rustc_inherit_overflow_checks]
1320        pub const fn div_exact(self, rhs: Self) -> Option<Self> {
1321            if self % rhs != 0 {
1322                None
1323            } else {
1324                Some(self / rhs)
1325            }
1326        }
1327
1328        /// Unchecked integer division without remainder. Computes `self / rhs`.
1329        ///
1330        /// # Safety
1331        ///
1332        /// This results in undefined behavior when `rhs == 0` or `self % rhs != 0`,
1333        /// i.e. when [`checked_div_exact`](Self::checked_div_exact) would return `None`.
1334        #[unstable(
1335            feature = "exact_div",
1336            issue = "139911",
1337        )]
1338        #[must_use = "this returns the result of the operation, \
1339                      without modifying the original"]
1340        #[inline]
1341        pub const unsafe fn unchecked_div_exact(self, rhs: Self) -> Self {
1342            assert_unsafe_precondition!(
1343                check_language_ub,
1344                concat!(stringify!($SelfT), "::unchecked_div_exact divide by zero or leave a remainder"),
1345                (
1346                    lhs: $SelfT = self,
1347                    rhs: $SelfT = rhs,
1348                ) => rhs > 0 && lhs % rhs == 0,
1349            );
1350            // SAFETY: Same precondition
1351            unsafe { intrinsics::exact_div(self, rhs) }
1352        }
1353
1354        /// Checked integer remainder. Computes `self % rhs`, returning `None`
1355        /// if `rhs == 0`.
1356        ///
1357        /// # Examples
1358        ///
1359        /// ```
1360        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1361        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1362        /// ```
1363        #[stable(feature = "wrapping", since = "1.7.0")]
1364        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1365        #[must_use = "this returns the result of the operation, \
1366                      without modifying the original"]
1367        #[inline]
1368        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1369            if intrinsics::unlikely(rhs == 0) {
1370                None
1371            } else {
1372                // SAFETY: div by zero has been checked above and unsigned types have no other
1373                // failure modes for division
1374                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1375            }
1376        }
1377
1378        /// Strict integer remainder. Computes `self % rhs`.
1379        ///
1380        /// Strict remainder calculation on unsigned types is just the regular
1381        /// remainder calculation. There's no way overflow could ever happen.
1382        /// This function exists so that all operations are accounted for in the
1383        /// strict operations.
1384        ///
1385        /// # Panics
1386        ///
1387        /// This function will panic if `rhs` is zero.
1388        ///
1389        /// # Examples
1390        ///
1391        /// ```
1392        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
1393        /// ```
1394        ///
1395        /// The following panics because of division by zero:
1396        ///
1397        /// ```should_panic
1398        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1399        /// ```
1400        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1401        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1402        #[must_use = "this returns the result of the operation, \
1403                      without modifying the original"]
1404        #[inline(always)]
1405        #[track_caller]
1406        pub const fn strict_rem(self, rhs: Self) -> Self {
1407            self % rhs
1408        }
1409
1410        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
1411        /// if `rhs == 0`.
1412        ///
1413        /// # Examples
1414        ///
1415        /// ```
1416        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1417        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1418        /// ```
1419        #[stable(feature = "euclidean_division", since = "1.38.0")]
1420        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1421        #[must_use = "this returns the result of the operation, \
1422                      without modifying the original"]
1423        #[inline]
1424        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1425            if intrinsics::unlikely(rhs == 0) {
1426                None
1427            } else {
1428                Some(self.rem_euclid(rhs))
1429            }
1430        }
1431
1432        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
1433        ///
1434        /// Strict modulo calculation on unsigned types is just the regular
1435        /// remainder calculation. There's no way overflow could ever happen.
1436        /// This function exists so that all operations are accounted for in the
1437        /// strict operations. Since, for the positive integers, all common
1438        /// definitions of division are equal, this is exactly equal to
1439        /// `self.strict_rem(rhs)`.
1440        ///
1441        /// # Panics
1442        ///
1443        /// This function will panic if `rhs` is zero.
1444        ///
1445        /// # Examples
1446        ///
1447        /// ```
1448        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
1449        /// ```
1450        ///
1451        /// The following panics because of division by zero:
1452        ///
1453        /// ```should_panic
1454        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1455        /// ```
1456        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1457        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1458        #[must_use = "this returns the result of the operation, \
1459                      without modifying the original"]
1460        #[inline(always)]
1461        #[track_caller]
1462        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1463            self % rhs
1464        }
1465
1466        /// Same value as `self | other`, but UB if any bit position is set in both inputs.
1467        ///
1468        /// This is a situational micro-optimization for places where you'd rather
1469        /// use addition on some platforms and bitwise or on other platforms, based
1470        /// on exactly which instructions combine better with whatever else you're
1471        /// doing.  Note that there's no reason to bother using this for places
1472        /// where it's clear from the operations involved that they can't overlap.
1473        /// For example, if you're combining `u16`s into a `u32` with
1474        /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
1475        /// know those sides of the `|` are disjoint without needing help.
1476        ///
1477        /// # Examples
1478        ///
1479        /// ```
1480        /// #![feature(disjoint_bitor)]
1481        ///
1482        /// // SAFETY: `1` and `4` have no bits in common.
1483        /// unsafe {
1484        #[doc = concat!("    assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
1485        /// }
1486        /// ```
1487        ///
1488        /// # Safety
1489        ///
1490        /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
1491        ///
1492        /// Equivalently, requires that `(self | other) == (self + other)`.
1493        #[unstable(feature = "disjoint_bitor", issue = "135758")]
1494        #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
1495        #[inline]
1496        pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
1497            assert_unsafe_precondition!(
1498                check_language_ub,
1499                concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
1500                (
1501                    lhs: $SelfT = self,
1502                    rhs: $SelfT = other,
1503                ) => (lhs & rhs) == 0,
1504            );
1505
1506            // SAFETY: Same precondition
1507            unsafe { intrinsics::disjoint_bitor(self, other) }
1508        }
1509
1510        /// Returns the logarithm of the number with respect to an arbitrary base,
1511        /// rounded down.
1512        ///
1513        /// This method might not be optimized owing to implementation details;
1514        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
1515        /// can produce results more efficiently for base 10.
1516        ///
1517        /// # Panics
1518        ///
1519        /// This function will panic if `self` is zero, or if `base` is less than 2.
1520        ///
1521        /// # Examples
1522        ///
1523        /// ```
1524        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
1525        /// ```
1526        #[stable(feature = "int_log", since = "1.67.0")]
1527        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1528        #[must_use = "this returns the result of the operation, \
1529                      without modifying the original"]
1530        #[inline]
1531        #[track_caller]
1532        pub const fn ilog(self, base: Self) -> u32 {
1533            assert!(base >= 2, "base of integer logarithm must be at least 2");
1534            if let Some(log) = self.checked_ilog(base) {
1535                log
1536            } else {
1537                int_log10::panic_for_nonpositive_argument()
1538            }
1539        }
1540
1541        /// Returns the base 2 logarithm of the number, rounded down.
1542        ///
1543        /// # Panics
1544        ///
1545        /// This function will panic if `self` is zero.
1546        ///
1547        /// # Examples
1548        ///
1549        /// ```
1550        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
1551        /// ```
1552        #[stable(feature = "int_log", since = "1.67.0")]
1553        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1554        #[must_use = "this returns the result of the operation, \
1555                      without modifying the original"]
1556        #[inline]
1557        #[track_caller]
1558        pub const fn ilog2(self) -> u32 {
1559            if let Some(log) = self.checked_ilog2() {
1560                log
1561            } else {
1562                int_log10::panic_for_nonpositive_argument()
1563            }
1564        }
1565
1566        /// Returns the base 10 logarithm of the number, rounded down.
1567        ///
1568        /// # Panics
1569        ///
1570        /// This function will panic if `self` is zero.
1571        ///
1572        /// # Example
1573        ///
1574        /// ```
1575        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
1576        /// ```
1577        #[stable(feature = "int_log", since = "1.67.0")]
1578        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1579        #[must_use = "this returns the result of the operation, \
1580                      without modifying the original"]
1581        #[inline]
1582        #[track_caller]
1583        pub const fn ilog10(self) -> u32 {
1584            if let Some(log) = self.checked_ilog10() {
1585                log
1586            } else {
1587                int_log10::panic_for_nonpositive_argument()
1588            }
1589        }
1590
1591        /// Returns the logarithm of the number with respect to an arbitrary base,
1592        /// rounded down.
1593        ///
1594        /// Returns `None` if the number is zero, or if the base is not at least 2.
1595        ///
1596        /// This method might not be optimized owing to implementation details;
1597        /// `checked_ilog2` can produce results more efficiently for base 2, and
1598        /// `checked_ilog10` can produce results more efficiently for base 10.
1599        ///
1600        /// # Examples
1601        ///
1602        /// ```
1603        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
1604        /// ```
1605        #[stable(feature = "int_log", since = "1.67.0")]
1606        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1607        #[must_use = "this returns the result of the operation, \
1608                      without modifying the original"]
1609        #[inline]
1610        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
1611            // Inform compiler of optimizations when the base is known at
1612            // compile time and there's a cheaper method available.
1613            //
1614            // Note: Like all optimizations, this is not guaranteed to be
1615            // applied by the compiler. If you want those specific bases,
1616            // use `.checked_ilog2()` or `.checked_ilog10()` directly.
1617            if core::intrinsics::is_val_statically_known(base) {
1618                if base == 2 {
1619                    return self.checked_ilog2();
1620                } else if base == 10 {
1621                    return self.checked_ilog10();
1622                }
1623            }
1624
1625            if self <= 0 || base <= 1 {
1626                None
1627            } else if self < base {
1628                Some(0)
1629            } else {
1630                // Since base >= self, n >= 1
1631                let mut n = 1;
1632                let mut r = base;
1633
1634                // Optimization for 128 bit wide integers.
1635                if Self::BITS == 128 {
1636                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
1637                    //
1638                    // log(base,self) = log(2,self) / log(2,base)
1639                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
1640                    //
1641                    // hence
1642                    //
1643                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
1644                    n = self.ilog2() / (base.ilog2() + 1);
1645                    r = base.pow(n);
1646                }
1647
1648                while r <= self / base {
1649                    n += 1;
1650                    r *= base;
1651                }
1652                Some(n)
1653            }
1654        }
1655
1656        /// Returns the base 2 logarithm of the number, rounded down.
1657        ///
1658        /// Returns `None` if the number is zero.
1659        ///
1660        /// # Examples
1661        ///
1662        /// ```
1663        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
1664        /// ```
1665        #[stable(feature = "int_log", since = "1.67.0")]
1666        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1667        #[must_use = "this returns the result of the operation, \
1668                      without modifying the original"]
1669        #[inline]
1670        pub const fn checked_ilog2(self) -> Option<u32> {
1671            match NonZero::new(self) {
1672                Some(x) => Some(x.ilog2()),
1673                None => None,
1674            }
1675        }
1676
1677        /// Returns the base 10 logarithm of the number, rounded down.
1678        ///
1679        /// Returns `None` if the number is zero.
1680        ///
1681        /// # Examples
1682        ///
1683        /// ```
1684        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
1685        /// ```
1686        #[stable(feature = "int_log", since = "1.67.0")]
1687        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1688        #[must_use = "this returns the result of the operation, \
1689                      without modifying the original"]
1690        #[inline]
1691        pub const fn checked_ilog10(self) -> Option<u32> {
1692            match NonZero::new(self) {
1693                Some(x) => Some(x.ilog10()),
1694                None => None,
1695            }
1696        }
1697
1698        /// Checked negation. Computes `-self`, returning `None` unless `self ==
1699        /// 0`.
1700        ///
1701        /// Note that negating any positive integer will overflow.
1702        ///
1703        /// # Examples
1704        ///
1705        /// ```
1706        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
1707        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
1708        /// ```
1709        #[stable(feature = "wrapping", since = "1.7.0")]
1710        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1711        #[must_use = "this returns the result of the operation, \
1712                      without modifying the original"]
1713        #[inline]
1714        pub const fn checked_neg(self) -> Option<Self> {
1715            let (a, b) = self.overflowing_neg();
1716            if intrinsics::unlikely(b) { None } else { Some(a) }
1717        }
1718
1719        /// Strict negation. Computes `-self`, panicking unless `self ==
1720        /// 0`.
1721        ///
1722        /// Note that negating any positive integer will overflow.
1723        ///
1724        /// # Panics
1725        ///
1726        /// ## Overflow behavior
1727        ///
1728        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1729        ///
1730        /// # Examples
1731        ///
1732        /// ```
1733        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
1734        /// ```
1735        ///
1736        /// The following panics because of overflow:
1737        ///
1738        /// ```should_panic
1739        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
1740        /// ```
1741        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1742        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1743        #[must_use = "this returns the result of the operation, \
1744                      without modifying the original"]
1745        #[inline]
1746        #[track_caller]
1747        pub const fn strict_neg(self) -> Self {
1748            let (a, b) = self.overflowing_neg();
1749            if b { overflow_panic::neg() } else { a }
1750        }
1751
1752        /// Checked shift left. Computes `self << rhs`, returning `None`
1753        /// if `rhs` is larger than or equal to the number of bits in `self`.
1754        ///
1755        /// # Examples
1756        ///
1757        /// ```
1758        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1759        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
1760        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1761        /// ```
1762        #[stable(feature = "wrapping", since = "1.7.0")]
1763        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1764        #[must_use = "this returns the result of the operation, \
1765                      without modifying the original"]
1766        #[inline]
1767        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1768            // Not using overflowing_shl as that's a wrapping shift
1769            if rhs < Self::BITS {
1770                // SAFETY: just checked the RHS is in-range
1771                Some(unsafe { self.unchecked_shl(rhs) })
1772            } else {
1773                None
1774            }
1775        }
1776
1777        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1778        /// than or equal to the number of bits in `self`.
1779        ///
1780        /// # Panics
1781        ///
1782        /// ## Overflow behavior
1783        ///
1784        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1785        ///
1786        /// # Examples
1787        ///
1788        /// ```
1789        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1790        /// ```
1791        ///
1792        /// The following panics because of overflow:
1793        ///
1794        /// ```should_panic
1795        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
1796        /// ```
1797        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1798        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1799        #[must_use = "this returns the result of the operation, \
1800                      without modifying the original"]
1801        #[inline]
1802        #[track_caller]
1803        pub const fn strict_shl(self, rhs: u32) -> Self {
1804            let (a, b) = self.overflowing_shl(rhs);
1805            if b { overflow_panic::shl() } else { a }
1806        }
1807
1808        /// Unchecked shift left. Computes `self << rhs`, assuming that
1809        /// `rhs` is less than the number of bits in `self`.
1810        ///
1811        /// # Safety
1812        ///
1813        /// This results in undefined behavior if `rhs` is larger than
1814        /// or equal to the number of bits in `self`,
1815        /// i.e. when [`checked_shl`] would return `None`.
1816        ///
1817        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1818        #[stable(feature = "unchecked_shifts", since = "1.93.0")]
1819        #[rustc_const_stable(feature = "unchecked_shifts", since = "1.93.0")]
1820        #[must_use = "this returns the result of the operation, \
1821                      without modifying the original"]
1822        #[inline(always)]
1823        #[track_caller]
1824        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1825            assert_unsafe_precondition!(
1826                check_language_ub,
1827                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1828                (
1829                    rhs: u32 = rhs,
1830                ) => rhs < <$ActualT>::BITS,
1831            );
1832
1833            // SAFETY: this is guaranteed to be safe by the caller.
1834            unsafe {
1835                intrinsics::unchecked_shl(self, rhs)
1836            }
1837        }
1838
1839        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1840        ///
1841        /// If `rhs` is larger or equal to the number of bits in `self`,
1842        /// the entire value is shifted out, and `0` is returned.
1843        ///
1844        /// # Examples
1845        ///
1846        /// ```
1847        #[doc = concat!("assert_eq!(0x1_", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1848        #[doc = concat!("assert_eq!(0x1_", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1849        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".unbounded_shl(0), 0b101);")]
1850        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".unbounded_shl(1), 0b1010);")]
1851        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".unbounded_shl(2), 0b10100);")]
1852        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".unbounded_shl(", stringify!($BITS), "), 0);")]
1853        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".unbounded_shl(1).unbounded_shl(", stringify!($BITS_MINUS_ONE), "), 0);")]
1854        ///
1855        #[doc = concat!("let start : ", stringify!($SelfT), " = 13;")]
1856        /// let mut running = start;
1857        /// for i in 0..160 {
1858        ///     // The unbounded shift left by i is the same as `<< 1` i times
1859        ///     assert_eq!(running, start.unbounded_shl(i));
1860        ///     // Which is not always the case for a wrapping shift
1861        #[doc = concat!("    assert_eq!(running == start.wrapping_shl(i), i < ", stringify!($BITS), ");")]
1862        ///
1863        ///     running <<= 1;
1864        /// }
1865        /// ```
1866        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1867        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1868        #[must_use = "this returns the result of the operation, \
1869                      without modifying the original"]
1870        #[inline]
1871        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1872            if rhs < Self::BITS {
1873                // SAFETY:
1874                // rhs is just checked to be in-range above
1875                unsafe { self.unchecked_shl(rhs) }
1876            } else {
1877                0
1878            }
1879        }
1880
1881        /// Exact shift left. Computes `self << rhs` as long as it can be reversed losslessly.
1882        ///
1883        /// Returns `None` if any non-zero bits would be shifted out or if `rhs` >=
1884        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1885        /// Otherwise, returns `Some(self << rhs)`.
1886        ///
1887        /// # Examples
1888        ///
1889        /// ```
1890        /// #![feature(exact_bitshifts)]
1891        ///
1892        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(4), Some(0x10));")]
1893        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(129), None);")]
1894        /// ```
1895        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1896        #[must_use = "this returns the result of the operation, \
1897                      without modifying the original"]
1898        #[inline]
1899        pub const fn shl_exact(self, rhs: u32) -> Option<$SelfT> {
1900            if rhs <= self.leading_zeros() && rhs < <$SelfT>::BITS {
1901                // SAFETY: rhs is checked above
1902                Some(unsafe { self.unchecked_shl(rhs) })
1903            } else {
1904                None
1905            }
1906        }
1907
1908        /// Unchecked exact shift left. Computes `self << rhs`, assuming the operation can be
1909        /// losslessly reversed `rhs` cannot be larger than
1910        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1911        ///
1912        /// # Safety
1913        ///
1914        /// This results in undefined behavior when `rhs > self.leading_zeros() || rhs >=
1915        #[doc = concat!(stringify!($SelfT), "::BITS`")]
1916        /// i.e. when
1917        #[doc = concat!("[`", stringify!($SelfT), "::shl_exact`]")]
1918        /// would return `None`.
1919        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1920        #[must_use = "this returns the result of the operation, \
1921                      without modifying the original"]
1922        #[inline]
1923        pub const unsafe fn unchecked_shl_exact(self, rhs: u32) -> $SelfT {
1924            assert_unsafe_precondition!(
1925                check_library_ub,
1926                concat!(stringify!($SelfT), "::unchecked_shl_exact cannot shift out non-zero bits"),
1927                (
1928                    zeros: u32 = self.leading_zeros(),
1929                    bits: u32 =  <$SelfT>::BITS,
1930                    rhs: u32 = rhs,
1931                ) => rhs <= zeros && rhs < bits,
1932            );
1933
1934            // SAFETY: this is guaranteed to be safe by the caller
1935            unsafe { self.unchecked_shl(rhs) }
1936        }
1937
1938        /// Checked shift right. Computes `self >> rhs`, returning `None`
1939        /// if `rhs` is larger than or equal to the number of bits in `self`.
1940        ///
1941        /// # Examples
1942        ///
1943        /// ```
1944        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1945        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
1946        /// ```
1947        #[stable(feature = "wrapping", since = "1.7.0")]
1948        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1949        #[must_use = "this returns the result of the operation, \
1950                      without modifying the original"]
1951        #[inline]
1952        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1953            // Not using overflowing_shr as that's a wrapping shift
1954            if rhs < Self::BITS {
1955                // SAFETY: just checked the RHS is in-range
1956                Some(unsafe { self.unchecked_shr(rhs) })
1957            } else {
1958                None
1959            }
1960        }
1961
1962        /// Strict shift right. Computes `self >> rhs`, panicking if `rhs` is
1963        /// larger than or equal to the number of bits in `self`.
1964        ///
1965        /// # Panics
1966        ///
1967        /// ## Overflow behavior
1968        ///
1969        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1970        ///
1971        /// # Examples
1972        ///
1973        /// ```
1974        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1975        /// ```
1976        ///
1977        /// The following panics because of overflow:
1978        ///
1979        /// ```should_panic
1980        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
1981        /// ```
1982        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1983        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1984        #[must_use = "this returns the result of the operation, \
1985                      without modifying the original"]
1986        #[inline]
1987        #[track_caller]
1988        pub const fn strict_shr(self, rhs: u32) -> Self {
1989            let (a, b) = self.overflowing_shr(rhs);
1990            if b { overflow_panic::shr() } else { a }
1991        }
1992
1993        /// Unchecked shift right. Computes `self >> rhs`, assuming that
1994        /// `rhs` is less than the number of bits in `self`.
1995        ///
1996        /// # Safety
1997        ///
1998        /// This results in undefined behavior if `rhs` is larger than
1999        /// or equal to the number of bits in `self`,
2000        /// i.e. when [`checked_shr`] would return `None`.
2001        ///
2002        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
2003        #[stable(feature = "unchecked_shifts", since = "1.93.0")]
2004        #[rustc_const_stable(feature = "unchecked_shifts", since = "1.93.0")]
2005        #[must_use = "this returns the result of the operation, \
2006                      without modifying the original"]
2007        #[inline(always)]
2008        #[track_caller]
2009        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
2010            assert_unsafe_precondition!(
2011                check_language_ub,
2012                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
2013                (
2014                    rhs: u32 = rhs,
2015                ) => rhs < <$ActualT>::BITS,
2016            );
2017
2018            // SAFETY: this is guaranteed to be safe by the caller.
2019            unsafe {
2020                intrinsics::unchecked_shr(self, rhs)
2021            }
2022        }
2023
2024        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
2025        ///
2026        /// If `rhs` is larger or equal to the number of bits in `self`,
2027        /// the entire value is shifted out, and `0` is returned.
2028        ///
2029        /// # Examples
2030        ///
2031        /// ```
2032        #[doc = concat!("assert_eq!(0x10_", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
2033        #[doc = concat!("assert_eq!(0x10_", stringify!($SelfT), ".unbounded_shr(129), 0);")]
2034        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".unbounded_shr(0), 0b1010);")]
2035        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".unbounded_shr(1), 0b101);")]
2036        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".unbounded_shr(2), 0b10);")]
2037        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".unbounded_shr(", stringify!($BITS), "), 0);")]
2038        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".unbounded_shr(1).unbounded_shr(", stringify!($BITS_MINUS_ONE), "), 0);")]
2039        ///
2040        #[doc = concat!("let start = ", stringify!($SelfT), "::rotate_right(13, 4);")]
2041        /// let mut running = start;
2042        /// for i in 0..160 {
2043        ///     // The unbounded shift right by i is the same as `>> 1` i times
2044        ///     assert_eq!(running, start.unbounded_shr(i));
2045        ///     // Which is not always the case for a wrapping shift
2046        #[doc = concat!("    assert_eq!(running == start.wrapping_shr(i), i < ", stringify!($BITS), ");")]
2047        ///
2048        ///     running >>= 1;
2049        /// }
2050        /// ```
2051        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
2052        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
2053        #[must_use = "this returns the result of the operation, \
2054                      without modifying the original"]
2055        #[inline]
2056        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
2057            if rhs < Self::BITS {
2058                // SAFETY:
2059                // rhs is just checked to be in-range above
2060                unsafe { self.unchecked_shr(rhs) }
2061            } else {
2062                0
2063            }
2064        }
2065
2066        /// Exact shift right. Computes `self >> rhs` as long as it can be reversed losslessly.
2067        ///
2068        /// Returns `None` if any non-zero bits would be shifted out or if `rhs` >=
2069        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
2070        /// Otherwise, returns `Some(self >> rhs)`.
2071        ///
2072        /// # Examples
2073        ///
2074        /// ```
2075        /// #![feature(exact_bitshifts)]
2076        ///
2077        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(4), Some(0x1));")]
2078        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(5), None);")]
2079        /// ```
2080        #[unstable(feature = "exact_bitshifts", issue = "144336")]
2081        #[must_use = "this returns the result of the operation, \
2082                      without modifying the original"]
2083        #[inline]
2084        pub const fn shr_exact(self, rhs: u32) -> Option<$SelfT> {
2085            if rhs <= self.trailing_zeros() && rhs < <$SelfT>::BITS {
2086                // SAFETY: rhs is checked above
2087                Some(unsafe { self.unchecked_shr(rhs) })
2088            } else {
2089                None
2090            }
2091        }
2092
2093        /// Unchecked exact shift right. Computes `self >> rhs`, assuming the operation can be
2094        /// losslessly reversed and `rhs` cannot be larger than
2095        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
2096        ///
2097        /// # Safety
2098        ///
2099        /// This results in undefined behavior when `rhs > self.trailing_zeros() || rhs >=
2100        #[doc = concat!(stringify!($SelfT), "::BITS`")]
2101        /// i.e. when
2102        #[doc = concat!("[`", stringify!($SelfT), "::shr_exact`]")]
2103        /// would return `None`.
2104        #[unstable(feature = "exact_bitshifts", issue = "144336")]
2105        #[must_use = "this returns the result of the operation, \
2106                      without modifying the original"]
2107        #[inline]
2108        pub const unsafe fn unchecked_shr_exact(self, rhs: u32) -> $SelfT {
2109            assert_unsafe_precondition!(
2110                check_library_ub,
2111                concat!(stringify!($SelfT), "::unchecked_shr_exact cannot shift out non-zero bits"),
2112                (
2113                    zeros: u32 = self.trailing_zeros(),
2114                    bits: u32 =  <$SelfT>::BITS,
2115                    rhs: u32 = rhs,
2116                ) => rhs <= zeros && rhs < bits,
2117            );
2118
2119            // SAFETY: this is guaranteed to be safe by the caller
2120            unsafe { self.unchecked_shr(rhs) }
2121        }
2122
2123        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
2124        /// overflow occurred.
2125        ///
2126        /// # Examples
2127        ///
2128        /// ```
2129        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
2130        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".checked_pow(0), Some(1));")]
2131        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
2132        /// ```
2133        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2134        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2135        #[must_use = "this returns the result of the operation, \
2136                      without modifying the original"]
2137        #[inline]
2138        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
2139            if exp == 0 {
2140                return Some(1);
2141            }
2142            let mut base = self;
2143            let mut acc: Self = 1;
2144
2145            loop {
2146                if (exp & 1) == 1 {
2147                    acc = try_opt!(acc.checked_mul(base));
2148                    // since exp!=0, finally the exp must be 1.
2149                    if exp == 1 {
2150                        return Some(acc);
2151                    }
2152                }
2153                exp /= 2;
2154                base = try_opt!(base.checked_mul(base));
2155            }
2156        }
2157
2158        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
2159        /// overflow occurred.
2160        ///
2161        /// # Panics
2162        ///
2163        /// ## Overflow behavior
2164        ///
2165        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
2166        ///
2167        /// # Examples
2168        ///
2169        /// ```
2170        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
2171        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".strict_pow(0), 1);")]
2172        /// ```
2173        ///
2174        /// The following panics because of overflow:
2175        ///
2176        /// ```should_panic
2177        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
2178        /// ```
2179        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
2180        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
2181        #[must_use = "this returns the result of the operation, \
2182                      without modifying the original"]
2183        #[inline]
2184        #[track_caller]
2185        pub const fn strict_pow(self, mut exp: u32) -> Self {
2186            if exp == 0 {
2187                return 1;
2188            }
2189            let mut base = self;
2190            let mut acc: Self = 1;
2191
2192            loop {
2193                if (exp & 1) == 1 {
2194                    acc = acc.strict_mul(base);
2195                    // since exp!=0, finally the exp must be 1.
2196                    if exp == 1 {
2197                        return acc;
2198                    }
2199                }
2200                exp /= 2;
2201                base = base.strict_mul(base);
2202            }
2203        }
2204
2205        /// Saturating integer addition. Computes `self + rhs`, saturating at
2206        /// the numeric bounds instead of overflowing.
2207        ///
2208        /// # Examples
2209        ///
2210        /// ```
2211        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
2212        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
2213        /// ```
2214        #[stable(feature = "rust1", since = "1.0.0")]
2215        #[must_use = "this returns the result of the operation, \
2216                      without modifying the original"]
2217        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2218        #[inline(always)]
2219        pub const fn saturating_add(self, rhs: Self) -> Self {
2220            intrinsics::saturating_add(self, rhs)
2221        }
2222
2223        /// Saturating addition with a signed integer. Computes `self + rhs`,
2224        /// saturating at the numeric bounds instead of overflowing.
2225        ///
2226        /// # Examples
2227        ///
2228        /// ```
2229        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
2230        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
2231        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
2232        /// ```
2233        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2234        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2235        #[must_use = "this returns the result of the operation, \
2236                      without modifying the original"]
2237        #[inline]
2238        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
2239            let (res, overflow) = self.overflowing_add(rhs as Self);
2240            if overflow == (rhs < 0) {
2241                res
2242            } else if overflow {
2243                Self::MAX
2244            } else {
2245                0
2246            }
2247        }
2248
2249        /// Saturating integer subtraction. Computes `self - rhs`, saturating
2250        /// at the numeric bounds instead of overflowing.
2251        ///
2252        /// # Examples
2253        ///
2254        /// ```
2255        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
2256        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
2257        /// ```
2258        #[stable(feature = "rust1", since = "1.0.0")]
2259        #[must_use = "this returns the result of the operation, \
2260                      without modifying the original"]
2261        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2262        #[inline(always)]
2263        pub const fn saturating_sub(self, rhs: Self) -> Self {
2264            intrinsics::saturating_sub(self, rhs)
2265        }
2266
2267        /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
2268        /// the numeric bounds instead of overflowing.
2269        ///
2270        /// # Examples
2271        ///
2272        /// ```
2273        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
2274        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
2275        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
2276        /// ```
2277        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2278        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2279        #[must_use = "this returns the result of the operation, \
2280                      without modifying the original"]
2281        #[inline]
2282        pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
2283            let (res, overflow) = self.overflowing_sub_signed(rhs);
2284
2285            if !overflow {
2286                res
2287            } else if rhs < 0 {
2288                Self::MAX
2289            } else {
2290                0
2291            }
2292        }
2293
2294        /// Saturating integer multiplication. Computes `self * rhs`,
2295        /// saturating at the numeric bounds instead of overflowing.
2296        ///
2297        /// # Examples
2298        ///
2299        /// ```
2300        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
2301        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
2302        /// ```
2303        #[stable(feature = "wrapping", since = "1.7.0")]
2304        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2305        #[must_use = "this returns the result of the operation, \
2306                      without modifying the original"]
2307        #[inline]
2308        pub const fn saturating_mul(self, rhs: Self) -> Self {
2309            match self.checked_mul(rhs) {
2310                Some(x) => x,
2311                None => Self::MAX,
2312            }
2313        }
2314
2315        /// Saturating integer division. Computes `self / rhs`, saturating at the
2316        /// numeric bounds instead of overflowing.
2317        ///
2318        /// # Panics
2319        ///
2320        /// This function will panic if `rhs` is zero.
2321        ///
2322        /// # Examples
2323        ///
2324        /// ```
2325        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
2326        ///
2327        /// ```
2328        #[stable(feature = "saturating_div", since = "1.58.0")]
2329        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
2330        #[must_use = "this returns the result of the operation, \
2331                      without modifying the original"]
2332        #[inline]
2333        #[track_caller]
2334        pub const fn saturating_div(self, rhs: Self) -> Self {
2335            // on unsigned types, there is no overflow in integer division
2336            self.wrapping_div(rhs)
2337        }
2338
2339        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2340        /// saturating at the numeric bounds instead of overflowing.
2341        ///
2342        /// # Examples
2343        ///
2344        /// ```
2345        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
2346        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".saturating_pow(0), 1);")]
2347        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2348        /// ```
2349        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2350        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2351        #[must_use = "this returns the result of the operation, \
2352                      without modifying the original"]
2353        #[inline]
2354        pub const fn saturating_pow(self, exp: u32) -> Self {
2355            match self.checked_pow(exp) {
2356                Some(x) => x,
2357                None => Self::MAX,
2358            }
2359        }
2360
2361        /// Wrapping (modular) addition. Computes `self + rhs`,
2362        /// wrapping around at the boundary of the type.
2363        ///
2364        /// # Examples
2365        ///
2366        /// ```
2367        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
2368        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
2369        /// ```
2370        #[stable(feature = "rust1", since = "1.0.0")]
2371        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2372        #[must_use = "this returns the result of the operation, \
2373                      without modifying the original"]
2374        #[inline(always)]
2375        pub const fn wrapping_add(self, rhs: Self) -> Self {
2376            intrinsics::wrapping_add(self, rhs)
2377        }
2378
2379        /// Wrapping (modular) addition with a signed integer. Computes
2380        /// `self + rhs`, wrapping around at the boundary of the type.
2381        ///
2382        /// # Examples
2383        ///
2384        /// ```
2385        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
2386        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
2387        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
2388        /// ```
2389        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2390        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2391        #[must_use = "this returns the result of the operation, \
2392                      without modifying the original"]
2393        #[inline]
2394        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
2395            self.wrapping_add(rhs as Self)
2396        }
2397
2398        /// Wrapping (modular) subtraction. Computes `self - rhs`,
2399        /// wrapping around at the boundary of the type.
2400        ///
2401        /// # Examples
2402        ///
2403        /// ```
2404        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
2405        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
2406        /// ```
2407        #[stable(feature = "rust1", since = "1.0.0")]
2408        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2409        #[must_use = "this returns the result of the operation, \
2410                      without modifying the original"]
2411        #[inline(always)]
2412        pub const fn wrapping_sub(self, rhs: Self) -> Self {
2413            intrinsics::wrapping_sub(self, rhs)
2414        }
2415
2416        /// Wrapping (modular) subtraction with a signed integer. Computes
2417        /// `self - rhs`, wrapping around at the boundary of the type.
2418        ///
2419        /// # Examples
2420        ///
2421        /// ```
2422        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
2423        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
2424        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
2425        /// ```
2426        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2427        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2428        #[must_use = "this returns the result of the operation, \
2429                      without modifying the original"]
2430        #[inline]
2431        pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
2432            self.wrapping_sub(rhs as Self)
2433        }
2434
2435        /// Wrapping (modular) multiplication. Computes `self *
2436        /// rhs`, wrapping around at the boundary of the type.
2437        ///
2438        /// # Examples
2439        ///
2440        /// Please note that this example is shared among integer types, which is why `u8` is used.
2441        ///
2442        /// ```
2443        /// assert_eq!(10u8.wrapping_mul(12), 120);
2444        /// assert_eq!(25u8.wrapping_mul(12), 44);
2445        /// ```
2446        #[stable(feature = "rust1", since = "1.0.0")]
2447        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2448        #[must_use = "this returns the result of the operation, \
2449                      without modifying the original"]
2450        #[inline(always)]
2451        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2452            intrinsics::wrapping_mul(self, rhs)
2453        }
2454
2455        /// Wrapping (modular) division. Computes `self / rhs`.
2456        ///
2457        /// Wrapped division on unsigned types is just normal division. There's
2458        /// no way wrapping could ever happen. This function exists so that all
2459        /// operations are accounted for in the wrapping operations.
2460        ///
2461        /// # Panics
2462        ///
2463        /// This function will panic if `rhs` is zero.
2464        ///
2465        /// # Examples
2466        ///
2467        /// ```
2468        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2469        /// ```
2470        #[stable(feature = "num_wrapping", since = "1.2.0")]
2471        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2472        #[must_use = "this returns the result of the operation, \
2473                      without modifying the original"]
2474        #[inline(always)]
2475        #[track_caller]
2476        pub const fn wrapping_div(self, rhs: Self) -> Self {
2477            self / rhs
2478        }
2479
2480        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
2481        ///
2482        /// Wrapped division on unsigned types is just normal division. There's
2483        /// no way wrapping could ever happen. This function exists so that all
2484        /// operations are accounted for in the wrapping operations. Since, for
2485        /// the positive integers, all common definitions of division are equal,
2486        /// this is exactly equal to `self.wrapping_div(rhs)`.
2487        ///
2488        /// # Panics
2489        ///
2490        /// This function will panic if `rhs` is zero.
2491        ///
2492        /// # Examples
2493        ///
2494        /// ```
2495        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2496        /// ```
2497        #[stable(feature = "euclidean_division", since = "1.38.0")]
2498        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2499        #[must_use = "this returns the result of the operation, \
2500                      without modifying the original"]
2501        #[inline(always)]
2502        #[track_caller]
2503        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2504            self / rhs
2505        }
2506
2507        /// Wrapping (modular) remainder. Computes `self % rhs`.
2508        ///
2509        /// Wrapped remainder calculation on unsigned types is just the regular
2510        /// remainder calculation. There's no way wrapping could ever happen.
2511        /// This function exists so that all operations are accounted for in the
2512        /// wrapping operations.
2513        ///
2514        /// # Panics
2515        ///
2516        /// This function will panic if `rhs` is zero.
2517        ///
2518        /// # Examples
2519        ///
2520        /// ```
2521        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2522        /// ```
2523        #[stable(feature = "num_wrapping", since = "1.2.0")]
2524        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2525        #[must_use = "this returns the result of the operation, \
2526                      without modifying the original"]
2527        #[inline(always)]
2528        #[track_caller]
2529        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2530            self % rhs
2531        }
2532
2533        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
2534        ///
2535        /// Wrapped modulo calculation on unsigned types is just the regular
2536        /// remainder calculation. There's no way wrapping could ever happen.
2537        /// This function exists so that all operations are accounted for in the
2538        /// wrapping operations. Since, for the positive integers, all common
2539        /// definitions of division are equal, this is exactly equal to
2540        /// `self.wrapping_rem(rhs)`.
2541        ///
2542        /// # Panics
2543        ///
2544        /// This function will panic if `rhs` is zero.
2545        ///
2546        /// # Examples
2547        ///
2548        /// ```
2549        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2550        /// ```
2551        #[stable(feature = "euclidean_division", since = "1.38.0")]
2552        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2553        #[must_use = "this returns the result of the operation, \
2554                      without modifying the original"]
2555        #[inline(always)]
2556        #[track_caller]
2557        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2558            self % rhs
2559        }
2560
2561        /// Wrapping (modular) negation. Computes `-self`,
2562        /// wrapping around at the boundary of the type.
2563        ///
2564        /// Since unsigned types do not have negative equivalents
2565        /// all applications of this function will wrap (except for `-0`).
2566        /// For values smaller than the corresponding signed type's maximum
2567        /// the result is the same as casting the corresponding signed value.
2568        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
2569        /// `MAX` is the corresponding signed type's maximum.
2570        ///
2571        /// # Examples
2572        ///
2573        /// ```
2574        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
2575        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
2576        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
2577        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
2578        /// ```
2579        #[stable(feature = "num_wrapping", since = "1.2.0")]
2580        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2581        #[must_use = "this returns the result of the operation, \
2582                      without modifying the original"]
2583        #[inline(always)]
2584        pub const fn wrapping_neg(self) -> Self {
2585            (0 as $SelfT).wrapping_sub(self)
2586        }
2587
2588        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
2589        /// where `mask` removes any high-order bits of `rhs` that
2590        /// would cause the shift to exceed the bitwidth of the type.
2591        ///
2592        /// Beware that, unlike most other `wrapping_*` methods on integers, this
2593        /// does *not* give the same result as doing the shift in infinite precision
2594        /// then truncating as needed.  The behaviour matches what shift instructions
2595        /// do on many processors, and is what the `<<` operator does when overflow
2596        /// checks are disabled, but numerically it's weird.  Consider, instead,
2597        /// using [`Self::unbounded_shl`] which has nicer behaviour.
2598        ///
2599        /// Note that this is *not* the same as a rotate-left; the
2600        /// RHS of a wrapping shift-left is restricted to the range
2601        /// of the type, rather than the bits shifted out of the LHS
2602        /// being returned to the other end. The primitive integer
2603        /// types all implement a [`rotate_left`](Self::rotate_left) function,
2604        /// which may be what you want instead.
2605        ///
2606        /// # Examples
2607        ///
2608        /// ```
2609        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".wrapping_shl(7), 128);")]
2610        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".wrapping_shl(0), 0b101);")]
2611        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".wrapping_shl(1), 0b1010);")]
2612        #[doc = concat!("assert_eq!(0b101_", stringify!($SelfT), ".wrapping_shl(2), 0b10100);")]
2613        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_shl(2), ", stringify!($SelfT), "::MAX - 3);")]
2614        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_shl(", stringify!($BITS), "), 42);")]
2615        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_shl(1).wrapping_shl(", stringify!($BITS_MINUS_ONE), "), 0);")]
2616        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".wrapping_shl(128), 1);")]
2617        #[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".wrapping_shl(1025), 10);")]
2618        /// ```
2619        #[stable(feature = "num_wrapping", since = "1.2.0")]
2620        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2621        #[must_use = "this returns the result of the operation, \
2622                      without modifying the original"]
2623        #[inline(always)]
2624        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2625            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2626            // out of bounds
2627            unsafe {
2628                self.unchecked_shl(rhs & (Self::BITS - 1))
2629            }
2630        }
2631
2632        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
2633        /// where `mask` removes any high-order bits of `rhs` that
2634        /// would cause the shift to exceed the bitwidth of the type.
2635        ///
2636        /// Beware that, unlike most other `wrapping_*` methods on integers, this
2637        /// does *not* give the same result as doing the shift in infinite precision
2638        /// then truncating as needed.  The behaviour matches what shift instructions
2639        /// do on many processors, and is what the `>>` operator does when overflow
2640        /// checks are disabled, but numerically it's weird.  Consider, instead,
2641        /// using [`Self::unbounded_shr`] which has nicer behaviour.
2642        ///
2643        /// Note that this is *not* the same as a rotate-right; the
2644        /// RHS of a wrapping shift-right is restricted to the range
2645        /// of the type, rather than the bits shifted out of the LHS
2646        /// being returned to the other end. The primitive integer
2647        /// types all implement a [`rotate_right`](Self::rotate_right) function,
2648        /// which may be what you want instead.
2649        ///
2650        /// # Examples
2651        ///
2652        /// ```
2653        #[doc = concat!("assert_eq!(128_", stringify!($SelfT), ".wrapping_shr(7), 1);")]
2654        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".wrapping_shr(0), 0b1010);")]
2655        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".wrapping_shr(1), 0b101);")]
2656        #[doc = concat!("assert_eq!(0b1010_", stringify!($SelfT), ".wrapping_shr(2), 0b10);")]
2657        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_shr(1), ", stringify!($SignedT), "::MAX.cast_unsigned());")]
2658        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_shr(", stringify!($BITS), "), 42);")]
2659        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_shr(1).wrapping_shr(", stringify!($BITS_MINUS_ONE), "), 0);")]
2660        #[doc = concat!("assert_eq!(128_", stringify!($SelfT), ".wrapping_shr(128), 128);")]
2661        #[doc = concat!("assert_eq!(10_", stringify!($SelfT), ".wrapping_shr(1025), 5);")]
2662        /// ```
2663        #[stable(feature = "num_wrapping", since = "1.2.0")]
2664        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2665        #[must_use = "this returns the result of the operation, \
2666                      without modifying the original"]
2667        #[inline(always)]
2668        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2669            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2670            // out of bounds
2671            unsafe {
2672                self.unchecked_shr(rhs & (Self::BITS - 1))
2673            }
2674        }
2675
2676        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2677        /// wrapping around at the boundary of the type.
2678        ///
2679        /// # Examples
2680        ///
2681        /// ```
2682        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
2683        /// assert_eq!(3u8.wrapping_pow(6), 217);
2684        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_pow(0), 1);")]
2685        /// ```
2686        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2687        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2688        #[must_use = "this returns the result of the operation, \
2689                      without modifying the original"]
2690        #[inline]
2691        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2692            if exp == 0 {
2693                return 1;
2694            }
2695            let mut base = self;
2696            let mut acc: Self = 1;
2697
2698            if intrinsics::is_val_statically_known(exp) {
2699                while exp > 1 {
2700                    if (exp & 1) == 1 {
2701                        acc = acc.wrapping_mul(base);
2702                    }
2703                    exp /= 2;
2704                    base = base.wrapping_mul(base);
2705                }
2706
2707                // since exp!=0, finally the exp must be 1.
2708                // Deal with the final bit of the exponent separately, since
2709                // squaring the base afterwards is not necessary.
2710                acc.wrapping_mul(base)
2711            } else {
2712                // This is faster than the above when the exponent is not known
2713                // at compile time. We can't use the same code for the constant
2714                // exponent case because LLVM is currently unable to unroll
2715                // this loop.
2716                loop {
2717                    if (exp & 1) == 1 {
2718                        acc = acc.wrapping_mul(base);
2719                        // since exp!=0, finally the exp must be 1.
2720                        if exp == 1 {
2721                            return acc;
2722                        }
2723                    }
2724                    exp /= 2;
2725                    base = base.wrapping_mul(base);
2726                }
2727            }
2728        }
2729
2730        /// Calculates `self` + `rhs`.
2731        ///
2732        /// Returns a tuple of the addition along with a boolean indicating
2733        /// whether an arithmetic overflow would occur. If an overflow would
2734        /// have occurred then the wrapped value is returned.
2735        ///
2736        /// # Examples
2737        ///
2738        /// ```
2739        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2740        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
2741        /// ```
2742        #[stable(feature = "wrapping", since = "1.7.0")]
2743        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2744        #[must_use = "this returns the result of the operation, \
2745                      without modifying the original"]
2746        #[inline(always)]
2747        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2748            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2749            (a as Self, b)
2750        }
2751
2752        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
2753        /// the sum and the output carry (in that order).
2754        ///
2755        /// Performs "ternary addition" of two integer operands and a carry-in
2756        /// bit, and returns an output integer and a carry-out bit. This allows
2757        /// chaining together multiple additions to create a wider addition, and
2758        /// can be useful for bignum addition.
2759        ///
2760        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
2761        ///
2762        /// If the input carry is false, this method is equivalent to
2763        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
2764        /// equal to the overflow flag. Note that although carry and overflow
2765        /// flags are similar for unsigned integers, they are different for
2766        /// signed integers.
2767        ///
2768        /// # Examples
2769        ///
2770        /// ```
2771        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2772        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2773        /// // ---------
2774        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
2775        ///
2776        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
2777        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2778        /// let carry0 = false;
2779        ///
2780        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2781        /// assert_eq!(carry1, true);
2782        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
2783        /// assert_eq!(carry2, false);
2784        ///
2785        /// assert_eq!((sum1, sum0), (9, 6));
2786        /// ```
2787        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
2788        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2789        #[must_use = "this returns the result of the operation, \
2790                      without modifying the original"]
2791        #[inline]
2792        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2793            // note: longer-term this should be done via an intrinsic, but this has been shown
2794            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2795            let (a, c1) = self.overflowing_add(rhs);
2796            let (b, c2) = a.overflowing_add(carry as $SelfT);
2797            // Ideally LLVM would know this is disjoint without us telling them,
2798            // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
2799            // SAFETY: Only one of `c1` and `c2` can be set.
2800            // For c1 to be set we need to have overflowed, but if we did then
2801            // `a` is at most `MAX-1`, which means that `c2` cannot possibly
2802            // overflow because it's adding at most `1` (since it came from `bool`)
2803            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2804        }
2805
2806        /// Calculates `self` + `rhs` with a signed `rhs`.
2807        ///
2808        /// Returns a tuple of the addition along with a boolean indicating
2809        /// whether an arithmetic overflow would occur. If an overflow would
2810        /// have occurred then the wrapped value is returned.
2811        ///
2812        /// # Examples
2813        ///
2814        /// ```
2815        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
2816        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
2817        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
2818        /// ```
2819        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2820        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2821        #[must_use = "this returns the result of the operation, \
2822                      without modifying the original"]
2823        #[inline]
2824        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
2825            let (res, overflowed) = self.overflowing_add(rhs as Self);
2826            (res, overflowed ^ (rhs < 0))
2827        }
2828
2829        /// Calculates `self` - `rhs`.
2830        ///
2831        /// Returns a tuple of the subtraction along with a boolean indicating
2832        /// whether an arithmetic overflow would occur. If an overflow would
2833        /// have occurred then the wrapped value is returned.
2834        ///
2835        /// # Examples
2836        ///
2837        /// ```
2838        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2839        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2840        /// ```
2841        #[stable(feature = "wrapping", since = "1.7.0")]
2842        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2843        #[must_use = "this returns the result of the operation, \
2844                      without modifying the original"]
2845        #[inline(always)]
2846        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2847            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2848            (a as Self, b)
2849        }
2850
2851        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
2852        /// containing the difference and the output borrow.
2853        ///
2854        /// Performs "ternary subtraction" by subtracting both an integer
2855        /// operand and a borrow-in bit from `self`, and returns an output
2856        /// integer and a borrow-out bit. This allows chaining together multiple
2857        /// subtractions to create a wider subtraction, and can be useful for
2858        /// bignum subtraction.
2859        ///
2860        /// # Examples
2861        ///
2862        /// ```
2863        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
2864        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2865        /// // ---------
2866        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2867        ///
2868        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
2869        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2870        /// let borrow0 = false;
2871        ///
2872        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2873        /// assert_eq!(borrow1, true);
2874        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
2875        /// assert_eq!(borrow2, false);
2876        ///
2877        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
2878        /// ```
2879        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
2880        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2881        #[must_use = "this returns the result of the operation, \
2882                      without modifying the original"]
2883        #[inline]
2884        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2885            // note: longer-term this should be done via an intrinsic, but this has been shown
2886            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2887            let (a, c1) = self.overflowing_sub(rhs);
2888            let (b, c2) = a.overflowing_sub(borrow as $SelfT);
2889            // SAFETY: Only one of `c1` and `c2` can be set.
2890            // For c1 to be set we need to have underflowed, but if we did then
2891            // `a` is nonzero, which means that `c2` cannot possibly
2892            // underflow because it's subtracting at most `1` (since it came from `bool`)
2893            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2894        }
2895
2896        /// Calculates `self` - `rhs` with a signed `rhs`
2897        ///
2898        /// Returns a tuple of the subtraction along with a boolean indicating
2899        /// whether an arithmetic overflow would occur. If an overflow would
2900        /// have occurred then the wrapped value is returned.
2901        ///
2902        /// # Examples
2903        ///
2904        /// ```
2905        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
2906        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
2907        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
2908        /// ```
2909        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2910        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2911        #[must_use = "this returns the result of the operation, \
2912                      without modifying the original"]
2913        #[inline]
2914        pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
2915            let (res, overflow) = self.overflowing_sub(rhs as Self);
2916
2917            (res, overflow ^ (rhs < 0))
2918        }
2919
2920        /// Computes the absolute difference between `self` and `other`.
2921        ///
2922        /// # Examples
2923        ///
2924        /// ```
2925        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
2926        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
2927        /// ```
2928        #[stable(feature = "int_abs_diff", since = "1.60.0")]
2929        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
2930        #[must_use = "this returns the result of the operation, \
2931                      without modifying the original"]
2932        #[inline]
2933        pub const fn abs_diff(self, other: Self) -> Self {
2934            if size_of::<Self>() == 1 {
2935                // Trick LLVM into generating the psadbw instruction when SSE2
2936                // is available and this function is autovectorized for u8's.
2937                (self as i32).wrapping_sub(other as i32).unsigned_abs() as Self
2938            } else {
2939                if self < other {
2940                    other - self
2941                } else {
2942                    self - other
2943                }
2944            }
2945        }
2946
2947        /// Calculates the multiplication of `self` and `rhs`.
2948        ///
2949        /// Returns a tuple of the multiplication along with a boolean
2950        /// indicating whether an arithmetic overflow would occur. If an
2951        /// overflow would have occurred then the wrapped value is returned.
2952        ///
2953        /// If you want the *value* of the overflow, rather than just *whether*
2954        /// an overflow occurred, see [`Self::carrying_mul`].
2955        ///
2956        /// # Examples
2957        ///
2958        /// Please note that this example is shared among integer types, which is why `u32` is used.
2959        ///
2960        /// ```
2961        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
2962        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
2963        /// ```
2964        #[stable(feature = "wrapping", since = "1.7.0")]
2965        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2966        #[must_use = "this returns the result of the operation, \
2967                          without modifying the original"]
2968        #[inline(always)]
2969        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2970            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2971            (a as Self, b)
2972        }
2973
2974        /// Calculates the complete double-width product `self * rhs`.
2975        ///
2976        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2977        /// of the result as two separate values, in that order. As such,
2978        /// `a.widening_mul(b).0` produces the same result as `a.wrapping_mul(b)`.
2979        ///
2980        /// If you also need to add a value and carry to the wide result, then you want
2981        /// [`Self::carrying_mul_add`] instead.
2982        ///
2983        /// If you also need to add a carry to the wide result, then you want
2984        /// [`Self::carrying_mul`] instead.
2985        ///
2986        /// If you just want to know *whether* the multiplication overflowed, then you
2987        /// want [`Self::overflowing_mul`] instead.
2988        ///
2989        /// # Examples
2990        ///
2991        /// ```
2992        /// #![feature(bigint_helper_methods)]
2993        #[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".widening_mul(7), (35, 0));")]
2994        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.widening_mul(", stringify!($SelfT), "::MAX), (1, ", stringify!($SelfT), "::MAX - 1));")]
2995        /// ```
2996        ///
2997        /// Compared to other `*_mul` methods:
2998        /// ```
2999        /// #![feature(bigint_helper_methods)]
3000        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::widening_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, 3));")]
3001        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::overflowing_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, true));")]
3002        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::wrapping_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), 0);")]
3003        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::checked_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), None);")]
3004        /// ```
3005        ///
3006        /// Please note that this example is shared among integer types, which is why `u32` is used.
3007        ///
3008        /// ```
3009        /// #![feature(bigint_helper_methods)]
3010        /// assert_eq!(5u32.widening_mul(2), (10, 0));
3011        /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
3012        /// ```
3013        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
3014        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3015        #[must_use = "this returns the result of the operation, \
3016                      without modifying the original"]
3017        #[inline]
3018        pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
3019            Self::carrying_mul_add(self, rhs, 0, 0)
3020        }
3021
3022        /// Calculates the "full multiplication" `self * rhs + carry`
3023        /// without the possibility to overflow.
3024        ///
3025        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
3026        /// of the result as two separate values, in that order.
3027        ///
3028        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
3029        /// additional amount of overflow. This allows for chaining together multiple
3030        /// multiplications to create "big integers" which represent larger values.
3031        ///
3032        /// If you also need to add a value, then use [`Self::carrying_mul_add`].
3033        ///
3034        /// # Examples
3035        ///
3036        /// Please note that this example is shared among integer types, which is why `u32` is used.
3037        ///
3038        /// ```
3039        /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
3040        /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
3041        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
3042        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
3043        #[doc = concat!("assert_eq!(",
3044            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
3045            "(0, ", stringify!($SelfT), "::MAX));"
3046        )]
3047        /// ```
3048        ///
3049        /// This is the core operation needed for scalar multiplication when
3050        /// implementing it for wider-than-native types.
3051        ///
3052        /// ```
3053        /// #![feature(bigint_helper_methods)]
3054        /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
3055        ///     let mut carry = 0;
3056        ///     for d in little_endian_digits.iter_mut() {
3057        ///         (*d, carry) = d.carrying_mul(multiplicand, carry);
3058        ///     }
3059        ///     if carry != 0 {
3060        ///         little_endian_digits.push(carry);
3061        ///     }
3062        /// }
3063        ///
3064        /// let mut v = vec![10, 20];
3065        /// scalar_mul_eq(&mut v, 3);
3066        /// assert_eq!(v, [30, 60]);
3067        ///
3068        /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
3069        /// let mut v = vec![0x4321, 0x8765];
3070        /// scalar_mul_eq(&mut v, 0xFEED);
3071        /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
3072        /// ```
3073        ///
3074        /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
3075        /// except that it gives the value of the overflow instead of just whether one happened:
3076        ///
3077        /// ```
3078        /// #![feature(bigint_helper_methods)]
3079        /// let r = u8::carrying_mul(7, 13, 0);
3080        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
3081        /// let r = u8::carrying_mul(13, 42, 0);
3082        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
3083        /// ```
3084        ///
3085        /// The value of the first field in the returned tuple matches what you'd get
3086        /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
3087        /// [`wrapping_add`](Self::wrapping_add) methods:
3088        ///
3089        /// ```
3090        /// #![feature(bigint_helper_methods)]
3091        /// assert_eq!(
3092        ///     789_u16.carrying_mul(456, 123).0,
3093        ///     789_u16.wrapping_mul(456).wrapping_add(123),
3094        /// );
3095        /// ```
3096        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
3097        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3098        #[must_use = "this returns the result of the operation, \
3099                      without modifying the original"]
3100        #[inline]
3101        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
3102            Self::carrying_mul_add(self, rhs, carry, 0)
3103        }
3104
3105        /// Calculates the "full multiplication" `self * rhs + carry + add`.
3106        ///
3107        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
3108        /// of the result as two separate values, in that order.
3109        ///
3110        /// This cannot overflow, as the double-width result has exactly enough
3111        /// space for the largest possible result. This is equivalent to how, in
3112        /// decimal, 9 × 9 + 9 + 9 = 81 + 18 = 99 = 9×10⁰ + 9×10¹ = 10² - 1.
3113        ///
3114        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
3115        /// additional amount of overflow. This allows for chaining together multiple
3116        /// multiplications to create "big integers" which represent larger values.
3117        ///
3118        /// If you don't need the `add` part, then you can use [`Self::carrying_mul`] instead.
3119        ///
3120        /// # Examples
3121        ///
3122        /// Please note that this example is shared between integer types,
3123        /// which explains why `u32` is used here.
3124        ///
3125        /// ```
3126        /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
3127        /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
3128        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
3129        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
3130        #[doc = concat!("assert_eq!(",
3131            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
3132            "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
3133        )]
3134        /// ```
3135        ///
3136        /// This is the core per-digit operation for "grade school" O(n²) multiplication.
3137        ///
3138        /// Please note that this example is shared between integer types,
3139        /// using `u8` for simplicity of the demonstration.
3140        ///
3141        /// ```
3142        /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
3143        ///     let mut out = [0; N];
3144        ///     for j in 0..N {
3145        ///         let mut carry = 0;
3146        ///         for i in 0..(N - j) {
3147        ///             (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
3148        ///         }
3149        ///     }
3150        ///     out
3151        /// }
3152        ///
3153        /// // -1 * -1 == 1
3154        /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
3155        ///
3156        /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xcffc982d);
3157        /// assert_eq!(
3158        ///     quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
3159        ///     u32::to_le_bytes(0xcffc982d)
3160        /// );
3161        /// ```
3162        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
3163        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3164        #[must_use = "this returns the result of the operation, \
3165                      without modifying the original"]
3166        #[inline]
3167        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
3168            intrinsics::carrying_mul_add(self, rhs, carry, add)
3169        }
3170
3171        /// Calculates the divisor when `self` is divided by `rhs`.
3172        ///
3173        /// Returns a tuple of the divisor along with a boolean indicating
3174        /// whether an arithmetic overflow would occur. Note that for unsigned
3175        /// integers overflow never occurs, so the second value is always
3176        /// `false`.
3177        ///
3178        /// # Panics
3179        ///
3180        /// This function will panic if `rhs` is zero.
3181        ///
3182        /// # Examples
3183        ///
3184        /// ```
3185        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
3186        /// ```
3187        #[inline(always)]
3188        #[stable(feature = "wrapping", since = "1.7.0")]
3189        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
3190        #[must_use = "this returns the result of the operation, \
3191                      without modifying the original"]
3192        #[track_caller]
3193        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
3194            (self / rhs, false)
3195        }
3196
3197        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
3198        ///
3199        /// Returns a tuple of the divisor along with a boolean indicating
3200        /// whether an arithmetic overflow would occur. Note that for unsigned
3201        /// integers overflow never occurs, so the second value is always
3202        /// `false`.
3203        /// Since, for the positive integers, all common
3204        /// definitions of division are equal, this
3205        /// is exactly equal to `self.overflowing_div(rhs)`.
3206        ///
3207        /// # Panics
3208        ///
3209        /// This function will panic if `rhs` is zero.
3210        ///
3211        /// # Examples
3212        ///
3213        /// ```
3214        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
3215        /// ```
3216        #[inline(always)]
3217        #[stable(feature = "euclidean_division", since = "1.38.0")]
3218        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3219        #[must_use = "this returns the result of the operation, \
3220                      without modifying the original"]
3221        #[track_caller]
3222        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
3223            (self / rhs, false)
3224        }
3225
3226        /// Calculates the remainder when `self` is divided by `rhs`.
3227        ///
3228        /// Returns a tuple of the remainder after dividing along with a boolean
3229        /// indicating whether an arithmetic overflow would occur. Note that for
3230        /// unsigned integers overflow never occurs, so the second value is
3231        /// always `false`.
3232        ///
3233        /// # Panics
3234        ///
3235        /// This function will panic if `rhs` is zero.
3236        ///
3237        /// # Examples
3238        ///
3239        /// ```
3240        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
3241        /// ```
3242        #[inline(always)]
3243        #[stable(feature = "wrapping", since = "1.7.0")]
3244        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
3245        #[must_use = "this returns the result of the operation, \
3246                      without modifying the original"]
3247        #[track_caller]
3248        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
3249            (self % rhs, false)
3250        }
3251
3252        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
3253        ///
3254        /// Returns a tuple of the modulo after dividing along with a boolean
3255        /// indicating whether an arithmetic overflow would occur. Note that for
3256        /// unsigned integers overflow never occurs, so the second value is
3257        /// always `false`.
3258        /// Since, for the positive integers, all common
3259        /// definitions of division are equal, this operation
3260        /// is exactly equal to `self.overflowing_rem(rhs)`.
3261        ///
3262        /// # Panics
3263        ///
3264        /// This function will panic if `rhs` is zero.
3265        ///
3266        /// # Examples
3267        ///
3268        /// ```
3269        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
3270        /// ```
3271        #[inline(always)]
3272        #[stable(feature = "euclidean_division", since = "1.38.0")]
3273        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3274        #[must_use = "this returns the result of the operation, \
3275                      without modifying the original"]
3276        #[track_caller]
3277        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
3278            (self % rhs, false)
3279        }
3280
3281        /// Negates self in an overflowing fashion.
3282        ///
3283        /// Returns `!self + 1` using wrapping operations to return the value
3284        /// that represents the negation of this unsigned value. Note that for
3285        /// positive unsigned values overflow always occurs, but negating 0 does
3286        /// not overflow.
3287        ///
3288        /// # Examples
3289        ///
3290        /// ```
3291        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
3292        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
3293        /// ```
3294        #[inline(always)]
3295        #[stable(feature = "wrapping", since = "1.7.0")]
3296        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3297        #[must_use = "this returns the result of the operation, \
3298                      without modifying the original"]
3299        pub const fn overflowing_neg(self) -> (Self, bool) {
3300            ((!self).wrapping_add(1), self != 0)
3301        }
3302
3303        /// Shifts self left by `rhs` bits.
3304        ///
3305        /// Returns a tuple of the shifted version of self along with a boolean
3306        /// indicating whether the shift value was larger than or equal to the
3307        /// number of bits. If the shift value is too large, then value is
3308        /// masked (N-1) where N is the number of bits, and this value is then
3309        /// used to perform the shift.
3310        ///
3311        /// # Examples
3312        ///
3313        /// ```
3314        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
3315        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
3316        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
3317        /// ```
3318        #[stable(feature = "wrapping", since = "1.7.0")]
3319        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3320        #[must_use = "this returns the result of the operation, \
3321                      without modifying the original"]
3322        #[inline(always)]
3323        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
3324            (self.wrapping_shl(rhs), rhs >= Self::BITS)
3325        }
3326
3327        /// Shifts self right by `rhs` bits.
3328        ///
3329        /// Returns a tuple of the shifted version of self along with a boolean
3330        /// indicating whether the shift value was larger than or equal to the
3331        /// number of bits. If the shift value is too large, then value is
3332        /// masked (N-1) where N is the number of bits, and this value is then
3333        /// used to perform the shift.
3334        ///
3335        /// # Examples
3336        ///
3337        /// ```
3338        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
3339        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
3340        /// ```
3341        #[stable(feature = "wrapping", since = "1.7.0")]
3342        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3343        #[must_use = "this returns the result of the operation, \
3344                      without modifying the original"]
3345        #[inline(always)]
3346        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
3347            (self.wrapping_shr(rhs), rhs >= Self::BITS)
3348        }
3349
3350        /// Raises self to the power of `exp`, using exponentiation by squaring.
3351        ///
3352        /// Returns a tuple of the exponentiation along with a bool indicating
3353        /// whether an overflow happened.
3354        ///
3355        /// # Examples
3356        ///
3357        /// ```
3358        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
3359        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".overflowing_pow(0), (1, false));")]
3360        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
3361        /// ```
3362        #[stable(feature = "no_panic_pow", since = "1.34.0")]
3363        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3364        #[must_use = "this returns the result of the operation, \
3365                      without modifying the original"]
3366        #[inline]
3367        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
3368            if exp == 0{
3369                return (1,false);
3370            }
3371            let mut base = self;
3372            let mut acc: Self = 1;
3373            let mut overflown = false;
3374            // Scratch space for storing results of overflowing_mul.
3375            let mut r;
3376
3377            loop {
3378                if (exp & 1) == 1 {
3379                    r = acc.overflowing_mul(base);
3380                    // since exp!=0, finally the exp must be 1.
3381                    if exp == 1 {
3382                        r.1 |= overflown;
3383                        return r;
3384                    }
3385                    acc = r.0;
3386                    overflown |= r.1;
3387                }
3388                exp /= 2;
3389                r = base.overflowing_mul(base);
3390                base = r.0;
3391                overflown |= r.1;
3392            }
3393        }
3394
3395        /// Raises self to the power of `exp`, using exponentiation by squaring.
3396        ///
3397        /// # Examples
3398        ///
3399        /// ```
3400        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
3401        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".pow(0), 1);")]
3402        /// ```
3403        #[stable(feature = "rust1", since = "1.0.0")]
3404        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3405        #[must_use = "this returns the result of the operation, \
3406                      without modifying the original"]
3407        #[inline]
3408        #[rustc_inherit_overflow_checks]
3409        pub const fn pow(self, mut exp: u32) -> Self {
3410            if exp == 0 {
3411                return 1;
3412            }
3413            let mut base = self;
3414            let mut acc = 1;
3415
3416            if intrinsics::is_val_statically_known(exp) {
3417                while exp > 1 {
3418                    if (exp & 1) == 1 {
3419                        acc = acc * base;
3420                    }
3421                    exp /= 2;
3422                    base = base * base;
3423                }
3424
3425                // since exp!=0, finally the exp must be 1.
3426                // Deal with the final bit of the exponent separately, since
3427                // squaring the base afterwards is not necessary and may cause a
3428                // needless overflow.
3429                acc * base
3430            } else {
3431                // This is faster than the above when the exponent is not known
3432                // at compile time. We can't use the same code for the constant
3433                // exponent case because LLVM is currently unable to unroll
3434                // this loop.
3435                loop {
3436                    if (exp & 1) == 1 {
3437                        acc = acc * base;
3438                        // since exp!=0, finally the exp must be 1.
3439                        if exp == 1 {
3440                            return acc;
3441                        }
3442                    }
3443                    exp /= 2;
3444                    base = base * base;
3445                }
3446            }
3447        }
3448
3449        /// Returns the square root of the number, rounded down.
3450        ///
3451        /// # Examples
3452        ///
3453        /// ```
3454        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3455        /// ```
3456        #[stable(feature = "isqrt", since = "1.84.0")]
3457        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3458        #[must_use = "this returns the result of the operation, \
3459                      without modifying the original"]
3460        #[inline]
3461        pub const fn isqrt(self) -> Self {
3462            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
3463
3464            // Inform the optimizer what the range of outputs is. If testing
3465            // `core` crashes with no panic message and a `num::int_sqrt::u*`
3466            // test failed, it's because your edits caused these assertions or
3467            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
3468            //
3469            // SAFETY: Integer square root is a monotonically nondecreasing
3470            // function, which means that increasing the input will never
3471            // cause the output to decrease. Thus, since the input for unsigned
3472            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
3473            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
3474            unsafe {
3475                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
3476                crate::hint::assert_unchecked(result <= MAX_RESULT);
3477            }
3478
3479            result
3480        }
3481
3482        /// Performs Euclidean division.
3483        ///
3484        /// Since, for the positive integers, all common
3485        /// definitions of division are equal, this
3486        /// is exactly equal to `self / rhs`.
3487        ///
3488        /// # Panics
3489        ///
3490        /// This function will panic if `rhs` is zero.
3491        ///
3492        /// # Examples
3493        ///
3494        /// ```
3495        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
3496        /// ```
3497        #[stable(feature = "euclidean_division", since = "1.38.0")]
3498        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3499        #[must_use = "this returns the result of the operation, \
3500                      without modifying the original"]
3501        #[inline(always)]
3502        #[track_caller]
3503        pub const fn div_euclid(self, rhs: Self) -> Self {
3504            self / rhs
3505        }
3506
3507
3508        /// Calculates the least remainder of `self` when divided by
3509        /// `rhs`.
3510        ///
3511        /// Since, for the positive integers, all common
3512        /// definitions of division are equal, this
3513        /// is exactly equal to `self % rhs`.
3514        ///
3515        /// # Panics
3516        ///
3517        /// This function will panic if `rhs` is zero.
3518        ///
3519        /// # Examples
3520        ///
3521        /// ```
3522        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
3523        /// ```
3524        #[doc(alias = "modulo", alias = "mod")]
3525        #[stable(feature = "euclidean_division", since = "1.38.0")]
3526        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3527        #[must_use = "this returns the result of the operation, \
3528                      without modifying the original"]
3529        #[inline(always)]
3530        #[track_caller]
3531        pub const fn rem_euclid(self, rhs: Self) -> Self {
3532            self % rhs
3533        }
3534
3535        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3536        ///
3537        /// This is the same as performing `self / rhs` for all unsigned integers.
3538        ///
3539        /// # Panics
3540        ///
3541        /// This function will panic if `rhs` is zero.
3542        ///
3543        /// # Examples
3544        ///
3545        /// ```
3546        /// #![feature(int_roundings)]
3547        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
3548        /// ```
3549        #[unstable(feature = "int_roundings", issue = "88581")]
3550        #[must_use = "this returns the result of the operation, \
3551                      without modifying the original"]
3552        #[inline(always)]
3553        #[track_caller]
3554        pub const fn div_floor(self, rhs: Self) -> Self {
3555            self / rhs
3556        }
3557
3558        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3559        ///
3560        /// # Panics
3561        ///
3562        /// This function will panic if `rhs` is zero.
3563        ///
3564        /// # Examples
3565        ///
3566        /// ```
3567        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
3568        /// ```
3569        #[stable(feature = "int_roundings1", since = "1.73.0")]
3570        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3571        #[must_use = "this returns the result of the operation, \
3572                      without modifying the original"]
3573        #[inline]
3574        #[track_caller]
3575        pub const fn div_ceil(self, rhs: Self) -> Self {
3576            let d = self / rhs;
3577            let r = self % rhs;
3578            if r > 0 {
3579                d + 1
3580            } else {
3581                d
3582            }
3583        }
3584
3585        /// Calculates the smallest value greater than or equal to `self` that
3586        /// is a multiple of `rhs`.
3587        ///
3588        /// # Panics
3589        ///
3590        /// This function will panic if `rhs` is zero.
3591        ///
3592        /// ## Overflow behavior
3593        ///
3594        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3595        /// mode) and wrap if overflow checks are disabled (default in release mode).
3596        ///
3597        /// # Examples
3598        ///
3599        /// ```
3600        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3601        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3602        /// ```
3603        #[stable(feature = "int_roundings1", since = "1.73.0")]
3604        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3605        #[must_use = "this returns the result of the operation, \
3606                      without modifying the original"]
3607        #[inline]
3608        #[rustc_inherit_overflow_checks]
3609        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3610            match self % rhs {
3611                0 => self,
3612                r => self + (rhs - r)
3613            }
3614        }
3615
3616        /// Calculates the smallest value greater than or equal to `self` that
3617        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
3618        /// operation would result in overflow.
3619        ///
3620        /// # Examples
3621        ///
3622        /// ```
3623        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3624        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3625        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3626        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3627        /// ```
3628        #[stable(feature = "int_roundings1", since = "1.73.0")]
3629        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3630        #[must_use = "this returns the result of the operation, \
3631                      without modifying the original"]
3632        #[inline]
3633        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3634            match try_opt!(self.checked_rem(rhs)) {
3635                0 => Some(self),
3636                // rhs - r cannot overflow because r is smaller than rhs
3637                r => self.checked_add(rhs - r)
3638            }
3639        }
3640
3641        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
3642        ///
3643        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
3644        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
3645        /// `n.is_multiple_of(0) == false`.
3646        ///
3647        /// # Examples
3648        ///
3649        /// ```
3650        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
3651        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
3652        ///
3653        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
3654        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
3655        /// ```
3656        #[stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3657        #[rustc_const_stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3658        #[must_use]
3659        #[inline]
3660        pub const fn is_multiple_of(self, rhs: Self) -> bool {
3661            match rhs {
3662                0 => self == 0,
3663                _ => self % rhs == 0,
3664            }
3665        }
3666
3667        /// Returns `true` if and only if `self == 2^k` for some unsigned integer `k`.
3668        ///
3669        /// # Examples
3670        ///
3671        /// ```
3672        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
3673        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
3674        /// ```
3675        #[must_use]
3676        #[stable(feature = "rust1", since = "1.0.0")]
3677        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
3678        #[inline(always)]
3679        pub const fn is_power_of_two(self) -> bool {
3680            self.count_ones() == 1
3681        }
3682
3683        // Returns one less than next power of two.
3684        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
3685        //
3686        // 8u8.one_less_than_next_power_of_two() == 7
3687        // 6u8.one_less_than_next_power_of_two() == 7
3688        //
3689        // This method cannot overflow, as in the `next_power_of_two`
3690        // overflow cases it instead ends up returning the maximum value
3691        // of the type, and can return 0 for 0.
3692        #[inline]
3693        const fn one_less_than_next_power_of_two(self) -> Self {
3694            if self <= 1 { return 0; }
3695
3696            let p = self - 1;
3697            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
3698            // That means the shift is always in-bounds, and some processors
3699            // (such as intel pre-haswell) have more efficient ctlz
3700            // intrinsics when the argument is non-zero.
3701            let z = unsafe { intrinsics::ctlz_nonzero(p) };
3702            <$SelfT>::MAX >> z
3703        }
3704
3705        /// Returns the smallest power of two greater than or equal to `self`.
3706        ///
3707        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
3708        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
3709        /// release mode (the only situation in which this method can return 0).
3710        ///
3711        /// # Examples
3712        ///
3713        /// ```
3714        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
3715        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
3716        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
3717        /// ```
3718        #[stable(feature = "rust1", since = "1.0.0")]
3719        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3720        #[must_use = "this returns the result of the operation, \
3721                      without modifying the original"]
3722        #[inline]
3723        #[rustc_inherit_overflow_checks]
3724        pub const fn next_power_of_two(self) -> Self {
3725            self.one_less_than_next_power_of_two() + 1
3726        }
3727
3728        /// Returns the smallest power of two greater than or equal to `self`. If
3729        /// the next power of two is greater than the type's maximum value,
3730        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
3731        ///
3732        /// # Examples
3733        ///
3734        /// ```
3735        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
3736        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
3737        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
3738        /// ```
3739        #[inline]
3740        #[stable(feature = "rust1", since = "1.0.0")]
3741        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3742        #[must_use = "this returns the result of the operation, \
3743                      without modifying the original"]
3744        pub const fn checked_next_power_of_two(self) -> Option<Self> {
3745            self.one_less_than_next_power_of_two().checked_add(1)
3746        }
3747
3748        /// Returns the smallest power of two greater than or equal to `n`. If
3749        /// the next power of two is greater than the type's maximum value,
3750        /// the return value is wrapped to `0`.
3751        ///
3752        /// # Examples
3753        ///
3754        /// ```
3755        /// #![feature(wrapping_next_power_of_two)]
3756        ///
3757        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
3758        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
3759        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
3760        /// ```
3761        #[inline]
3762        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
3763                   reason = "needs decision on wrapping behavior")]
3764        #[must_use = "this returns the result of the operation, \
3765                      without modifying the original"]
3766        pub const fn wrapping_next_power_of_two(self) -> Self {
3767            self.one_less_than_next_power_of_two().wrapping_add(1)
3768        }
3769
3770        /// Returns the memory representation of this integer as a byte array in
3771        /// big-endian (network) byte order.
3772        ///
3773        #[doc = $to_xe_bytes_doc]
3774        ///
3775        /// # Examples
3776        ///
3777        /// ```
3778        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3779        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3780        /// ```
3781        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3782        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3783        #[must_use = "this returns the result of the operation, \
3784                      without modifying the original"]
3785        #[inline]
3786        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3787            self.to_be().to_ne_bytes()
3788        }
3789
3790        /// Returns the memory representation of this integer as a byte array in
3791        /// little-endian byte order.
3792        ///
3793        #[doc = $to_xe_bytes_doc]
3794        ///
3795        /// # Examples
3796        ///
3797        /// ```
3798        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3799        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3800        /// ```
3801        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3802        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3803        #[must_use = "this returns the result of the operation, \
3804                      without modifying the original"]
3805        #[inline]
3806        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3807            self.to_le().to_ne_bytes()
3808        }
3809
3810        /// Returns the memory representation of this integer as a byte array in
3811        /// native byte order.
3812        ///
3813        /// As the target platform's native endianness is used, portable code
3814        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3815        /// instead.
3816        ///
3817        #[doc = $to_xe_bytes_doc]
3818        ///
3819        /// [`to_be_bytes`]: Self::to_be_bytes
3820        /// [`to_le_bytes`]: Self::to_le_bytes
3821        ///
3822        /// # Examples
3823        ///
3824        /// ```
3825        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3826        /// assert_eq!(
3827        ///     bytes,
3828        ///     if cfg!(target_endian = "big") {
3829        #[doc = concat!("        ", $be_bytes)]
3830        ///     } else {
3831        #[doc = concat!("        ", $le_bytes)]
3832        ///     }
3833        /// );
3834        /// ```
3835        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3836        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3837        #[must_use = "this returns the result of the operation, \
3838                      without modifying the original"]
3839        #[allow(unnecessary_transmutes)]
3840        // SAFETY: const sound because integers are plain old datatypes so we can always
3841        // transmute them to arrays of bytes
3842        #[inline]
3843        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3844            // SAFETY: integers are plain old datatypes so we can always transmute them to
3845            // arrays of bytes
3846            unsafe { mem::transmute(self) }
3847        }
3848
3849        /// Creates a native endian integer value from its representation
3850        /// as a byte array in big endian.
3851        ///
3852        #[doc = $from_xe_bytes_doc]
3853        ///
3854        /// # Examples
3855        ///
3856        /// ```
3857        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3858        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3859        /// ```
3860        ///
3861        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3862        ///
3863        /// ```
3864        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3865        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3866        ///     *input = rest;
3867        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3868        /// }
3869        /// ```
3870        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3871        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3872        #[must_use]
3873        #[inline]
3874        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3875            Self::from_be(Self::from_ne_bytes(bytes))
3876        }
3877
3878        /// Creates a native endian integer value from its representation
3879        /// as a byte array in little endian.
3880        ///
3881        #[doc = $from_xe_bytes_doc]
3882        ///
3883        /// # Examples
3884        ///
3885        /// ```
3886        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3887        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3888        /// ```
3889        ///
3890        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3891        ///
3892        /// ```
3893        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3894        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3895        ///     *input = rest;
3896        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3897        /// }
3898        /// ```
3899        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3900        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3901        #[must_use]
3902        #[inline]
3903        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3904            Self::from_le(Self::from_ne_bytes(bytes))
3905        }
3906
3907        /// Creates a native endian integer value from its memory representation
3908        /// as a byte array in native endianness.
3909        ///
3910        /// As the target platform's native endianness is used, portable code
3911        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3912        /// appropriate instead.
3913        ///
3914        /// [`from_be_bytes`]: Self::from_be_bytes
3915        /// [`from_le_bytes`]: Self::from_le_bytes
3916        ///
3917        #[doc = $from_xe_bytes_doc]
3918        ///
3919        /// # Examples
3920        ///
3921        /// ```
3922        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3923        #[doc = concat!("    ", $be_bytes, "")]
3924        /// } else {
3925        #[doc = concat!("    ", $le_bytes, "")]
3926        /// });
3927        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3928        /// ```
3929        ///
3930        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3931        ///
3932        /// ```
3933        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3934        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3935        ///     *input = rest;
3936        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3937        /// }
3938        /// ```
3939        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3940        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3941        #[allow(unnecessary_transmutes)]
3942        #[must_use]
3943        // SAFETY: const sound because integers are plain old datatypes so we can always
3944        // transmute to them
3945        #[inline]
3946        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3947            // SAFETY: integers are plain old datatypes so we can always transmute to them
3948            unsafe { mem::transmute(bytes) }
3949        }
3950
3951        /// New code should prefer to use
3952        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3953        ///
3954        /// Returns the smallest value that can be represented by this integer type.
3955        #[stable(feature = "rust1", since = "1.0.0")]
3956        #[rustc_promotable]
3957        #[inline(always)]
3958        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3959        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3960        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3961        pub const fn min_value() -> Self { Self::MIN }
3962
3963        /// New code should prefer to use
3964        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3965        ///
3966        /// Returns the largest value that can be represented by this integer type.
3967        #[stable(feature = "rust1", since = "1.0.0")]
3968        #[rustc_promotable]
3969        #[inline(always)]
3970        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3971        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3972        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3973        pub const fn max_value() -> Self { Self::MAX }
3974    }
3975}