core/alloc/layout.rs
1// Seemingly inconsequential code changes to this file can lead to measurable
2// performance impact on compilation times, due at least in part to the fact
3// that the layout code gets called from many instantiations of the various
4// collections, resulting in having to optimize down excess IR multiple times.
5// Your performance intuition is useless. Run perf.
6
7use crate::error::Error;
8use crate::intrinsics::{unchecked_add, unchecked_mul, unchecked_sub};
9use crate::mem::SizedTypeProperties;
10use crate::ptr::{Alignment, NonNull};
11use crate::{assert_unsafe_precondition, fmt, mem};
12
13/// Layout of a block of memory.
14///
15/// An instance of `Layout` describes a particular layout of memory.
16/// You build a `Layout` up as an input to give to an allocator.
17///
18/// All layouts have an associated size and a power-of-two alignment. The size, when rounded up to
19/// the nearest multiple of `align`, does not overflow `isize` (i.e., the rounded value will always be
20/// less than or equal to `isize::MAX`).
21///
22/// (Note that layouts are *not* required to have non-zero size,
23/// even though `GlobalAlloc` requires that all memory requests
24/// be non-zero in size. A caller must either ensure that conditions
25/// like this are met, use specific allocators with looser
26/// requirements, or use the more lenient `Allocator` interface.)
27#[stable(feature = "alloc_layout", since = "1.28.0")]
28#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
29#[lang = "alloc_layout"]
30pub struct Layout {
31 // size of the requested block of memory, measured in bytes.
32 size: usize,
33
34 // alignment of the requested block of memory, measured in bytes.
35 // we ensure that this is always a power-of-two, because API's
36 // like `posix_memalign` require it and it is a reasonable
37 // constraint to impose on Layout constructors.
38 //
39 // (However, we do not analogously require `align >= sizeof(void*)`,
40 // even though that is *also* a requirement of `posix_memalign`.)
41 align: Alignment,
42}
43
44impl Layout {
45 /// Constructs a `Layout` from a given `size` and `align`,
46 /// or returns `LayoutError` if any of the following conditions
47 /// are not met:
48 ///
49 /// * `align` must not be zero,
50 ///
51 /// * `align` must be a power of two,
52 ///
53 /// * `size`, when rounded up to the nearest multiple of `align`,
54 /// must not overflow `isize` (i.e., the rounded value must be
55 /// less than or equal to `isize::MAX`).
56 #[stable(feature = "alloc_layout", since = "1.28.0")]
57 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
58 #[inline]
59 pub const fn from_size_align(size: usize, align: usize) -> Result<Self, LayoutError> {
60 if Layout::is_size_align_valid(size, align) {
61 // SAFETY: Layout::is_size_align_valid checks the preconditions for this call.
62 unsafe { Ok(Layout { size, align: mem::transmute(align) }) }
63 } else {
64 Err(LayoutError)
65 }
66 }
67
68 const fn is_size_align_valid(size: usize, align: usize) -> bool {
69 let Some(align) = Alignment::new(align) else { return false };
70 if size > Self::max_size_for_align(align) {
71 return false;
72 }
73 true
74 }
75
76 #[inline(always)]
77 const fn max_size_for_align(align: Alignment) -> usize {
78 // (power-of-two implies align != 0.)
79
80 // Rounded up size is:
81 // size_rounded_up = (size + align - 1) & !(align - 1);
82 //
83 // We know from above that align != 0. If adding (align - 1)
84 // does not overflow, then rounding up will be fine.
85 //
86 // Conversely, &-masking with !(align - 1) will subtract off
87 // only low-order-bits. Thus if overflow occurs with the sum,
88 // the &-mask cannot subtract enough to undo that overflow.
89 //
90 // Above implies that checking for summation overflow is both
91 // necessary and sufficient.
92
93 // SAFETY: the maximum possible alignment is `isize::MAX + 1`,
94 // so the subtraction cannot overflow.
95 unsafe { unchecked_sub(isize::MAX as usize + 1, align.as_usize()) }
96 }
97
98 /// Internal helper constructor to skip revalidating alignment validity.
99 #[inline]
100 const fn from_size_alignment(size: usize, align: Alignment) -> Result<Self, LayoutError> {
101 if size > Self::max_size_for_align(align) {
102 return Err(LayoutError);
103 }
104
105 // SAFETY: Layout::size invariants checked above.
106 Ok(Layout { size, align })
107 }
108
109 /// Creates a layout, bypassing all checks.
110 ///
111 /// # Safety
112 ///
113 /// This function is unsafe as it does not verify the preconditions from
114 /// [`Layout::from_size_align`].
115 #[stable(feature = "alloc_layout", since = "1.28.0")]
116 #[rustc_const_stable(feature = "const_alloc_layout_unchecked", since = "1.36.0")]
117 #[must_use]
118 #[inline]
119 #[track_caller]
120 pub const unsafe fn from_size_align_unchecked(size: usize, align: usize) -> Self {
121 assert_unsafe_precondition!(
122 check_library_ub,
123 "Layout::from_size_align_unchecked requires that align is a power of 2 \
124 and the rounded-up allocation size does not exceed isize::MAX",
125 (
126 size: usize = size,
127 align: usize = align,
128 ) => Layout::is_size_align_valid(size, align)
129 );
130 // SAFETY: the caller is required to uphold the preconditions.
131 unsafe { Layout { size, align: mem::transmute(align) } }
132 }
133
134 /// The minimum size in bytes for a memory block of this layout.
135 #[stable(feature = "alloc_layout", since = "1.28.0")]
136 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
137 #[must_use]
138 #[inline]
139 pub const fn size(&self) -> usize {
140 self.size
141 }
142
143 /// The minimum byte alignment for a memory block of this layout.
144 ///
145 /// The returned alignment is guaranteed to be a power of two.
146 #[stable(feature = "alloc_layout", since = "1.28.0")]
147 #[rustc_const_stable(feature = "const_alloc_layout_size_align", since = "1.50.0")]
148 #[must_use = "this returns the minimum alignment, \
149 without modifying the layout"]
150 #[inline]
151 pub const fn align(&self) -> usize {
152 self.align.as_usize()
153 }
154
155 /// Constructs a `Layout` suitable for holding a value of type `T`.
156 #[stable(feature = "alloc_layout", since = "1.28.0")]
157 #[rustc_const_stable(feature = "alloc_layout_const_new", since = "1.42.0")]
158 #[must_use]
159 #[inline]
160 pub const fn new<T>() -> Self {
161 <T as SizedTypeProperties>::LAYOUT
162 }
163
164 /// Produces layout describing a record that could be used to
165 /// allocate backing structure for `T` (which could be a trait
166 /// or other unsized type like a slice).
167 #[stable(feature = "alloc_layout", since = "1.28.0")]
168 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
169 #[must_use]
170 #[inline]
171 pub const fn for_value<T: ?Sized>(t: &T) -> Self {
172 let (size, align) = (size_of_val(t), align_of_val(t));
173 // SAFETY: see rationale in `new` for why this is using the unsafe variant
174 unsafe { Layout::from_size_align_unchecked(size, align) }
175 }
176
177 /// Produces layout describing a record that could be used to
178 /// allocate backing structure for `T` (which could be a trait
179 /// or other unsized type like a slice).
180 ///
181 /// # Safety
182 ///
183 /// This function is only safe to call if the following conditions hold:
184 ///
185 /// - If `T` is `Sized`, this function is always safe to call.
186 /// - If the unsized tail of `T` is:
187 /// - a [slice], then the length of the slice tail must be an initialized
188 /// integer, and the size of the *entire value*
189 /// (dynamic tail length + statically sized prefix) must fit in `isize`.
190 /// For the special case where the dynamic tail length is 0, this function
191 /// is safe to call.
192 /// - a [trait object], then the vtable part of the pointer must point
193 /// to a valid vtable for the type `T` acquired by an unsizing coercion,
194 /// and the size of the *entire value*
195 /// (dynamic tail length + statically sized prefix) must fit in `isize`.
196 /// - an (unstable) [extern type], then this function is always safe to
197 /// call, but may panic or otherwise return the wrong value, as the
198 /// extern type's layout is not known. This is the same behavior as
199 /// [`Layout::for_value`] on a reference to an extern type tail.
200 /// - otherwise, it is conservatively not allowed to call this function.
201 ///
202 /// [trait object]: ../../book/ch17-02-trait-objects.html
203 /// [extern type]: ../../unstable-book/language-features/extern-types.html
204 #[unstable(feature = "layout_for_ptr", issue = "69835")]
205 #[must_use]
206 pub const unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Self {
207 // SAFETY: we pass along the prerequisites of these functions to the caller
208 let (size, align) = unsafe { (mem::size_of_val_raw(t), mem::align_of_val_raw(t)) };
209 // SAFETY: see rationale in `new` for why this is using the unsafe variant
210 unsafe { Layout::from_size_align_unchecked(size, align) }
211 }
212
213 /// Creates a `NonNull` that is dangling, but well-aligned for this Layout.
214 ///
215 /// Note that the address of the returned pointer may potentially
216 /// be that of a valid pointer, which means this must not be used
217 /// as a "not yet initialized" sentinel value.
218 /// Types that lazily allocate must track initialization by some other means.
219 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
220 #[must_use]
221 #[inline]
222 pub const fn dangling(&self) -> NonNull<u8> {
223 NonNull::without_provenance(self.align.as_nonzero())
224 }
225
226 /// Creates a layout describing the record that can hold a value
227 /// of the same layout as `self`, but that also is aligned to
228 /// alignment `align` (measured in bytes).
229 ///
230 /// If `self` already meets the prescribed alignment, then returns
231 /// `self`.
232 ///
233 /// Note that this method does not add any padding to the overall
234 /// size, regardless of whether the returned layout has a different
235 /// alignment. In other words, if `K` has size 16, `K.align_to(32)`
236 /// will *still* have size 16.
237 ///
238 /// Returns an error if the combination of `self.size()` and the given
239 /// `align` violates the conditions listed in [`Layout::from_size_align`].
240 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
241 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
242 #[inline]
243 pub const fn align_to(&self, align: usize) -> Result<Self, LayoutError> {
244 if let Some(align) = Alignment::new(align) {
245 Layout::from_size_alignment(self.size, Alignment::max(self.align, align))
246 } else {
247 Err(LayoutError)
248 }
249 }
250
251 /// Returns the amount of padding we must insert after `self`
252 /// to ensure that the following address will satisfy `align`
253 /// (measured in bytes).
254 ///
255 /// e.g., if `self.size()` is 9, then `self.padding_needed_for(4)`
256 /// returns 3, because that is the minimum number of bytes of
257 /// padding required to get a 4-aligned address (assuming that the
258 /// corresponding memory block starts at a 4-aligned address).
259 ///
260 /// The return value of this function has no meaning if `align` is
261 /// not a power-of-two.
262 ///
263 /// Note that the utility of the returned value requires `align`
264 /// to be less than or equal to the alignment of the starting
265 /// address for the whole allocated block of memory. One way to
266 /// satisfy this constraint is to ensure `align <= self.align()`.
267 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
268 #[must_use = "this returns the padding needed, \
269 without modifying the `Layout`"]
270 #[inline]
271 pub const fn padding_needed_for(&self, align: usize) -> usize {
272 // FIXME: Can we just change the type on this to `Alignment`?
273 let Some(align) = Alignment::new(align) else { return usize::MAX };
274 let len_rounded_up = self.size_rounded_up_to_custom_align(align);
275 // SAFETY: Cannot overflow because the rounded-up value is never less
276 unsafe { unchecked_sub(len_rounded_up, self.size) }
277 }
278
279 /// Returns the smallest multiple of `align` greater than or equal to `self.size()`.
280 ///
281 /// This can return at most `Alignment::MAX` (aka `isize::MAX + 1`)
282 /// because the original size is at most `isize::MAX`.
283 #[inline]
284 const fn size_rounded_up_to_custom_align(&self, align: Alignment) -> usize {
285 // SAFETY:
286 // Rounded up value is:
287 // size_rounded_up = (size + align - 1) & !(align - 1);
288 //
289 // The arithmetic we do here can never overflow:
290 //
291 // 1. align is guaranteed to be > 0, so align - 1 is always
292 // valid.
293 //
294 // 2. size is at most `isize::MAX`, so adding `align - 1` (which is at
295 // most `isize::MAX`) can never overflow a `usize`.
296 //
297 // 3. masking by the alignment can remove at most `align - 1`,
298 // which is what we just added, thus the value we return is never
299 // less than the original `size`.
300 //
301 // (Size 0 Align MAX is already aligned, so stays the same, but things like
302 // Size 1 Align MAX or Size isize::MAX Align 2 round up to `isize::MAX + 1`.)
303 unsafe {
304 let align_m1 = unchecked_sub(align.as_usize(), 1);
305 unchecked_add(self.size, align_m1) & !align_m1
306 }
307 }
308
309 /// Creates a layout by rounding the size of this layout up to a multiple
310 /// of the layout's alignment.
311 ///
312 /// This is equivalent to adding the result of `padding_needed_for`
313 /// to the layout's current size.
314 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
315 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
316 #[must_use = "this returns a new `Layout`, \
317 without modifying the original"]
318 #[inline]
319 pub const fn pad_to_align(&self) -> Layout {
320 // This cannot overflow. Quoting from the invariant of Layout:
321 // > `size`, when rounded up to the nearest multiple of `align`,
322 // > must not overflow isize (i.e., the rounded value must be
323 // > less than or equal to `isize::MAX`)
324 let new_size = self.size_rounded_up_to_custom_align(self.align);
325
326 // SAFETY: padded size is guaranteed to not exceed `isize::MAX`.
327 unsafe { Layout::from_size_align_unchecked(new_size, self.align()) }
328 }
329
330 /// Creates a layout describing the record for `n` instances of
331 /// `self`, with a suitable amount of padding between each to
332 /// ensure that each instance is given its requested size and
333 /// alignment. On success, returns `(k, offs)` where `k` is the
334 /// layout of the array and `offs` is the distance between the start
335 /// of each element in the array.
336 ///
337 /// (That distance between elements is sometimes known as "stride".)
338 ///
339 /// On arithmetic overflow, returns `LayoutError`.
340 ///
341 /// # Examples
342 ///
343 /// ```
344 /// #![feature(alloc_layout_extra)]
345 /// use std::alloc::Layout;
346 ///
347 /// // All rust types have a size that's a multiple of their alignment.
348 /// let normal = Layout::from_size_align(12, 4).unwrap();
349 /// let repeated = normal.repeat(3).unwrap();
350 /// assert_eq!(repeated, (Layout::from_size_align(36, 4).unwrap(), 12));
351 ///
352 /// // But you can manually make layouts which don't meet that rule.
353 /// let padding_needed = Layout::from_size_align(6, 4).unwrap();
354 /// let repeated = padding_needed.repeat(3).unwrap();
355 /// assert_eq!(repeated, (Layout::from_size_align(24, 4).unwrap(), 8));
356 /// ```
357 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
358 #[inline]
359 pub const fn repeat(&self, n: usize) -> Result<(Self, usize), LayoutError> {
360 let padded = self.pad_to_align();
361 if let Ok(repeated) = padded.repeat_packed(n) {
362 Ok((repeated, padded.size()))
363 } else {
364 Err(LayoutError)
365 }
366 }
367
368 /// Creates a layout describing the record for `self` followed by
369 /// `next`, including any necessary padding to ensure that `next`
370 /// will be properly aligned, but *no trailing padding*.
371 ///
372 /// In order to match C representation layout `repr(C)`, you should
373 /// call `pad_to_align` after extending the layout with all fields.
374 /// (There is no way to match the default Rust representation
375 /// layout `repr(Rust)`, as it is unspecified.)
376 ///
377 /// Note that the alignment of the resulting layout will be the maximum of
378 /// those of `self` and `next`, in order to ensure alignment of both parts.
379 ///
380 /// Returns `Ok((k, offset))`, where `k` is layout of the concatenated
381 /// record and `offset` is the relative location, in bytes, of the
382 /// start of the `next` embedded within the concatenated record
383 /// (assuming that the record itself starts at offset 0).
384 ///
385 /// On arithmetic overflow, returns `LayoutError`.
386 ///
387 /// # Examples
388 ///
389 /// To calculate the layout of a `#[repr(C)]` structure and the offsets of
390 /// the fields from its fields' layouts:
391 ///
392 /// ```rust
393 /// # use std::alloc::{Layout, LayoutError};
394 /// pub fn repr_c(fields: &[Layout]) -> Result<(Layout, Vec<usize>), LayoutError> {
395 /// let mut offsets = Vec::new();
396 /// let mut layout = Layout::from_size_align(0, 1)?;
397 /// for &field in fields {
398 /// let (new_layout, offset) = layout.extend(field)?;
399 /// layout = new_layout;
400 /// offsets.push(offset);
401 /// }
402 /// // Remember to finalize with `pad_to_align`!
403 /// Ok((layout.pad_to_align(), offsets))
404 /// }
405 /// # // test that it works
406 /// # #[repr(C)] struct S { a: u64, b: u32, c: u16, d: u32 }
407 /// # let s = Layout::new::<S>();
408 /// # let u16 = Layout::new::<u16>();
409 /// # let u32 = Layout::new::<u32>();
410 /// # let u64 = Layout::new::<u64>();
411 /// # assert_eq!(repr_c(&[u64, u32, u16, u32]), Ok((s, vec![0, 8, 12, 16])));
412 /// ```
413 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
414 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
415 #[inline]
416 pub const fn extend(&self, next: Self) -> Result<(Self, usize), LayoutError> {
417 let new_align = Alignment::max(self.align, next.align);
418 let offset = self.size_rounded_up_to_custom_align(next.align);
419
420 // SAFETY: `offset` is at most `isize::MAX + 1` (such as from aligning
421 // to `Alignment::MAX`) and `next.size` is at most `isize::MAX` (from the
422 // `Layout` type invariant). Thus the largest possible `new_size` is
423 // `isize::MAX + 1 + isize::MAX`, which is `usize::MAX`, and cannot overflow.
424 let new_size = unsafe { unchecked_add(offset, next.size) };
425
426 if let Ok(layout) = Layout::from_size_alignment(new_size, new_align) {
427 Ok((layout, offset))
428 } else {
429 Err(LayoutError)
430 }
431 }
432
433 /// Creates a layout describing the record for `n` instances of
434 /// `self`, with no padding between each instance.
435 ///
436 /// Note that, unlike `repeat`, `repeat_packed` does not guarantee
437 /// that the repeated instances of `self` will be properly
438 /// aligned, even if a given instance of `self` is properly
439 /// aligned. In other words, if the layout returned by
440 /// `repeat_packed` is used to allocate an array, it is not
441 /// guaranteed that all elements in the array will be properly
442 /// aligned.
443 ///
444 /// On arithmetic overflow, returns `LayoutError`.
445 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
446 #[inline]
447 pub const fn repeat_packed(&self, n: usize) -> Result<Self, LayoutError> {
448 if let Some(size) = self.size.checked_mul(n) {
449 // The safe constructor is called here to enforce the isize size limit.
450 Layout::from_size_alignment(size, self.align)
451 } else {
452 Err(LayoutError)
453 }
454 }
455
456 /// Creates a layout describing the record for `self` followed by
457 /// `next` with no additional padding between the two. Since no
458 /// padding is inserted, the alignment of `next` is irrelevant,
459 /// and is not incorporated *at all* into the resulting layout.
460 ///
461 /// On arithmetic overflow, returns `LayoutError`.
462 #[unstable(feature = "alloc_layout_extra", issue = "55724")]
463 #[inline]
464 pub const fn extend_packed(&self, next: Self) -> Result<Self, LayoutError> {
465 // SAFETY: each `size` is at most `isize::MAX == usize::MAX/2`, so the
466 // sum is at most `usize::MAX/2*2 == usize::MAX - 1`, and cannot overflow.
467 let new_size = unsafe { unchecked_add(self.size, next.size) };
468 // The safe constructor enforces that the new size isn't too big for the alignment
469 Layout::from_size_alignment(new_size, self.align)
470 }
471
472 /// Creates a layout describing the record for a `[T; n]`.
473 ///
474 /// On arithmetic overflow or when the total size would exceed
475 /// `isize::MAX`, returns `LayoutError`.
476 #[stable(feature = "alloc_layout_manipulation", since = "1.44.0")]
477 #[rustc_const_stable(feature = "const_alloc_layout", since = "1.85.0")]
478 #[inline]
479 pub const fn array<T>(n: usize) -> Result<Self, LayoutError> {
480 // Reduce the amount of code we need to monomorphize per `T`.
481 return inner(T::LAYOUT, n);
482
483 #[inline]
484 const fn inner(element_layout: Layout, n: usize) -> Result<Layout, LayoutError> {
485 let Layout { size: element_size, align } = element_layout;
486
487 // We need to check two things about the size:
488 // - That the total size won't overflow a `usize`, and
489 // - That the total size still fits in an `isize`.
490 // By using division we can check them both with a single threshold.
491 // That'd usually be a bad idea, but thankfully here the element size
492 // and alignment are constants, so the compiler will fold all of it.
493 if element_size != 0 && n > Layout::max_size_for_align(align) / element_size {
494 return Err(LayoutError);
495 }
496
497 // SAFETY: We just checked that we won't overflow `usize` when we multiply.
498 // This is a useless hint inside this function, but after inlining this helps
499 // deduplicate checks for whether the overall capacity is zero (e.g., in RawVec's
500 // allocation path) before/after this multiplication.
501 let array_size = unsafe { unchecked_mul(element_size, n) };
502
503 // SAFETY: We just checked above that the `array_size` will not
504 // exceed `isize::MAX` even when rounded up to the alignment.
505 // And `Alignment` guarantees it's a power of two.
506 unsafe { Ok(Layout::from_size_align_unchecked(array_size, align.as_usize())) }
507 }
508 }
509
510 /// Perma-unstable access to `align` as `Alignment` type.
511 #[unstable(issue = "none", feature = "std_internals")]
512 #[doc(hidden)]
513 #[inline]
514 pub const fn alignment(&self) -> Alignment {
515 self.align
516 }
517}
518
519#[stable(feature = "alloc_layout", since = "1.28.0")]
520#[deprecated(
521 since = "1.52.0",
522 note = "Name does not follow std convention, use LayoutError",
523 suggestion = "LayoutError"
524)]
525pub type LayoutErr = LayoutError;
526
527/// The `LayoutError` is returned when the parameters given
528/// to `Layout::from_size_align`
529/// or some other `Layout` constructor
530/// do not satisfy its documented constraints.
531#[stable(feature = "alloc_layout_error", since = "1.50.0")]
532#[non_exhaustive]
533#[derive(Clone, PartialEq, Eq, Debug)]
534pub struct LayoutError;
535
536#[stable(feature = "alloc_layout", since = "1.28.0")]
537impl Error for LayoutError {}
538
539// (we need this for downstream impl of trait Error)
540#[stable(feature = "alloc_layout", since = "1.28.0")]
541impl fmt::Display for LayoutError {
542 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
543 f.write_str("invalid parameters to Layout::from_size_align")
544 }
545}