
Veloces: An Efficient I/O Scheduler for Solid State Devices

Swapnil Pimpale
L3CUBE

pimpale.swapnil@gmail.com

Vishakha Damle
PICT

amogh.1337@gmail.com

Amogh Palnitkar
PICT

vishakha.22@gmail.com

Sarvesh Rangnekar
PICT

sarveshr7@gmail.com

Om Pawar
PICT

om.pawar1992@gmail.com

Nafisa Mandliwala
L3CUBE

nafisa.mandliwala@gmail.com

Abstract

Solid State Devices (SSD) use NAND-based Flash
memory for storage of data. They have the potential
to alleviate the ever-existing I/O bottleneck problem in
data-intensive computing environments, due to their ad-
vantages over conventional Hard Disk Drives (HDD).
SSDs differ from traditional mechanical HDDs in vari-
ous respects. The SSDs have no moving parts and are
thus free from rotational latency which dominates the
disk access time of HDDs.

However, on the other hand, due to the long existence
of HDDs as persistent storage devices, conventional I/O
schedulers are largely designed for HDDs. They mit-
igate the high seek and rotational costs in mechanical
disks through elevator-style I/O request ordering and an-
ticipatory I/O. As a consequence, just by replacing con-
ventional HDDs with SSDs in the storage systems with-
out taking into consideration other properties like low
latency, minimal access time and absence of rotary head,
we may not be able to make the best use of SSDs.

We propose Veloces, an I/O scheduler which will lever-
age the inherent properties of SSDs. Since SSDs per-
form read I/O operations faster than write operations,
Veloces is designed to provide preference to reads over
writes. Secondly, Veloces implements optional front-
merging of contiguous I/O requests. Lastly, writing in
the same block of the SSD is faster than writing to dif-
ferent blocks. Therefore, Veloces bundles write requests
belonging to the same block. Above implementation
has shown to enhance the overall performance of SSDs
for various workloads like File-server, Web-server and
Mail-server.

1 Introduction

The SSDs are built upon semiconductors exclusively,
and do not have moving heads and rotating platters like
HDDs. Hence, they are completely free from the ro-
tational latency which is responsible for the high disk
access time of HDDs. This results in SSDs operational
speed being one or two orders of magnitude faster than
HDDs. However, on the other hand, due to the long
existence of HDDs as persistent storage devices, exist-
ing I/O scheduling algorithms have been specifically de-
signed or optimized based on characteristics of HDDs.

Current I/O schedulers in the Linux Kernel are designed
to mitigate the high seek and rotational costs in mechan-
ical disks. SSDs have many operational characteristics
like low latency, minimal access time and absence of
rotary head which need to be taken into account while
designing I/O schedulers.

The rest of this paper is structured as follows. In Section
2, SSD characteristics are elaborated. In Section 3 the
existing schedulers are studied and their characteristics
and features are compared. In Section 4, we elaborate
on the design details of the proposed scheduler, Velo-
ces. Section 5 focuses on results and performance eval-
uation of our scheduler for different workloads. Finally,
in Section 6 we conclude this paper. Section 7 covers
the acknowledgments.

2 SSD Characteristics

2.1 Write Amplification

SSDs have been evolved from EEPROM (Electrically
Erasable Programmable Read-Only Memory) which
gives it distinctive properties. It consists of a number

• 77 •



78 • Veloces: An Efficient I/O Scheduler for Solid State Devices

Figure 1: SSD Model

of blocks which can be erased independently. A block
consists of pages. Read and write operations are per-
formed at page level whereas erasing is done at block
level. Overwriting is not allowed in SSDs, this makes
the writes expensive. SSDs can only write to empty or
erased pages. If it does not find any empty pages it finds
an unused page and has to erase the entire block contain-
ing the page. Then it has to write the previous as well
as the new page content on the block [10]. This makes
SSDs slower over a period.

2.2 Garbage Collection

SSDs make use of Flash Translation Layer (FTL) to
provide a mapping between the Logical Block Address
(LBA) and the physical media [10]. FTL helps in im-
proving the SSD performance by providing Wear Lev-
eling and Garbage Collection. Wear Leveling helps in
even distribution of data over the SSDs so that all the
flash cells have same level of use. Garbage collection
keeps track of unused or ‘stale’ pages and at an oppor-
tune moment erases the block containing good and stale
pages, rewrites the good pages to another block so that
the block is ready for further writes.

2.3 Faster Reads

Though SSDs provide a substantial improvement in I/O
performance over the conventional HDDs, there is suf-
ficient discrepancy between the read-write speeds. This
is primarily due to the erase-before-write limitation. In
Flash based devices it is necessary to erase a previously
written location before overwriting to the said location.
This problem is further aggravated by erase granularity
which is much larger than the basic read/write granu-
larity. As a result read operations in SSDs tend to be
relatively faster than writes.

As mentioned earlier, SSDs do not possess rotary drive.
Therefore, access times of I/O operations are relatively
less affected by spatial locality of the request as com-
pared to traditional HDDs. However it has been ob-
served that the I/O requests in the same block tend to
be slightly faster than I/O request in different block.

We have considered these features of SSDs while de-
signing our scheduler.

3 Study of Existing Schedulers

In this section, we study the existing I/O schedulers and
their drawbacks in case of SSD in the Linux Kernel 3.7.x
and forward.

3.1 Noop Scheduler

The name Noop (No Operation) defines the working of
this scheduler. It does not perform any kind of sorting
or seek prevention, thus is the default scheduler for flash
based devices where there is no rotary head. It per-
forms minimum operations on the I/O requests before
dispatching it to the underlying physical device [1].

The only chore that a NOOP Scheduler performs is
merging, in which it coalesces the adjacent requests.
Besides this it is truly a No Operation scheduler which
merely maintains a request queue in FIFO order [7].

As a result, it is suitable for SSDs, which can be consid-
ered as random access devices. However this might not
be true for all workloads.

3.2 Completely Fair Queuing Scheduler

CFQ scheduler attempts to provide fair allocation of the
available disk I/O bandwidth for all the processes which
requests an I/O operation.

It maintains per process queue for the processes which
request I/O operation and then allocates time slices for
each of the queues to access the disk [1]. The length of
the time slice and the number of requests per queue de-
pends on the I/O priority of the given process. The asyn-
chronous requests are batched together in fewer queues
and are served separately.

CFQ scheduler creates starvation of requests by assign-
ing priorities. It has been primarily designed for HDD
and does not consider the characteristics of SSDs while
reordering the requests.



2014 Linux Symposium • 79

3.3 Deadline Scheduler

Deadline scheduler aims to guarantee a start service
time for a request by imposing a deadline on all I/O op-
erations.

It maintains two FIFO queues for read and write op-
erations and a sorted Red Black Tree (RB Tree). The
queues are checked first and the requests which have ex-
ceeded their deadlines are dispatched. If none of the re-
quests have exceeded their deadline then sorted requests
from RB Tree are dispatched.

The deadline scheduler provides an improved perfor-
mance over Noop scheduler by attempting to minimize
seek time and avoids starvation of the requests by im-
posing an expiry time for each request. It however per-
forms reordering of requests according to their address
which adds an extra overhead.

4 Proposed Scheduler - Veloces

In this section, we will discuss the implementation of
our proposed scheduler - Veloces.

4.1 Read Preference

As mentioned earlier, Flash-based storage devices suf-
fer from erase-before-write limitation. In order to over-
write to a previously known location, the said location
must first be erased completely before writing new data.
The erase granularity is much larger than the basic read
granularity. This leads to a large read-write discrepancy
[5][8]. Thus reads are considerably faster than writes.

For concurrent workloads with mixture of reads and
writes the reads may be blocked by writes with substan-
tial slowdown which leads to overall degradation in per-
formance of the scheduler. Thus in order to address the
problem of excessive reads blocked by writes, reads are
given higher preference.

We have maintained two separate queues, a read queue
and a write queue. The read requests are dispatched as
and when they arrive. Each write request has an expiry
time based on the incoming time of the request. The
write requests are dispatched only when their deadline is
reached or when there are no requests in the read queue.

4.2 Bundling of Write requests

In SSDs, it is observed that writes to the same logical
block are faster than writes to different logical blocks.
A penalty is incurred every time the block boundary
is crossed [2][9]. Therefore, we have implemented
bundling of write requests where write requests belong-
ing to the same logical block are bundled together.

We have implemented this by introducing the buddy
concept. A request X is said to be the buddy of request
Y if the request Y is present in the same logical block
as request X. For the current request, the write queue is
searched for the buddy request. All such buddy requests
are bundled together and dispatched.

Bundling count of these write requests can be adjusted
according to the workloads to further optimize the per-
formance.

4.3 Front Merging

Request A is said to be in front of request B when the
starting sector number of request B is greater than the
ending sector number of request A. Correspondingly, re-
quest A is said to be behind request B when the starting
sector of request A is greater than the ending sector of
request B.

The current I/O schedulers in the Linux Kernel facili-
tate merging of contiguous requests into a larger request
before dispatch because serving a single large request
is much more efficient than serving multiple small re-
quests. However only back merging of I/O requests is
performed in the Noop scheduler.

As SSDs do not possess rotational disks there is no dis-
tinction between backward and forward seeks. So, both
front and back merging of the requests are employed by
our scheduler.

5 Experimental Evaluation

5.1 Environment

We implemented our I/O Scheduler with parameters dis-
played in Table 1.



80 • Veloces: An Efficient I/O Scheduler for Solid State Devices

Type Specifics
CPU/RAM Intel Core 2 Duo 1.8GHz
SSD Kingston 60GB
OS Linux-Kernel 3.12.4 / Ext4 File System

Benchmark
Filebench Benchmark for Mail Server,
Webserver and File Server workloads

Target
Our Scheduler and existing Linux I/O
Schedulers

Table 1: System Specifications

5.2 Results

We used the FileBench benchmarking tool which gen-
erates workloads such as Mail Server, File Server and
Webserver. The results of the benchmark are shown in
Figure 2.

The graph shows Input/Output Operations performed
per second (IOPS) by the four schedulers Noop, Dead-
line, CFQ and Veloces for the workloads Mail Server,
File Server and Webserver. The Veloces scheduler per-
forms better than the existing schedulers for all the
tested workloads. It shows an improvement of up to 6%
over the existing schedulers in terms of IOPS.

6 Conclusion

In conclusion, Flash-based storage devices are capable
of alleviating I/O bottlenecks in data-intensive applica-
tions. However, the unique performance characteristics
of Flash storage must be taken into account in order to
fully exploit their superior I/O capabilities while offer-
ing fair access to applications.

Based on these motivations, we designed a new Flash
I/O scheduler which contains three essential techniques
to ensure fairness with high efficiency read preference,
selective bundling of write requests and front merging
of the requests.

We implemented the above design principles in our
scheduler and tested it using FileBench as the bench-
marking tool. The performance of our scheduler was
consistent across various workloads like File Server,
Web Server and Mail Server.

Figure 2: Comparison of IOPS

7 Acknowledgment

We would like to take this opportunity to thank our in-
ternal guide Prof. Girish Potdar, Pune Institute of Com-
puter Technology for giving us all the help and guidance
we needed. We are really grateful to him for his kind
support throughout this analysis and design phase.

We are also grateful to other staff members of the De-
partment for giving important suggestions.

Our external guides Mr Swapnil Pimpale and Ms Nafisa
Mandliwala were always ready to extend their helping
hand and share valuable technical knowledge about the
subject with us.

We are thankful to PICT library and staff, for providing
us excellent references, which helped us a lot to research
and study topics related to the project.

References

[1] M.Dunn and A.L.N. Reddy, A new I/O scheduler
for solid state devices. Tech. Rep.
TAMU-ECE-2009-02, Department of Electrical
and Computer Engineering, Texas A&M
University, 2009.

[2] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S.H.
Noh, Disk schedulers for solid state drivers. In
Proc. EMSOFT (2009), PP. 295-304.

[3] Wang H., Huang P., He S., Zhou K., Li C., and He
X. A novel I/O scheduler for SSD with improved
performance and lifetime. Mass Storage Systems
(MSST), 2013 IEEE 29th Symposium, 1-5.



2014 Linux Symposium • 81

[4] S. Kang, H. Park, C. Yoo, Performance
enhancement of I/O scheduler for solid state
device. In 2011 IEEE International Conference on
Consumer Electronics, 31-32.

[5] S. Park and K. Shen, Fios: A fair, efficient flash
i/o scheduler, in FAST, 2012.

[6] Y. Hu, H. Jiang, L. Tian, H. Luo, and D. Feng,
Performance impact and interplay of ssd
parallelism through advanced commands,
allocation strategy and data granularity,
Proceedings of the 25th International Conference
on Supercomputing (ICS’2011), 2011.

[7] J. Axboe. Linux block IO - present and future. In
Ottawa Linux Symp., pages 51-61, Ottawa,
Canada, July 2004.

[8] S. Park and K. Shen. A performance evaluation of
scientific I/O workloads on flash-based SSDs. In
IASDS’09:Workshop on Interfaces and
Architectures for Scientific Data Storage, New
Orleans, LA, Sept. 2009.

[9] J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J.
Choi, D. Lee, and S. H. Noh. Block recycling
schemes and their cost-based optimization in
NAND Flash memory based storage system. In
EMSOFT’07: 7th ACM Conf. on Embedded
Software, pages 174-182, Salzburg, Austria, Oct.
2007.

[10] S. Park , E. Seo , J. Shin , S. Maeng and J. Lee.
Exploiting Internal Parallelism of Flash-based
SSDs. In IEEE computer architecture letters, Vol.
9, No. 1, Jan–Jun 2010.



82 • Veloces: An Efficient I/O Scheduler for Solid State Devices


	Veloces: An Efficient I/O Scheduler for Solid State Devices
	V.R. Damle, A.N. Palnitkar, S.D. Rangnekar, O.D. Pawar, S.A. Pimpale, N.O. Mandliwala
	Introduction
	SSD Characteristics
	Write Amplification
	Garbage Collection
	Faster Reads

	Study of Existing Schedulers
	Noop Scheduler
	Completely Fair Queuing Scheduler
	Deadline Scheduler

	Proposed Scheduler - Veloces
	Read Preference
	Bundling of Write requests
	Front Merging

	Experimental Evaluation
	Environment
	Results

	Conclusion
	Acknowledgment



