
Btr-Diff: An Innovative Approach to Differentiate BtrFs Snapshots

Nafisa Mandliwala
Pune Institute of Computer Technology

nafisa.mandliwala@gmail.com

Swapnil Pimpale
PICT LUG

pimpale.swapnil@gmail.com

Narendra Pal Singh
Pune Institute of Computer Technology

narendrapal2020@gmail.com

Ganesh Phatangare
PICT LUG

gphatangare@gmail.com

Abstract

Efficient storage and fast retrieval of data has always
been of utmost importance. The BtrFs file system is
a copy-on-write (COW) based B-tree file system that
has an built-in support for snapshots and is considered
a potential replacement for the EXT4 file system. It
is designed specifically to address the need to scale,
manage and administer large storage configurations of
Linux systems. Snapshots are useful to have local on-
line “copies” of the file system that can be referred back
to, or to implement a form of deduplication, or for taking
a full backup of the file system. The ability to compare
these snapshots becomes crucial for system administra-
tors as well as end users.

The existing snapshot management tools perform direc-
tory based comparison on block level in user space. This
approach is generic and is not suitable for B-tree based
file systems that are designed to cater to large storage.
Simply traversing the directory structure is slow and
only gets slower as the file system grows. With the
BtrFs send/receive mechanism, the filesystem can be in-
structed to calculate the set of changes made between
the two snapshots and serialize them to a file.

Our objective is to leverage the send part in the kernel
to implement a new mechanism to list all the files that
have been added, removed, changed or had their meta-
data changed in some way. The proposed solution takes
advantage of the BtrFs B-tree structure and its power-
ful snapshot capabilities to speed up the tree traversal
and detect changes in snapshots based on inode values.
In addition, our tool can also detect changes between a
snapshot and an explicitly mentioned parent. This lends
itself for daily incremental backups of the file system,
and can very easily be integrated with existing snapshot
management tools.

1 Introduction

In current times, where data is critical to every organi-
zation, its appropriate storage and management is what
brings in value. Our approach aims at taking advantage
of the BtrFs architectural features that are made avail-
able by design. This facilitates speedy tree traversal to
detect changes in snapshots. The send ioctl runs the tree
comparison algorithm in kernel space using the on-disk
metadata format (rather than the abstract stat format
exported to the user space), which includes the ability to
recognize when entire sub-trees can be skipped for com-
parison. Since the whole comparison algorithm runs in
kernel space, the algorithm is clearly superior over exist-
ing user space snapshot management tools such as Snap-
per1.

Snapper uses diff algorithm with a few more optimiza-
tions to avoid comparing files that have not changed.
This approach requires all of the metadata for the two
trees being compared to be read. The most I/O inten-
sive part is not comparing the files but generating the
list of changed files. It needs to list all the files in the
tree and stat them to see if they have changed between
the snapshots. The performance of such an algorithm
degrades drastically as changes to the file system grow.
This is mainly caused because Snapper deploys an al-
gorithm that is not specifically designed to run on COW
based file systems.

The rest of the paper is organized as follows: Section 2
explains the BtrFs internal architecture, associated data
structures, and features. Working of the send-receive
code and the diff commands used, are discussed in

1The description takes into consideration, the older version of
Snapper. The newer version, however, does use the send-receive
code for diff generation

• 7 •



8 • Btr-Diff: An Innovative Approach to Differentiate BtrFs Snapshots

Figure 1: The Terminal Node Structure (src: BtrFs De-
sign Wiki)

Section 3. Section 4 covers the design of the pro-
posed solution, the algorithm used and its implementa-
tion. This is followed by benchmarking and its analysis
in Section 5. Section 6 states applications of the send-
receive code and diff generation. Section 7 lists the
possible feature additions to Btr-diff. Finally, Section 8
summarizes the conclusions of the paper and is followed
by references.

2 BtrFs File System

The Btrfs file system is scalable to a maximum file/file
system size up to 16 exabytes. Although it exposes a
plethora of features w.r.t. scalability, data integrity, data
compression, SSD optimizations etc, this paper focuses
only on the ones relevant to snapshot storage: compari-
son and retrieval.

The file system uses the ‘copy-on-write’ B-tree as its
generic data structure. B-trees are used as they pro-
vide logarithmic time for common operations like inser-
tion, deletion, sequential access and search. This COW-
friendly B-tree in which the leaf node linkages are ab-
sent was originally proposed by Ohad Rodeh. In such
trees, writes are never made in-place, instead, the modi-
fied data is written to a different location, and the corre-
sponding metadata is updated. BtrFs, thus, has built-in
support for snapshots, which are point-in-time copies of
entire subvolumes, and rollbacks.

2.1 Data Structures

As seen in Figure 1, the BtrFs architecture consists of
three data structures internally; namely blockheader,
key and item. The blockheader contains checksums,
file system specific uuid, the level at which the block

Figure 2: BtrFs Data Structures (src: BtrFs Design
Wiki)

is present in the tree etc. The key, which defines the
order in the tree, has the fields: objectid, type and
offset. Each subvolume has its own set of object ids.
The type field contains the kind of item it is, of which,
the prominent ones are inode_item, inode_ref, xattr_
item, orphan_item, dir_log_item, dir_item, dir_
index, extent_data, root_item, root_ref, extent_
item, extent_data_ref, dev_item, chunk_item etc.
The offset field is dependent on the kind of item.

A typical leaf node consists of several items. offset and
size tell us where to find the item in the leaf (relative to
the start of the data area). The internal nodes contain
[key,blockpointer] pairs whereas the leaf nodes con-
tain a block header, array of fix sized items and the data
field. Items and data grow towards each other. Typical
data structures are shown in Figure 2.

2.2 Subvolumes and Snapshots

The BtrFs subvolume is a named B-tree that holds files
and directories and is the smallest unit that can be snap-
shotted. A point-in-time copy of such a subvolume is
called a snapshot. A reference count is associated with
every subvolume which is incremented on snapshot cre-
ation. A snapshot stores the state of a subvolume and
can be created almost instantly using the following com-
mand,

btrfs subvolume snapshot [-r] <source> [<dest>/]<name>

Such a snapshot occupies no disk space at creation.
Snapshots can be used to backup subvolumes that can
be used later for restore or recovery operations.



2014 Linux Symposium • 9

3 Send-Receive Code

Snapshots are primarily used for data backup and recov-
ery. Considering the size of file system wide snapshots,
detecting how the file system has changed between two
given snapshots, manually, is a tedious task. Thus devel-
oping a clean mechanism to showcase differences be-
tween two snapshots becomes extremely important in
snapshot management.

The diff command is used for differentiating any
two files, but it uses text based2 search which is time
and computation intensive. Also, since it works on
individual files, it does not give a list of files were
modified/created/deleted on snapshot level. With the
send/receive code, BtrFs can be instructed to calculate
changes between the given snapshots and serialize them
to a file. This file can later be replayed (on a BtrFs sys-
tem) to regenerate one snapshot from another based on
the instructions logged in the file.

As the name suggests, the send-receive code has a send
side, that runs in kernel space and a receive side,
which runs in user space. To calculate the difference
between the two snapshots, the user simply gives a com-
mand line input given as follows:

btrfs send [-v] [-i <subvol>] [-p <parent>] <subvol>

-v : Enable verbose debug output. Each occurrence of
this option increases the verbose level more.

-i<subvol> : Informs btrfs send that this subvolume,
can be taken as ‘clone source’. This can be used for
incremental sends.

-p<subvol> : Disable automatic snaphot parent deter-
mination and use <subvol> as parent. This subvolume
is also added to the list of ‘clone sources’

-f<outfile> : Output is normally written to stdout. To
write to a file, use this option. An alternative would be
to use pipes.

Internally, this mechanism is implemented with the
BTRFS_IOC_SEND ioctl() which compares two trees rep-
resenting individual snapshots. This operation accepts
a file descriptor representing a mounted volume and the

2diff does a line by line comparison of the given files, finds
the groups of lines that vary, and reports each group of differing
lines. It can report the differing lines in several formats, which serve
different purposes.

subvolume ID corresponding to the snapshot of inter-
est. It then calculates changes between the two given
snapshots. The command sends the subvolume speci-
fied by <subvol> to stdout. By default, this will send
the whole subvolume. The following are some more op-
tions for output generation:

• The operation can take a list of snapshot / subvol-
ume IDs and generate a combined file for all of
them. The parent snapshot can be specified explic-
itly. Thus, differences can be calculated with re-
spect to a grandparent snapshot instead of a direct
parent.

• The command also accepts ‘clone sources’ which
are subvolumes that are expected to already exist
on the receive side. Thus logging instructions for
those subvolumes can be avoided and instead, only
a ‘clone’ instruction can be sent. This reduces the
size of the difference file.

The comparison works on the basis of meta-data. On
detecting a metadata change, the respective trace is car-
ried out and the corresponding instruction stream is
generated. The output of the send code is an instruc-
tion stream consisting of create/rename/link/write/
clone/chmod/mkdir instructions. For instance, consider
that a new directory has been added to a file system
whose snapshot has already been taken. If a new snap-
shot is then taken, the send-receive code will gen-
erate an instruction stream consisting of the instruction
mkdir. The send receive code is thus more efficient as
comparison is done only for changed files and not for
the entire snapshots.

Taking into consideration the obvious advantages of us-
ing the send-receive code, the proposed solution uses
it as a base for generating a diff between file system
snapshots. To make the output of send code readable,
we extract the data/stream sent from the send code and
decode the stream of instructions into suitable format.

4 Design and Implementation

The proposed solution makes use of the BtrFs send ioctl
BTRFS_IOC_SEND for diff generation. We have utilized
the send-side of the send-receive code and extended the
receive-side to give a view of the changes incurred to
the file system between any two snapshots. This view



10 • Btr-Diff: An Innovative Approach to Differentiate BtrFs Snapshots

Strategy: Go to the first items of both trees. Then do

If both trees are at level 0
Compare keys of current items
If left < right treat left item as new, advance left tree
and repeat

If left > right treat right item as deleted, advance right tree
and repeat

If left == right do deep compare of items, treat as changed if
needed, advance both trees and repeat

If both trees are at the same level but not at level 0
Compare keys of current nodes/leafs
If left < right advance left tree and repeat
If left > right advance right tree and repeat
If left == right compare blockptrs of the next nodes/leafs
If they match advance both trees but stay at the same level
and repeat

If they don’t match advance both trees while allowing to go
deeper and repeat

If tree levels are different
Advance the tree that needs it and repeat

Advancing a tree means:
If we are at level 0, try to go to the next slot. If
that is not possible, go one level up and repeat. Stop when we found a level
where we could go to the next slot. We may at this point be on a node or a
leaf.

If we are not at level 0 and not on shared tree blocks, go one level deeper.

If we are not at level 0 and on shared tree blocks, go one slot to the right
if possible or go up and right.

Figure 3: Tree Traversal Algorithm (src: BtrFs Send-Receive Code)

includes a list of the files and directories that underwent
changes and also the file contents that changed between
the two specified snapshots. Thus, a user would be able
to view a file over a series of successive modifications.

The traversal algorithm is as given in Figure 3.

The BtrFs trees are ordered according to btrfs_key
which contains the fields: objectid, type and offset.
As seen in Figure 3, the comparison is based on this
key. The ‘right’ tree is the old tree (before modifica-
tion) and the ‘left’ tree is the new one (after modifica-
tion). The comparison between left and right is actu-
ally a key comparison to check the ordering. When only
one of the trees is advanced, the algorithm steps through

to the next item and eventually one tree ends up at a
later index than the other. The tree that reaches the end
quicker, evidently, has missing entries which indicates a
file deletion on this ‘faster’ side or a file creation on the
‘slower’. The tree is advanced accordingly so that both
the trees maintain almost the same level. The changes
detected include changes in inodes, that is, addition and
deletion of inodes, change in references to a file, change
in extents and change in transaction ids that last touched
a particular inode. Recording transaction IDs helps in
maintaining file system consistency.

To represent the instruction stream in a clean way, we
define the BtrFs subvolume diff command, as shown
in Figure 4. This lists the files changed (added, modi-



2014 Linux Symposium • 11

btrfs subvolume diff [-p <snapshot1>] <snapshot2>

Output consists of:

I] A list of the files created, deleted
and modified (with corresponding number
of insertions and deletions).

II] Newly created files along with their
corresponding contents.

III] Files that have undergone write
modifications, with the corresponding
modified content in terms of blocks.

Figure 4: Btr-Diff and its output

fied, removed) between snapshot1 and snapshot2 where
snapshot1 is optional. If snapshot1 is not specified, a
diff between snapshot2 and its parent will be gener-
ated. The output generated by interpreting the data and
executing the command above will be represented as
given in Figure 4.

5 Performance and Optimization Achieved

Performance of Btr-diff was evaluated by varying the
size of modifications done to a subvolume. Modifica-
tions of 1 GB to 4 GB were made and snapshots were
taken at each stage. Btr-diff was then executed to gen-
erate a diff between these snapshots i.e. from 1–2 GB,
1–3 GB and so on. Benchmarking was done using the
time command. The time command calculates the
real, sys and user time of execution. The significance
of each is as follows:

real: The elapsed real time between invocation and
termination of the program. This is affected by the
other processes and can be inconsistent.

sys: The system CPU time, i.e. the time taken by the
program in the kernel mode.

user: The user CPU time, i.e. the time taken by the
program in the user mode.

A combination of sys and user time is a good indicator
of the tool’s performance.

Figure 5: Time usage

The graphs in Figure 5 showcases the sys and user time
performance of Btr-diff for different values of ‘size dif-
ferences’ between the two given snapshots. The up-
per figure shows the time spent in kernel space by Btr-
diff, while the lower figure shows the time spent in
user space. The graphs clearly depict that the proposed
method generates a diff in almost constant time. For
changes of 1 GB, Btr-diff spends one second in the ker-
nel and one second in user space. When these changes
grow to 4 GB, Btr-diff maintains almost constant time
and spends 8 seconds in the kernel and only 4 seconds
in user space. Since the traversal is executed in kernel
space, the switching between kernel and user space is
reduced to a great extent. This has a direct implication
on the performance.

There are various techniques/approaches that can be
used for snapshot management. Using the send-receive
based technique for BtrFs provides a lot of advantages
over other generic comparison algorithms/techniques.
Send/receive code is more efficient as its comparison is
meant only for changed structure/files and not for entire
snapshots. This reduces redundant comparisons.



12 • Btr-Diff: An Innovative Approach to Differentiate BtrFs Snapshots

6 Applications

Snapshot diff generation has several applications:

• Backups in various forms. Only the instruction
stream can be stored and replayed at a later instant
to regenerate subvolumes at the receiving side.

• File system monitoring. Changes made to the file
system over a period of time can easily be viewed.

• A cron job could easily send a snapshot to a remote
server on a regular basis, maintaining a mirror of a
filesystem there.

7 Road Ahead

The possible optimizations/feature additions to Btr-diff
could be as follows:

• Traversing snapshots and generating diff for a
particular subvolume only.

• Btr-diff currently displays contents of modified
files in terms of blocks. This output could be pro-
cessed further and a git-diff like output can be
generated which is more readable.

8 Conclusion

The lack of file system specific snapshot comparison
tools for BtrFs have deterred the usage of its pow-
erful snapshot capabilities to their full potential. By
leveraging the in-kernel snapshot comparison algorithm
(send/receive), a considerable reduction in the time
taken for snapshot comparison is achieved. This is cou-
pled with lower computation as well. The existing meth-
ods are generic and thus take longer than required to
compute the diff. Our solution thus addresses this im-
pending need for a tool that uses the BtrFs features to its
advantage and gives optimum results.

References

[1] Btrfs Main Page http://btrfs.wiki.kernel.
org/index.php/Main_Page

[2] Wikipedia - Btrfs http://en.wikipedia.org/
wiki/Btrfs

[3] Btrfs Design https://btrfs.wiki.kernel.

org/index.php/Btrfs_design#Snapshots_and_

Subvolumes

[4] Linux Weekly News - A short history of BtrFs
http://lwn.net/Articles/342892/

[5] IBM Research Report - BTRFS:The
Linux B-Tree Filesystem http://domino.

watson.ibm.com/library/CyberDig.nsf/

1e4115aea78b6e7c85256b360066f0d4/

6e1c5b6a1b6edd9885257a38006b6130!

OpenDocument&Highlight=0,BTRFS

[6] Chris Mason - Introduction to BtrFs http://www.
youtube.com/watch?v=ZW2E4WgPlzc

[7] Chris Mason - BtrFs Filesystem: Status and
New Features http://video.linux.com/videos/
btrfs-filesystem-status-and-new-features

[8] Avi Miller’s BtrFs talk at LinuxConf AU http://
www.youtube.com/watch?v=hxWuaozpe2I

[9] Btrfs Data Structures https://btrfs.wiki.

kernel.org/index.php/Data_Structures

[10] Linux Weekly News - Btrfs send/receive http://
lwn.net/Articles/506244/

[11] openSUSE - Snapper http://en.opensuse.org/
Portal:Snapper

http://btrfs.wiki.kernel.org/index.php/Main_Page
http://btrfs.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Btrfs
http://en.wikipedia.org/wiki/Btrfs
https://btrfs.wiki.kernel.org/index.php/Btrfs_design#Snapshots_and_Subvolumes
https://btrfs.wiki.kernel.org/index.php/Btrfs_design#Snapshots_and_Subvolumes
https://btrfs.wiki.kernel.org/index.php/Btrfs_design#Snapshots_and_Subvolumes
http://lwn.net/Articles/342892/
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/6e1c5b6a1b6edd9885257a38006b6130!OpenDocument&Highlight=0,BTRFS
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/6e1c5b6a1b6edd9885257a38006b6130!OpenDocument&Highlight=0,BTRFS
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/6e1c5b6a1b6edd9885257a38006b6130!OpenDocument&Highlight=0,BTRFS
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/6e1c5b6a1b6edd9885257a38006b6130!OpenDocument&Highlight=0,BTRFS
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/6e1c5b6a1b6edd9885257a38006b6130!OpenDocument&Highlight=0,BTRFS
http://www.youtube.com/watch?v=ZW2E4WgPlzc
http://www.youtube.com/watch?v=ZW2E4WgPlzc
http://video.linux.com/videos/btrfs-filesystem-status-and-new-features
http://video.linux.com/videos/btrfs-filesystem-status-and-new-features
http://www.youtube.com/watch?v=hxWuaozpe2I
http://www.youtube.com/watch?v=hxWuaozpe2I
https://btrfs.wiki.kernel.org/index.php/Data_Structures
https://btrfs.wiki.kernel.org/index.php/Data_Structures
http://lwn.net/Articles/506244/
http://lwn.net/Articles/506244/
http://en.opensuse.org/Portal:Snapper
http://en.opensuse.org/Portal:Snapper

	Btr-Diff: An Innovative Approach to Differentiate BtrFs Snapshots
	N. Mandliwala, S. Pimpale, N. P. Singh, G. Phatangare
	Introduction
	BtrFs File System
	Data Structures
	Subvolumes and Snapshots

	Send-Receive Code
	Design and Implementation
	Performance and Optimization Achieved
	Applications
	Road Ahead
	Conclusion



