
Computationally Efficient Multiplexing of Events on Hardware Counters

Robert V. Lim
University of California, Irvine

roblim1@ics.uci.edu

David Carrillo-Cisneros
University of California, Irvine

dcarril@ics.uci.edu

Wail Y. Alkowaileet
University of California, Irvine

walkowai@ics.uci.edu

Isaac D. Scherson
University of California, Irvine

isaac@ics.uci.edu

Abstract

This paper proposes a novel approach for scheduling n
performance monitoring events onto m hardware per-
formance counters, where n > m. Whereas existing
scheduling approaches overlook monitored task infor-
mation, the proposed algorithm utilizes the monitored
task’s behavior and schedules the combination of the
most costly events. The proposed algorithm was imple-
mented in Linux Perf Event subsystem in kernel space
(build 3.11.3), which provides finer granularity and less
system perturbation in event monitoring when compared
to existing user space approaches. Benchmark exper-
iments in PARSEC and SPLASH.2x suites compared
the existing round-robin scheme with the proposed rate-
of-change approach. Results demonstrate that the rate-
of-change approach reduces the mean-squared error on
average by 22%, confirming that the proposed method-
ology not only improves the accuracy of performance
measurements read, but also makes scheduling multiple
event measurements feasible with a limited number of
hardware performance counters.

1 Introduction

Modern performance tools (PAPI, Perf Event, Intel
vTune) incorporate hardware performance counters in
systems monitoring by sampling low-level hardware
events, where each performance monitoring counter
(PMC) is programmed to count the number of occur-
rences of a particular event, and its counts are peri-
odically read from these registers. The monitored re-
sults collectively can provide insights into how the task
behaves on a particular architecture. Projecting per-
formance metrics such as instructions-per-cycle (IPC),
branch mispredictions, and cache utilization rates not

only helps analysts identify hotspots, but can lead to
code optimization opportunities and performance tuning
enhancements. Hardware manufacturers provide hun-
dreds of performance events that can be programmed
onto the PMCs for monitoring. For instance, Intel pro-
vides close to 200 events for the current i7 architecture
[6], while AMD provides close to 100 events [12]. Other
architectures that provide event monitoring capabilities
include NVIDIA’s nvprof and Qualcomm’s Adereno
profilers [11, 14]. While manufacturers have provided
an exhaustive list of event types to monitor, the issue is
that microprocessors usually provide two to six perfor-
mance counters for a given architecture, which restricts
the number of events that can be monitored simultane-
ously.

Calculating performance metrics involves n low-level
hardware events, and modern microprocessors provide
m physical counters (two to six), making scheduling
multiple performance events impractical when n > m.
A single counter can monitor only one event at a time,
which means that two or more events assigned to the
same register cannot be counted simultaneously (con-
flicting events) [9].

Monitoring more events than available counters can be
achieved with time interpolation techniques, such as
multiplexing and trace alignment. Multiplexing consists
of scheduling events for a fraction of the execution and
extrapolating the full behavior of each metric from its
samples. Trace alignment, on the other hand, involves
collecting separate traces for each event run and com-
bining the independent runs into a single trace.

Current approximation techniques for reconstructing
event traces yield estimation errors, which provides in-
accurate measurements for performance analysts [10].
The estimation error increases with multiplexing be-

• 101 •



102 • Computationally Efficient Multiplexing of Events on Hardware Counters

(t0,c0) t1 t2 t3 t4 = 18

ct1

ct2

ct3

ct4

time

count

k1

k2

k3

k4

n1

n2

n3

n4

Figure 1: An example of a sequence of sampled values.
The sampling times t1 . . . t4 and counts ct0 = 0, . . .ct4 are
known.

cause each event timeshares the PMC with the other
events, which results in loss of information when the
event is not being monitored at a sampled interval.
Trace alignment may not be feasible in certain situa-
tions, where taking multiple runs of the same appli-
cation for performance monitoring might take days or
weeks to complete. In addition, the authors have shown
that between-runs variability affects the correlation be-
tween the sampled counts for monitored events, due
to hardware interrupts, cache contention, and system
calls [16]. Current implementations schedule monitor-
ing events in a round-robin fashion, ignoring any infor-
mation about the program task. Opportunities for better
event scheduling exist if information about the behavior
of the task is taken into account, an area we address in
this paper.

This paper is organized as follows. Section 2 discusses
previous work. Our multiplexing methodology is pre-
sented in Section 3. Section 4 evaluates the experimen-
tal results. Lastly, Section 5 concludes with future work.

2 Previous Work

To the best of our knowledge, there has not been any
prior work similar to our methodology for multiplexing
n performance events onto m hardware counters. The
next subsections discuss several performance monitor-
ing tools and its respective multiplexing strategy.

2.1 Performance Monitoring Tools

Performance monitoring tools provide access to hard-
ware performance counters either through user space or
kernel space.

Performance Application Programming Interface
(PAPI) is an architecture independent framework that
provides access to generalized high-level hardware
events for modern processors, and low-level native
events for a specific processor [2]. PAPI incorporates
MPX and a high resolution interval timer to perform
counter multiplexing [9]. The TAU Performance
System, which integrates PAPI, is a probed-based
instrumentation framework that profiles applications,
libraries, and system codes, where execution of probes
become part of the normal control flow of the program
[15]. PAPI’s ease of use, and feature-rich capabilities
make the framework a top choice in systems running
UNIX/Linux, ranging from traditional microprocessors
to high-performance heterogeneous architectures.

Perfmon2, a generic kernel-level performance monitor-
ing interface, provides access to the hardware perfor-
mance monitoring unit (PMU) and supports a variety of
architectures, including Cray X2, Intel, and IBM Pow-
erPC [4]. Working at the kernel level provides fine
granularity and less system perturbation when accessing
hardware performance counters, compared to user space
access [17]. Scheduling multiple events in Perfmon2 is
handled via round-robin, where the order of event decla-
ration determines its initial position in the queue. Linux
Perf Event subsystem is a kernel level monitoring plat-
form that also provides multi-architectural support (x86,
PowerPC, ARM, etc.) [13]. Perf has been mainlined in
the Linux kernel, making Perf monitoring tool available
in all Linux distributions. Our proposed methodology
was implemented in Perf Event.

2.2 Perf Event in Linux

Perf Event samples monitoring events asynchronously,
where users set a period (at every ith interval) or a fre-
quency (the number of occurrence of events). Users de-
clare an event to monitor by creating a file descriptor,
which provides access to the performance monitoring
unit (PMU). The PMU state is loaded onto the counter
register with a perf_install_in_context call. Sim-
ilar to Perfmon2, the current criteria for multiplexing
events is round-robin.

A monitoring Perf Event can be affected under the fol-
lowing three scenarios: hrtimer, scheduler tick, and
interrupt context.



2014 Linux Symposium • 103

(t0,c0) t1

ct1

t2

ct2

t3

ct3

A

B

C

D

D′

D′′

time

count

Figure 2: Triangle representing rate-of-change calcula-
tion for the recent three observations A, B, and C.

2.2.1 hrtimer

hrtimer [5] is a high resolution timer that gets triggered
when the PMU is overcommitted [7]. hrtimer invokes
rotate_ctx, which performs the actual multiplexing
of events on the hardware performance counters and is
where our rate-of-change algorithm is implemented.

2.2.2 Scheduler tick

Performance monitoring events and its count values are
removed and reprogrammed on the PMU registers dur-
ing each operating system scheduler tick, usually set at
HZ times per second.

2.2.3 Interrupt context

A non-maskable interrupt (NMI) triggers a PMU in-
terrupt handler during a hardware overflow, usually
when a period declared by the user has been reached.
perf_rotate_context completes the interrupt con-
text by multiplexing the events on the PMC.

Our methodology uses hrtimer to perform time-
division multiplexing. That is, at each hrtimer trig-
gered, Perf Event timeshares the events with the perfor-
mance counters. During the intervals that the events are
not monitored, the events are linearly interpolated to es-
timate the counts [9].

2.3 Linear interpolation

To define linear interpolation for asynchronous event
sampling, we will first define a sample, and then use
a pair of samples to construct a linear interpolation.

A sample si = (ti, cti) is the i-th sample of a PMC count-
ing the occurrences of an arbitrary event. The sample si

occurs at time ti and has a value cti . We define:

ki =cti− cti−1 (1)

ni =ti− ti−1 (2)

as the increments between samples si−1 and si for an
event’s count and time, respectively.

The slope of the linear interpolation between the two
samples is defined as follows:

mi =
ki

ni
(3)

Since all performance counters store non-negative in-
tegers, then 0 ≤ ki,0 ≤ ni,0 ≤ mi, for all i. An event
sample represents a point in an integer lattice. Figure 1
displays sampled values and the variables defined above.

3 Multiplexing Methodology

Time interpolation techniques for performance monitor-
ing events have shown large accuracy errors when re-
constructing event traces [10]. Although increasing the
number of observations correlates with more accurate
event traces, taking too many samples may adversely
affect the quality of the monitored behavior, since each
sample involves perturbing the system. Linear interpo-
lation techniques has demonstrated its effectiveness in
reconstructing unobserved event traces [8, 9].

Our rate-of-change algorithm increases the amount of
monitoring time for events that do not behave linearly.
Our intuition tells us that higher errors will occur for
non-linear behaved events when reconstructing event
traces with linear interpolation techniques. The cur-
rent round-robin scheme does not detect varying behav-
ior since it schedules each event indiscriminately, miss-
ing the opportunity to reduce scheduling time for events
where linear interpolation may have been sufficient for
reconstruction.



104 • Computationally Efficient Multiplexing of Events on Hardware Counters

e1 e2 e3

Figure 3: Triangle cost function for events e1, e2, and e3

3.1 Rate-of-Change Definition

To motivate our proposed scheduling algorithm, we de-
fine rate-of-change as follows. Let Ax,y, Bx,y, and Cx,y

be the last three observations for a given event in a cur-
rent program run, where x,y represent the observed time
and count, respectively (Sec. 2.3). A triangle can be
constructed in an integer lattice using the three obser-
vations, where the triangle’s area represents the loss of
information if Bx,y were skipped (Fig. 2). Based on the
principle of locality in software applications [3], we hy-
pothesize that the loss of information due to an unknown
Bx,y is similar to the potential loss of information due to
skipped future observations. In Figure 2, the dashed line
represents an extracted trace from a linear interpolator,
provided that Ax,y and Cx,y are known, and serves as our
scheduling criteria.

3.2 Triangle Cost Function

The triangle cost function is calculated as follows. For
any three observations Ax,y, Bx,y, and Cx,y, we have

Dx = Bx Dy = δy +Ay

D′x = Bx D′y = Ay δy =
Cy−Ay

Cx−Ax
· (Bx−Ax)

D′′x = Bx D′′y =Cy

Definition 1 The rate-of-change in observations Ax,y,
Bx,y, and Cx,y is given by the sum of the areas 4ABD

and4BCD.

4ABD is calculated as follows:

4ABD =
Bx−Ax

2
· (By−Ay−δy) (4)

The scheduling cost, CABD, is determined as follows:

CABD =

∣∣∣∣By−Ay−δy

2

∣∣∣∣ ·δt (5)

Calculations for 4BCD and CBCD are similar to (4) and
(5), respectively:

4BCD =
Cx−Bx

2
· (By−Ay−δy) (6)

CBCD =

∣∣∣∣By−Ay−δy

2

∣∣∣∣ ·δt (7)

3.3 Rate-of-Change as Scheduling Criteria

The rate-of-change algorithm calculates a cost func-
tion based on the recent event observations to determine
whether the monitoring event should be scheduled next.
A smaller triangle area implies less variability, since the
area will be equivalent to a linear slope rate, and is eas-
ier to extrapolate. Conversely, a greater triangle area
reflects sudden changes in the observations, or higher
variability, which means that those events should be pri-
oritized over others.

Figure 3 illustrates how the rate-of-change algorithm
calculates the scheduling cost function for each event
e1, e2, and e3 with respect to the linear interpolator (red
dashed line). The triangle area shaded in green repre-
sents the cost of scheduling a particular ei. Event e2
exhibits nearest linear behavior, which will be placed
in the rear of the scheduling queue. Note that the con-
structed triangle for e3 reflects with the linear interpo-
lator, which is addressed with the absolute value sign
in Equation 5. The objective of our rate-of-change al-
gorithm is to “punish” non-linearly behaved events by
scheduling those events ahead of the queue. After run-
ning our algorithm, the scheduling queue will be ar-
ranged as follows: {e1,e3,e2}.



2014 Linux Symposium • 105

Hardware Cache

Event Period Event Period Event Period

instructions 4,000,000 L1-dCache-hits 1,000,000 dTLB-Cache-hits 1,100,000
cache-references 9,500 L1-dCache-misses 7,000 dTLB-Cache-misses 750
cache-misses 150 L1-dCache-prefetch 7,000 iTLB-Cache-hits 4,200,000
branch-instructions 850,000 L1-iCache-hits 1,800,000 iTLB-Cache-misses 500
branch-misses 10,000 L1-iCache-misses 50,000 bpu-Cache-hits 900,000
stalled-cycles (frontend) 15,000 LL-Cache-hits 3,100 bpu-Cache-misses 600,000
stalled-cycles (backend) 1,500,000 LL-Cache-misses 75 node-Cache-hits 70
ref-cpu-cycles 2,000,000 LL-Cache-prefetch 500 node-Cache-misses 70

node-Cache-prefetch 50

Table 1: Generalized Perf Events and its period settings.

Event starvation prevented

Our rate-of-change scheduling criteria prevents event
starvation because the cost of scheduling increases as
time since the last scheduled event (δt) increases; hence,
preventing any events from not being scheduled (Eq. 5).

Computationally efficient

Our rate-of-change algorithm is computationally effi-
cient because for every hrtimer triggered, only two in-
teger multiplications and two integer divisions are tak-
ing place. Below is a snippet of C code for our compu-
tation:

delta_y = ((Cy-Ay)/(Cx-Ax)) * (Bx-Ax);

cost = ((By-Ay-delta_y) / 2) * d_time;

In cases where Cx−Ax = 0, δy is set to 0 which implies
Cx = Ax, or that no changes have occurred since obser-
vation Ax.

4 Experiments and Results

4.1 Experiments

In order to verify our proposed rate-of-change method-
ology, we ran a subset of PARSEC benchmarks [1]
and SPLASH.2X benchmarks [18], listed in Table 2,
while sampling the events from the PMC periodically.
SPLASH.2X is the SPLASH-2 benchmark suite with
bigger inputs drawn from actual production workloads.

Our goal was to make use of hrtimer in our multiplex-
ing methodology, which was released in kernel version
3.11.rc3 [7].

The generalized Perf Events for this experiment, listed
in Table 1, were periodically sampled for each bench-
mark run. Each of the periods was determined by trial-
and-error using the following formula.

samples/msec =
µnr.samples

µt.elapsed
(8)

Ideal samples per milliseconds is 1, where the number
of samples taken for an event is proportional to the time
spent monitoring the event.

To account for between-runs variability, each of the
events listed in Table 1 executed ten times for each
benchmark package with simlarge as input, which ran
on average 15 seconds each. Each execution consisted
of programming one single event in the PMC to disable
multiplexing, which serves as the baseline comparison.
In addition, the events were multiplexed with the perfor-
mance counters in the same run under the current round-
robin scheme and with our rate-of-change methodology.
Each of the ten runs was sorted in ascending order, based
on counts for each scheduling strategy, and the fourth
lowest value was selected as our experimental result for
the single event baseline comparison, and for the two
multiplexing strategies (round-robin, rate-of-change).

Our experiments ran on an Intel i7 Nehalem processor
with four hardware performance counters. Table 3 lists
the machine configuration for this experiment. Note that
CPU frequency scaling, which facilitates the CPU in
power consumption management, was disabled to make



106 • Computationally Efficient Multiplexing of Events on Hardware Counters

Platform Package Application Domain Description

PARSEC

blackscholes Financial Analysis Calculates portfolio price using Black-Scholes PDE.
bodytrack Computer Vision Tracks a 3D pose of a markerless human body.
canneal Engineering Minimizes routing costs for synthetic chip design.
vips Media Processing Applies a series of transforms to images.

SPLASH.2x

cholesky HPC Factors sparse matrix into product of lower triangular matrix.
fmm HPC Simulates interaction in 2D using Fast Multipole method
ocean_cp HPC Large scale movements based on eddy and boundary currents.
water_spatial HPC Evaluates forces and potentials in a system of molecules.

Table 2: PARSEC and SPLASH.2x Benchmarks.

Type Events
Architecture Intel Core i7, M640,

2.80 GHz (Nehalem)
Performance counters IA32_PMC0, IA32_PMC1,

IA32_PMC2, IA32_PMC3
Operating system Linux kernel 3.11.3-rc3
CPU frequency scaling Disabled
CPU speed 2.8 GHz

Table 3: Machine configuration.

all CPUs run consistently at the same speed (four CPUs
running at 2.8 GHz, in our case). The rate-of-change
algorithm hooked into rotate_ctx (Sec. 2.2.2) and
the final counts were exported as a .csv file from Perf
Event subsystem.

4.1.1 MSE on final counts

We compared our multiplexing technique with the ex-
isting round-robin approach by applying a statistical es-
timator on the mean µ calculated from the single event
runs. We used mean-squared error (MSE) for compar-
ing each mean µroc and µrr from the multiplexing tech-
nique versus the mean µbase from the non-multiplexed
run. MSE is defined as follows:

MSE = E[(θ̂ −θ)2] = B[θ̂ ]2 + var[θ̂ ] (9)

4.2 Results

Results show significant improvements for all bench-
marks and all events for our rate-of-change approach,
when compared with round-robin. Figure 4 com-
pares accuracy in improvement for the two multiplexing
strategies. For instructions, performance improved with
blackscholes (22.1%) when compared with round-robin

Benchmark Improvement
blackscholes 7.46
bodytrack 5.81
canneal 3.02
vips 1.48
cholesky 4.45
fmm 1.02
ocean_cp 4.67
water_spatial 2.69

Table 4: Improvement (%) per benchmark, averaged
over event types.

(8.5%). cache-misses had the biggest gain, with close
to 95.5% accuracy for both the blackscholes and wa-
ter_spatial benchmarks. ref-cpu-cycles also performed
well with rate-of-change (Fig. 4b). Figure 5 shows ac-
curacy rates for L1-data-cache events, including hits,
misses, and prefetches. For all three events, our rate-
of-change approach outperformed round-robin.

Table 4 shows percentage improvements for each bench-
mark when averaged across event types. The posi-
tive improvement rates indicate that our rate-of-change
methodology has facilitated in profiling these applica-
tions better than the round-robin scheme.

Table 5 shows the improvements for each event type
when averaged across benchmarks. Some of the top per-
formers include instructions, cache-misses, and node-
prefetches. However, there were also some poor per-
formers. For instance, branch-misses had -10.23, while
iL1-misses had -8.99. System perturbation across differ-
ent runs may have skewed these numbers. It is possible
that round-robin may have been sufficient for schedul-
ing those events, and that our algorithm may have had
an effect on those results. These averages only provide
an overview of how certain events might behave on a
particular benchmark.



2014 Linux Symposium • 107

−100

−50

0

50

100

Benchmark

%

event in cr cm bi bm scf scb cyc l1dh lidm lidp l1ih l1im llh llm llp dtlh dtlm itlh itlm bpuh bpum nh nm np

Decrease in Mean Squared Error (All)

Figure 6: Decrease in MSE for all 25 multiplexed events, when comparing rate-of-change over the round-robin
scheduling scheme. Each event set displays improvements for each of the eight benchmarks.

0
5
10
15
20

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.instructions

0

10

20

30

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.ref−cpu−cycles

0

30

60

90

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.cache−misses

Figure 4: Accuracy in multiplexing strategies (round-
robin, rate-of-change) with respect to baseline trace for
select hardware events (more is better).

0

10

20

30

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.cache.l1d.hits

0
10
20
30
40

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.cache.l1d.misses

0
2
4
6
8

bl bo ca vi ch fm oc wa
benchmark

%

Multiplex
rr
roc

hw.cache.l1d.prefetch

Figure 5: Accuracy in multiplexing strategies (round-
robin, rate-of-change) with respect to baseline trace for
L1-data-cache events (more is better).



108 • Computationally Efficient Multiplexing of Events on Hardware Counters

instr c.re f c.miss br.in br.mi
10.96 11.35 53.04 7.48 -10.23

iT LB.h iT LB.m st.cyc. f st.cyc.b re f .cyc
-1.11 -0.82 -7.19 -6.44 4.4

dT LB.h dT LB.m LLC.h LLC.m LLC.p
-1.46 -1.59 -8.48 -0.95 -0.95
iL1.h iL1.m dL1.h dL1.m dL1.p
-0.26 -8.99 7.09 7.46 -4.01
bpu.h bpu.m node.h node.m node.p
-1.6 -1.58 2.71 -0.62 47.04

Table 5: Improvement (%) per event type, averaged over
benchmark.

Figure 6 shows the proposed methodology’s improve-
ment as a decrease in mean-squared error for round-
robin versus rate-of-change with respect to the base-
line trace. Each event set shows performance for
each of the eight benchmarks. The red horizon-
tal line indicates that on average, performance gains
of 22% were witnessed when comparing our rate-
of-change approach with round-robin. With the ex-
ception of vips (cycles), cholesky (iL1-misses), and
fmm (dL1-misses), most of the events profiled have
shown substantial improvements. Some notable stand-
outs include cache-misses: blackscholes (96%), vips
(65%), cholesky (32%), fmm (59%); cache-references:
blackscholes (24%), vips (12%), cholesky (7%), fmm
(17%); and node-prefetches: blackscholes (89%), vips
(40%), cholesky (51%), fmm (37%).

5 Future Work and Conclusion

5.1 Future Work

Our scheduling approach has demonstrated that perfor-
mance measurement accuracy can increase when incor-
porating information about the behavior of a program
task. Since architectural events are highly correlated in
the same run (e.g. hardware interrupts, system calls),
one extension to our multiplexing technique would be to
incorporate correlated information into calculating the
scheduling cost. Information about execution phases, in
addition to temporal locality, can facilitate in creating an
even more robust scheduler, which can lead to improved
profiled accuracy rates. In addition, our multiplexing
methodology can serve as an alternative to round-robin
scheduling in other areas that utilize real-time decision-

making, including task scheduling and decision-support
systems.

5.2 Conclusion

Multiplexing multiple performance events is necessary
because event counts of the same runs are more cor-
related to each other than among different runs. In
addition, the limited number of m hardware counters
provided by architecture manufacturers makes schedul-
ing n performance events impractical, where n > m.
Our rate-of-change scheduling algorithm has provided
an increase of accuracy over the existing round-robin
method, improving the precision of the total counts
while allowing multiple events to be monitored.

6 References

References

[1] C. Bienia, "Benchmarking Modern Microproces-
sors," Princeton University, Jan. 2011.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci, "A Portable Programming Interface for
Performance Evaluation on Modern Processors," In-
ternational Journal of High Performance Computing
Applications, 14(3):189-204, June 2000.

[3] L. Campos and I. Scherson, "Rate of Change Load
Balancing in Distributed and Parallel Systems," IEEE
Symposium on Parallel and Distributed Processing.
Apr 1999, doi:10.1109/IPPS.1999.760552.

[4] S. Eranian, "Perfmon2: A Flexible Performance
Monitoring Interface For Linux," Proceedings of the
Linux Symposium, vol.1, July 2006.

[5] T. Gleixner and D. Niehaus, "Hrtimers and Beyond:
Transforming the Linux time Subsystems," Proceed-
ings of the Linux Symposium, vol.1, July 2006.

[6] Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual. http://
www.intel.com/content/dam/www/
public/us/en/documents/manuals/
64-ia-32-architectures-software\
-developer-manual-325462.pdf. Intel Cor-
poration, Sept, 2013.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software\-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software\-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software\-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software\-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software\-developer-manual-325462.pdf


2014 Linux Symposium • 109

[7] hrtimer for Event Multiplexing. https://lkml.
org/lkml/2012/9/7/365. Linux Kernel Mailing
List. Sept, 2012.

[8] W. Mathur and J. Cook, "Improved Estimation
for Software Multiplexing of Performance Coun-
ters," 13th IEEE Intl. Symp. on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS’05), 2005.

[9] J. May, "MPX: Software for Multiplexing Hardware
Performance Counters in Multithreaded Programs,"
IEEE International Parallel and Distributed Process-
ing Symposium, 2001.

[10] T. Mytkowicz, "Time Interpolation: So Many
Metrics, So Few Registers," 40th IEEE/ACM In-
ternational Symposium on Microarchitecture, 2007,
doi:10.1109/MICRO.2007.27.

[11] NVIDIA nvprof Profiler. http://docs.
nvidia.com/cuda/profiler-users-guide/
#axzz33xUbGBmO. NVIDIA CUDA Toolkit v6.0.

[12] AMD Athlon Events. http://oprofile.
sourceforge.net/docs/amd-athlon-events.
php. OProfile website.

[13] Linux Kernel Profiling with perf. https://
perf.wiki.kernel.org/index.php/Tutorial.
Creative Commons 3.0, 2010.

[14] Qualcomm Adreno Profiler. https:
//developer.qualcomm.com/
mobile-development/maximize-hardware/
mobile-gaming-graphics-adreno/
tools-and-resources. Qualcomm Developer
Network.

[15] S. Shende and A. D. Malony, "The TAU Parallel
Performance System," International Journal of High
Performance Computing Applications, 20(2):287-
311, Summer 2006.

[16] V. Weaver, D. Terpstra and S. Moore, "Non-
Determinism and Overcount on Modern Hardware
Performance Counter Implementations," ISPASS
Workshop, April 2013.

[17] V. Weaver, "Linux perf_event Features and Over-
head," 2013.

[18] S. Woo, M. Ohara, E. Torrie, J. Singh, A.
Gupta, "The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations," Interna-
tional Symposium on Computer Architecture, 1995,
doi:10.1145/223982.223990

https://lkml.org/lkml/2012/9/7/365
https://lkml.org/lkml/2012/9/7/365
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz33xUbGBmO
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz33xUbGBmO
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz33xUbGBmO
http://oprofile.sourceforge.net/docs/amd-athlon-events.php
http://oprofile.sourceforge.net/docs/amd-athlon-events.php
http://oprofile.sourceforge.net/docs/amd-athlon-events.php
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-gaming-graphics-adreno/tools-and-resources
https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-gaming-graphics-adreno/tools-and-resources
https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-gaming-graphics-adreno/tools-and-resources
https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-gaming-graphics-adreno/tools-and-resources
https://developer.qualcomm.com/mobile-development/maximize-hardware/mobile-gaming-graphics-adreno/tools-and-resources


110 • Computationally Efficient Multiplexing of Events on Hardware Counters


	Computationally Efficient Multiplexing of Events on Hardware Counters
	R.V. Lim, D. Carrillo-Cisneros, W. Alkowaileet, I.D. Scherson
	Introduction
	Previous Work
	Performance Monitoring Tools
	Perf Event in Linux
	hrtimer
	Scheduler tick
	Interrupt context

	Linear interpolation

	Multiplexing Methodology
	Rate-of-Change Definition
	Triangle Cost Function
	Rate-of-Change as Scheduling Criteria

	Experiments and Results
	Experiments
	MSE on final counts

	Results

	Future Work and Conclusion
	Future Work
	Conclusion

	References



