Leveraging MPST in Linux with Application Guidance to Achieve
Power and Performance Goals

Michael R. Jantz
University of Kansas
mjantz@ittc.ku.edu

Kshitij A. Doshi
Intel Corporation
kshitij.a.doshi@intel.com

Prasad A. Kulkarni
University of Kansas
kulkarni@ittc.ku.edu

Heechul Yun
University of Kansas
heechul@ittc.ku.edu

Abstract

In this work, we describe an approach that improves
collaboration between applications, the Linux kernel,
and hardware memory subsystem (controllers and the
DIMMSs) in order to balance power and performance
objectives, and we present details of its implementa-
tion using the Linux 2.6.32 kernel (x64) as base. The
implementation employs ACPI memory power state ta-
ble (MPST) to organize system memory into power do-
mains according to rank information. An application
programming interface (API) in our implementation al-
lows applications to efficiently communicate various
provisioning goals concerning groups of virtual ranges
to the kernel. The kernel biases allocation and reclama-
tion algorithms in line with the provisioning goals. The
goals may vary over time; thus at one time, the applica-
tions may request high power efficiency; and at another
time, they may ask for bandwidth or capacity reserva-
tions, and so on. This paper describes the framework,
the changes for incorporating MPST information, policy
modifications, and examples and use cases for invoking
the new capabilities.

1 Introduction

Recent computing trends necessitate an increased fo-
cus on power and energy consumption and support for
multi-tenant use cases. There is therefore a need to mul-
tiplex hardware efficiently and without performance in-
terference. Advances in allocating CPU, storage and
network resources have made it possible to meet com-
peting service quality objectives while reducing power
or energy demands[9, 8, 3]. In comparison to other re-
sources, however, it is very challenging to obtain pre-

cise control over distribution of memory capacity, band-
width, or power, when virtualizing and multiplexing
system memory. Precisely controlling memory power
and performance is difficult because these effects inti-
mately depend upon the results of activities across mul-
tiple layers of the vertical execution stack, which are of-
ten not available at any single layer or component.

In an effort to simplify resource management within
each layer, current systems often separate and abstract
away information necessary to coordinate cross-layer
activity. For example, the Linux kernel views physical
memory as a single, large, contiguous array of physical
addresses. The physical arrangement of memory mod-
ules, and that of the channels connecting them to pro-
cessors, together with the power control domains are
all opaque to the operating system’s memory manage-
ment routines. Without exposing this information to
the upper-level software, it is very difficult to design
schemes that coordinate application demands with the
layout and architecture of the memory hardware.

The selection of physical pages to bind to application
virtual addresses also has a significant impact on mem-
ory power and performance. Operating systems use
heuristics that reclaim either the oldest, or the least re-
cently touched, or least frequently used physical pages
in order to fill demands. Over time, after repeated al-
locations and reclaims, there is no guarantee that a col-
lection of intensely accessed physical pages would re-
main confined to a small number of memory modules
(or DIMMs). Even if an application reduces its dy-
namic memory footprint, its memory accesses can re-
main spread out across sufficiently many memory ranks
to keep any ranks from transitioning into a low-power
state to save power. The layout and distribution of each

e 13 o

14 e Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals

application’s hot pages not only affects the ability of
memory modules to transition to lower power states dur-
ing intervals of low activity, but also impacts the extent
of interference caused by a program’s activity in mem-
ory and the responsiveness experienced by other active
programs. Thus a more discriminating approach than is
available in current systems for multiplexing of physical
memory is highly desirable.

Furthermore, data-intensive computing continues to
raise demands on memory. Recent studies have shown
that memory consumes up to 40% of total system power
in enterprise servers [7] making memory power a dom-
inant factor in overall power consumption. If an appli-
cations high-intensity accesses are concentrated among
a small fraction of its total address space, then it is
possible to achieve power-efficient performance by co-
locating the active pages among a small fraction of
DRAM banks. At the same time, an application that
is very intensive in its memory accesses may prefer that
pages in its virtual address span are distributed as widely
as possible among independent memory channels to
maximize performance. Thus, adaptive approaches are
needed for improving power efficiency and performance
isolation in the scheduling of memory.

We have designed and implemented a Linux kernel-
based framework that improves collaboration between
the applications, Linux kernel, and memory hardware
in order to provide increased control over the distribu-
tion of memory capacity, bandwidth, and power. The
approach employs the ACPI memory power state table
(MPST)[1], which specifies the configuration’s mem-
ory power domains and their associated physical ad-
dresses. Our modified Linux kernel leverages this infor-
mation to organize physical memory pages into software
structures (an abstraction called “trays”) that capture the
physically independent power domains. The modified
kernel’s page management routines perform all alloca-
tion and recycling over our software trays.

Our framework includes an application programming
interface (API) that allows applications to efficiently
communicate provisioning goals to the kernel by apply-
ing colors to portions of their virtual address space. A
color is simply a hint applied to a virtual address range
that indicates to the operating system that some com-
mon behavior or intention spans pages, even if the pages
are not virtually contiguous. Applications can also as-
sociate attributes (or combinations of attributes) with
each color. Attributes provide information (typically

some intent or provisioning goal) to the operating sys-
tem about how to manage the colored range. Colors and
their associated attributes can be applied and changed
at any time, and our modified Linux kernel attempts to
interpret and take them into account while performing
allocation, recycling, or page migration decisions.

We re-architect the memory management of a recent
Linux kernel (x64, version 2.6.32) to implement our ap-
proach. Our recently published work, A Framework for
Application Guidance in Virtual Memory Systems [6],
describes the high-level design and intuition behind our
approach and presents several experiments showing how
it can be used to achieve various objectives, such as
power savings and capacity provisioning. In this work,
we provide further design and implementation details,
including major kernel modifications and specific func-
tions and tools provided by our coloring API.

The next section describes how our custom kernel lever-
ages MPST information to construct trays and provides
details of the structural and procedural modifications
necessary to perform allocation and recycling over trays.
In Section 3, we present our application programming
interface to efficiently communicate application intents
to our Linux kernel using colors, and we provide details
of the kernel modifications that are necessary to receive
and interpret this communication. In Section 4 we dis-
cuss our plans for future work, and Section 5 concludes
the paper.

2 Leveraging MPST in the Linux Kernel

Our custom kernel organizes physical memory pages
into the power-manageable tray abstraction by leverag-
ing information provided by the ACPI memory power
state table. Our implementation enables tray-based
memory allocation and reclaim policies, which we de-
scribe in the following section.

2.1 Tray Design

Modern server systems employ a Non-Uniform Mem-
ory Access (NUMA) architecture which divides mem-
ory into separate regions (nodes) for each processor or
set of processors. Within each NUMA node, mem-
ory is spatially organized into channels. Each channel
employs its own memory controller and contains one
or more DIMMSs, which, in turn, each contain two or

Operating System

2014 Linux Symposium

Node 0

Node 1

Zone DMA

Zone Normal

Tray O Tray 1
free LRU free LRU

Tray 1
free LRU

Tray 2
free LRU

%%

Tray 3
free LRU

il

w
J

Zone Normal

Tray 5
free LRU

il

Tray 4
free LRU

Tray 6
free LRU

Dn

Tray 7
free LRU

B

Rank 1

Memory controller

Memory controller

thannel 0

thannel 1

15

NUMA Node 1

Figure 1: Organization of tray structures in relation to memory hardware

Memory / S & & 3 \
[=4 f=4 =4 [=4
Hardware & & & &
Memory controller Memory controller
thannel 0 thannel 1
NUMA Node 0
more ranks. Ranks comprise the actual memory stor-

age and typically range from 2GB to 8GB in capacity.
The memory hardware performs aggressive power man-
agement to transition from high power to low power
states when either all or some portion of the memory is
not active. Ranks are the smallest power manageable
unit, which implies that transitioning between power
states is performed at the rank level. Thus, different
memory allocation strategies must consider an impor-
tant power-performance tradeoff: distributing memory
evenly across the ranks improves bandwidth which leads
to better performance, while minimizing the number of
active ranks consume less power.

The Linux kernel maintains a hierarchy of structures to
represent and manage physical memory. Nodes in the
Linux kernel correspond to the physical NUMA nodes
in the hardware. Each node is divided into a number
of blocks called zones, which represent distinct physical
address ranges. At boot time, the OS creates physical
page frames (or simply, pages) from the address range
covered by each zone. Each page typically addresses
4KB of space. The kernel’s physical memory manage-
ment (allocation and recycling) operates on these pages,
which are stored and tracked using various lists in each
zone. For example, a set of lists of pages in each zone
called the free lists describes all of the physical memory
available for allocation.

To implement our approach, we create a new division

in this hierarchy called trays. A tray is a software struc-
ture which contains sets of pages that reside on the same
power-manageable memory unit. Each zone contains a
set of trays and all the lists used to manage pages on the
zone are replaced with corresponding lists in each tray.
Figure 1 shows how our custom kernel organizes its rep-
resentation of physical memory with trays in relation to
the actual memory hardware.

One potential issue with the tray approach is that power-
manageable domains that cross existing zone bound-
aries are represented as separate trays in different zones.
Tray 1 in Figure 1 illustrates this situation. Another
approach, proposed by A. Garg [5], introduces a mem-
ory region structure between the node and zone level to
capture power-manageable domains. Although this ap-
proach is able to represent power-manageable domains
that cross existing zone boundaries in a single structure,
it requires a duplicate set of zone structures for each
memory region. There are a number of important mem-
ory management operations that occur at the zone level
and maintaining duplicate zone structures significantly
complicates these operations. Our tray-based approach
avoids zone duplication, and thus, avoids such compli-
cations. A more recent version of the memory region
approach, proposed by S. Bhat [4], removes memory
regions from the node-zone hierarchy entirely, and cap-
tures power-manageable domains in a data structure par-
allel to zones.

16 e Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals

Flags (decoded below) : 03

Node Enabled H

Power Managed H

Hot Plug Capable : 0

Reserved : 00

Node ID : 0000

Length : 00000026

Range Address : 0000000700000000
Range Length : O00000013FFFFFFF
Num Power States : 02

Num Physical Components : 03

Reserved : 0000

Figure 2: Example MPST entry

2.2 Mapping Pages to Trays Using MPST

Assigning pages to the appropriate tray requires a map-
ping from physical addresses to the power-manageable
units in hardware. We employ the ACPI defined mem-
ory power state table (MPST), which provides this map-
ping. Each entry in the MPST specifies a memory
power node with its associated physical address ranges
and supported memory power states. Some nodes may
have multiple entries to support nodes mapped to non-
contiguous address ranges.

The BIOS presents this information to the kernel at boot
time in the form of an ACPI Data Table with statically
packed binary data. Unfortunately, our kernel version
does not include any facilities to parse the MPST into
structured data. Therefore, we parse the table into text
using utilities provided by the ACPI Component Archi-
tecture (ACPICA) project [2]. Figure 2 shows an ex-
ample MPST entry as text. The most important fields
in this table for defining power-manageable domains
are Range Address and Range Length, which spec-
ify the physical address range of each memory power
node. Thus, by either building this information into the
kernel image or by copying it from user space during
runtime, we are able to construct a global list of mem-
ory power nodes and their associated physical address
ranges for use during memory management.

Pages can now be assigned to the appropriate tray by
searching the global list of memory power nodes to find
which node contains each page of memory. For most
system configurations, this list is relatively short and
searching it does not require significant overhead. Thus,

to simplify our implementation effort, our custom kernel
performs this search every time an operation needs to
determine which tray should contain a particular page.
An efficient implementation could perform this search
once for each page and store information identifying the
page’s tray in the page flags field, similar to how the
zone and node information for each page are currently
stored.

It is important to note that our framework assumes
that all of the physical addresses on each page corre-
spond to memory on the same power-manageable unit
in hardware. Some configurations interleave physical
addresses within each page across power-manageable
units in the hardware. For example, in an effort to ex-
ploit spatial locality, some systems interleave physical
addresses across channels at the cache line boundary
(typically 64 bytes). Supposing such a system has two
DIMMs, each connected to its own channel, the first
cache line within a page will use DIMM 0, the next will
use DIMM 1, the next will use DIMM 0, and so on. In
this case, our framework cannot control access to each
individual DIMM, but may be able to control access to
which ranks are used within the DIMMs.

2.3 Memory Management Over Trays

To enable memory management over trays, we modi-
fied our kernel’s page management routines, which op-
erate on lists of pages at the zone level, to operate over
the same lists, but at a subsidiary level of trays. That
is, zones are subdivided into trays, and page allocation,
scanning, recycling are all performed at the tray level.
For example, during page allocation, once a zone that
is sufficient for a particular allocation has been found,
the allocator calls buffered_rmqueue to find a page
and remove it from the zone’s free lists. In our cus-
tom kernel, buffered_rmqueue is modified to take an
additional argument describing which tray’s free lists
should be searched, and each call site is modified to
call buffered_rmqueue repeatedly, with each tray, un-
til a suitable page is found. Most of the other required
changes are similarly straightforward.

One notable complication has to do with the low-level
page allocator in Linux, known as the buddy alloca-
tor. In order to quickly fulfill requests for contiguous
ranges of pages, the Linux buddy allocator automati-
cally groups contiguous blocks of pages. The order
of a block of pages refers to the number of contiguous

struct tray {
s
* free lists of pages of different orders
:':/

struct free_area free_area[MAX_ORDER];

1

struct free_area {
struct list_head
unsigned long

8

free_list[MIGRATE_TYPE];
nr_free;

Figure 3: Definition of free lists in the buddy system

pages in that block, where an order-n block contains 2"
contiguous pages. Block orders range from 0 (individ-
ual pages) to some pre-defined maximum order (11 on
our Linux 2.6.32 x64 system). Blocks of free pages are
stored in a set of lists, where each list contains blocks of
pages of the same order. In our implementation, the lists
are defined at the tray-level as shown in Figure 3. When
two contiguous order-n blocks of pages are both free,
the buddy allocator removes these two blocks from the
order-n free list and creates a new block to store on the
order-n + 1 free list. However, if two contiguous order-
n blocks reside in different trays, their combined order-
n+ 1 block cannot be placed on either tray (as it would
contain pages belonging to the other tray). For this rea-
son, we maintain a separate set of free lists, defined at
the zone level, to hold higher order blocks that contain
pages from separate trays. With this structure, our cus-
tom kernel is able to fulfill requests for low-order al-
locations from a particular power-manageable domain,
while, at the same time, it is also able to handle requests
for large blocks of contiguous pages, which may or may
not reside on the same power-manageable unit.

3 Application Guidance under Linux

The goal of our framework is to provide control over
memory resources such as power, bandwidth, and ca-
pacity in a way that allows the system to flexibly adapt to
shifting power and performance objectives. By organiz-
ing physical memory into power-manageable domains,
our kernel patch provides crucial infrastructure for en-
abling fine-grained resource management in software.
However, memory power and performance depend not
only on how physical pages are distributed across the

2014 Linux Symposium e 17

memory hardware, but also on how the operating sys-
tem binds virtual pages to physical pages, and on the
demands and usage patterns of the upper-level applica-
tions. Thus, naive attempts to manage these effects are
likely to fail.

Our approach is to increase collaboration between the
applications and operating system by allowing applica-
tions to communicate how they intend to use memory
resources. The operating system interprets the applica-
tion’s intents and uses this information to guide mem-
ory management decisions. In this section, we describe
our memory coloring interface that allows applications
to communicate their intents to the OS, and the kernel
modifications necessary to receive, interpret, and imple-
ment application intents.

3.1 Memory Coloring Overview

A color is an abstraction which allows the application
to communicate to the OS hints about how it is going
to use memory resources. Colors are sufficiently gen-
eral as to allow the application to provide different types
of performance or power related usage hints. In us-
ing colors, application software can be entirely agnostic
about how virtual addresses map to physical addresses
and how those physical addresses are distributed among
memory modules. By coloring any N different virtual
pages with the same color, an application communicates
to the OS that those N virtual pages are alike in some
significant respect, and by associating one or more at-
tributes with that color, the application invites the OS to
apply any discretion it may have in selecting the physi-
cal page frames for those N virtual pages.

By specifying coloring hints, an application provides
a usage map to the OS, and the OS consults this us-
age map in selecting an appropriate physical memory
scheduling strategy for those virtual pages. An applica-
tion that uses no colors and therefore provides no guid-
ance is treated normally — that is, the OS applies some
default strategy. However, when an application provides
guidance through coloring, depending on the particular
version of the operating system, the machine configura-
tion (such as how much memory and how finely inter-
leaved it is), and other prevailing run time conditions in
the machine, the OS may choose to veer a little or a lot
from the default strategy.

18 e Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals

System Call Arguments Description
mcolor addr, size, color Applies color to a virtual address range of length size starting
at addr

get_addr_mcolor addr,*color

Returns the current color of the virtual address addr

set_task_mcolor color

Applies color to the entire address space of the calling process

get_task_mcolor *color

Returns the current color of the calling process’ address space

set_mcolor_attr color, *attr

Associates the attribute attr with color

get_mcolor_attr color, *attr

Returns the attribute currently associated with color

Table 1: System calls provided by the memory coloring API

3.2 Memory Coloring Example

The application interface for communicating colors and
intents to the operating system uses a combination of
configuration files, library software, and system calls.
Let us illustrate the use of our memory coloring API
with a simple example.

Suppose we have an application that has one or more
address space extents in which memory references are
expected to be relatively infrequent (or uniformly dis-
tributed, with low aggregate probability of reference).
The application uses a color, say blue to color these ex-
tents. At the same time, suppose the application has
a particular small collection of pages in which it hosts
some frequently accessed data structures, and the appli-
cation colors this collection red. The coloring intent is to
allow the operating system to manage these sets of pages
more efficiently — perhaps it can do so by co-locating
the blue pages on separately power-managed units from
those where red pages are located, or, co-locating red
pages separately on their own power-managed units, or
both. A possible second intent is to let the operating
system page the blue ranges more aggressively, while
allowing pages in the red ranges an extended residency
time. By locating blue and red pages among a com-
pact group of memory ranks, an operating system can
increase the likelihood that memory ranks holding the
blue pages can transition more quickly into self-refresh,
and that the activity in red pages does not spill over
into those ranks. Since many usage scenarios can be
identified to the operating system, we define “intents”
and specify them using configuration files. A con-
figuration file for this example is shown in Figure 4.
In this file, the intents labeled MEM-INTENSITY and
MEM-CAPACITY can capture two intentions: (a) that red
pages are hot and blue pages are cold, and (b) that about
5% of application’s dynamic resident set size (RSS)
should fall into red pages, while, even though there are

Specification for frequency of reference:
INTENT MEM-INTENSITY

Specification for containing total spread:
INTENT MEM-CAPACITY

Mapping to a set of colors:
MEM-INTENSITY RED 0 //hot pages
MEM-CAPACITY RED 5 //hint - 5% of RSS

MEM-INTENSITY BLUE 1 //cold pages
MEM-CAPACITY BLUE 3 //hint - 3% of RSS

Figure 4: Example config file for colors and intents

many blue pages, their low probability of access is indi-
cated by their 3% share of the RSS. Next, let us examine
exactly how these colors and intents are actually com-
municated to the operating system using system calls.

3.3 System Calls in the Memory Coloring API

The basic capabilities of actually applying colors to vir-
tual address ranges and binding attributes to colors are
provided to applications as system calls. Applications
typically specify colors and intents using configuration
files as shown in the example above, and then use a li-
brary routine to convert the colors and intents into sys-
tem call arguments at runtime.

Table 1 lists and describes the set of system calls pro-
vided by our memory coloring API. To attach colors
to virtual addresses, applications use either mcolor (to
color a range of addresses), or set_task_mcolor (to
color their entire address space). Colors are represented
as unique integers, and can be overlapped. Thus, we
use an integer bit field to indicate the set of colors that
have been applied to each address range. To implement
mcolor, we add a color field to the vm_area_struct

struct mcolor_attr {
unsigned int intent[MAX_INTENTS];
unsigned int mem_intensity;
float mem_capacity;

};

Figure 5: Example attribute structure definition

kernel structure. In the Linux kernel, each process’ ad-
dress space is populated by a number of regions with
distinct properties. These regions are each described
by an instance of vm_area_struct. When an appli-
cation calls mcolor, the operating system updates the
vm_area_struct that corresponds to the given address
range (possibly splitting an existing vm_area_struct
and/or creating a new vm_area_struct, if neces-
sary) to indicate that the region is colored. The
set_task_mcolor implementation is similar: the
task_struct kernel structure is modified to include a
color field, and set_task_mcolor updates this field. In
the case that the vm_area_struct and task_struct
color fields differ, the operating system may attempt to
resolve any conflicts. In our default implementation, we
simply choose the color field on the vm_area_struct
if it has been set.

Colors are associated with attributes using the
set_mcolor_attr system call. To represent attributes,
we use a custom structure called mcolor_attr. For
each color, this structure packages all of the data nec-
essary to describe the color’s associated intents. Fig-
ure 5 shows the mcolor_attr definition that is used
for the example in Section 3.2. The intent field indi-
cates whether a particular type of intent has been spec-
ified, and the remaining fields specify data associated
with each intent. The kernel maintains a global table of
colors and their associated attributes. When the applica-
tion calls set_mcolor_attr, the kernel links the given
attribute to the color’s position in the global table. Note
that in this implementation, there is only one attribute
structure associated with each color. We bind multiple
intents to one color by packaging the intents together
into a single attribute structure.

2014 Linux Symposium e 19

3.4 Interpreting Colors and Intents During Mem-
ory Management

Lastly, we examine exactly how our modified Linux ker-
nel steers its physical memory management decisions
in accordance with memory coloring guidance. To de-
scribe this process, let us again consider the example in
Section 3.2. Before the example application applies any
colors, the system employs its default memory manage-
ment strategy for all of the application’s virtual pages.
After applying the red and blue colors and binding these
to their associated intents, the system will eventually
fault on a colored page. Early during the page fault
handling, the system determines the color of the fault-
ing page (by examining the color field on the page’s
vm_area_struct) and looks up the color’s associated
attribute structure in the global attribute table. Now,
the OS can use the color and attribute information to
guide its strategy when selecting which physical page to
choose to satisfy the fault.

For example, in order to prevent proliferation of fre-
quently accessed pages across many power-manageable
units, the operating system might designate one or a
small set of the power-manageable domains (i.e. tray
software structures) as the only domains that may be
used to back red pages. Then, when the system faults
on a page colored red, the OS will only consider physi-
cal pages from the designated set of domains to satisfy
the fault. As another example, let us consider how the
system might handle the MEM-CAPACITY intent. When
the OS determines that pages of a certain color make up
more than some percentage of the application’s current
RSS, then the system could choose to recycle frames
containing pages of that color in order to fill demands.
In this way, the system is able to fill demands without in-
creasing the percentage of colored pages in the resident
set.

Note that the specializations that an OS may support
need not be confined just to selection of physical pages
to be allocated or removed from the application’s resi-
dent set. The API is general enough to allow other op-
tions such as whether or not to fault-ahead or to per-
form read-aheads or flushing writes, or whether or not
to undertake migration of active pages from one set of
memory banks to another in order to squeeze the ac-
tive footprint into fewest physical memory modules. In
this way, an OS can achieve performance, power, I/O, or
capacity efficiencies based on guidance that application
tier furnishes through coloring.

20 e Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals

4 Future Work

While our custom kernel and API enable systems to
design and achieve flexible, application-guided, power-
aware management of memory, we do not yet have an
understanding of what sets of application guidance and
memory power management strategies will be most use-
ful for existing workloads. Furthermore, our current
API requires that all coloring hints be manually inserted
into source code and does not provide any way to auto-
matically apply beneficial application guidance. Thus,
we plan to develop a set of tools to profile, analyze, and
automatically control memory usage for applications.
Some of the capabilities we are exploring include: (a)
a set of tools and library software for applications to
query detailed memory usage statistics for colored re-
gions, (b) on-line techniques that adapt memory usage
guidance based on feedback from the OS, and (c) inte-
gration with compiler and runtime systems to automati-
cally partition and color the application’s address space
based on profiles of memory usage activity.

Simultaneously, we plan to implement color awareness
in selected open source database, web server, and J2EE
software packages, so that we can exercise complex,
multi-tier workloads at the realistic scale of server sys-
tems with memory outlays reaching into hundreds of
gigabytes. In these systems, memory power can reach
nearly half of the total machine power draw, and there-
fore they provide an opportunity to explore dramatic
power and energy savings from application-engaged
containment of memory activities. We also plan to ex-
plore memory management algorithms that maximize
performance by biasing placement of high value data so
that pages in which performance critical data resides are
distributed widely across memory channels. We envi-
sion that as we bring our studies to large scale software
such as a complex database, we will inevitably find new
usage cases in which applications can guide the operat-
ing system with greater nuance about how certain pages
should be treated differently from others.

5 Conclusions

There is an urgent need for computing systems that are
able to multiplex memory resources efficiently while
also balancing power and performance tradeoffs. We
have presented the design and implementation of a
Linux-based approach that improves collaboration be-
tween the application, operating system, and hardware

layers in order to provide a fine-grained, flexible, power-
aware provisioning of memory. The implementation
leverages the ACPI memory power state table to orga-
nize the operating system’s physical memory pages into
power-manageable domains. Additionally, our frame-
work provides an API that enables applications to ex-
press a wide range of provisioning goals concerning
groups of virtual ranges to the kernel. We have de-
scribed the kernel modifications to organize and man-
age physical memory in software structures that corre-
spond to power-manageable units in hardware. Finally,
we have provided a detailed description of our API for
communicating provisioning goals to the OS, and we
have presented multiple use cases of our approach in the
context of a realistic example.

References

[1] Advanced configuration and power interface
specification, 2011.
http://www.acpi.info/spec.htm.

[2] Acpi component architecture (acpica), 2013.
http://www.acpi.info/spec.htm.

[3] Vlasia Anagnostopoulou, Martin Dimitrov, and
Kshitij A. Doshi. Sla-guided energy savings for
enterprise servers. In IEEE International
Symposium on Performance Analysis of Systems
and Software, pages 120-121, 2012.

[4] Srivatsa S. Bhat. mm: Memory power
management, 2013.
http://lwn.net/Articles/546696/.

[5] Ankita Garg. mm: Linux vm infrastructure to
support memory power management, 2011.
http://lwn.net/Articles/445045/.

[6] Michael R. Jantz, Carl Strickland, Karthik Kumar,
Martin Dimitrov, and Kshitij A. Doshi. A
framework for application guidance in virtual
memory systems. In VEE ’13: Proceedings of the
9th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments,
March 2013.

[7] Charles Lefurgy, Karthick Rajamani, Freeman
Rawson, Wes Felter, Michael Kistler, and Tom W.
Keller. Energy management for commercial
servers. Computer, 36(12):39-48, December 2003.

http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://lwn.net/Articles/546696/
http://lwn.net/Articles/445045/

2014 Linux Symposium e 21

[8] Lanyue Lu, P.J. Varman, and K. Doshi.
Decomposing workload bursts for efficient storage
resource management. [EEE Transactions on
Parallel and Distributed Systems, 22(5):860 —873,
may 2011.

[9] H. Wang, K. Doshi, and P. Varman. Nested qos:
Adaptive burst decomposition for slo guarantees in

virtualized servers. Intel Technology Journal, June,
16:2 2012.

22 e Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals

	Leveraging MPST in Linux with Application Guidance to Achieve Power and Performance Goals
	M.R. Jantz, K.A. Doshi, P.A. Kulkarni, H. Yun
	Introduction
	Leveraging MPST in the Linux Kernel
	Tray Design
	Mapping Pages to Trays Using MPST
	Memory Management Over Trays

	Application Guidance under Linux
	Memory Coloring Overview
	Memory Coloring Example
	System Calls in the Memory Coloring API
	Interpreting Colors and Intents During Memory Management

	Future Work
	Conclusions

