
The maxwell(8) random number generator

Sandy Harris
sandyinchina@gmail.com

sandy.harris@sjtu.edu.cn

Abstract

I propose a daemon process for use on Linux. It gath-
ers entropy from timer calls, distills into a concentrated
form, and sends it to the kernel random(4) device. The
program is small and does not require large resources.
The entropy output is of high quality. The output rate
varies with the parameters chosen; with the defaults it is
about six kilobits per second, which is enough for many
applications.

1 Overview

Random numbers are essential for most cryptographic
applications, and several otherwise quite good crypto-
graphic systems have been broken because they used in-
adequate random number generators. The standard ref-
erence is RFC 4086, Randomness Requirements for Se-
curity [1]. It includes the following text:

At the heart of all cryptographic systems is the
generation of secret, unguessable (i.e., ran-
dom) numbers.

The lack of generally available facilities for
generating such random numbers (that is, the
lack of general availability of truly unpre-
dictable sources) forms an open wound in the
design of cryptographic software. [1]

However, generating good random numbers is often
problematic. The same RFC also says:

Choosing random quantities to foil a resource-
ful and motivated adversary is surprisingly
difficult. This document points out many pit-
falls ... [1]

I will not belabour these points here. I simply take it
as given both that high-quality random numbers are im-
portant and that generating them can be rather a tricky
proposition.

1.1 The Linux random device

Linux provides a random number generator in the ker-
nel; it works by gathering entropy from kernel events,
storing it in a pool, and hashing the pool to produce out-
put. It acts as a device driver supporting two devices:

• /dev/random provides high-grade randomness for
critical applications and will block (make the user
wait) if the pool lacks entropy

• /dev/urandom never blocks (always gives output)
but is only cryptographically strong, and does not
give guaranteed entropy

The main documentation is the manual page, ran-
dom(4); the source code also has extensive comments.
Archives of the Linux kernel mailing list and other lists
have much discussion. A critique [16] of an earlier ver-
sion has been published.

In many situations, the kernel generator works just fine
with no additional inputs. For example, a typical desk-
top system does not do a great deal of crypto, so the
demands on the generator are not heavy. On the other
hand, there are plenty of inputs—at least keyboard and
mouse activity plus disk interrupts.

On other systems, however, the kernel generator may be
starved for entropy. Consider a Kerberos server which
hands out many tickets, or a system with many en-
crypted connections, whether IPsec, SSH/TLS or SSH.
It will need considerable randomness, but such servers
often run headless—no keyboard or mouse—and en-
tropy from disk events may be low. There may be a
good deal of network activity, but some of that may be
monitored by an enemy, so it is not a completely trust-
worthy entropy source.

If the kernel generator runs low on entropy, then a pro-
gram attempting to read /dev/random will block; the de-
vice driver will not respond until it has enough entropy

• 111 •



112 • The maxwell(8) random number generator

so the user program must be made to wait. A program
reading /dev/urandom will not block but it cannot be cer-
tain it is getting all the entropy it expects. The driver is
cryptographically strong and the state is enormous, so
there is good reason to think the outputs will be of high
quality; however, there is no longer a guarantee.

Whichever device they read, programs and users relying
on the kernel generator may encounter difficulties if the
entropy runs low. Ideally, that would never happen.

1.2 Problem statement

The kernel generator provides an interface that allows an
external program to provide it with additional entropy,
to prevent any potential entropy shortage. The problem
we want to solve here is to provide an appropriate pro-
gram. The entropy volume need not be large, but the
quality should be high.

An essential requirement is that the program not overes-
timate the entropy it is feeding in, because sufficiently
large mis-estimates repeated often enough could cause
the kernel generator to misbehave. This would not be
easy to do; that generator has a huge state and is quite
resilient against small errors of this type. However, fre-
quent and substantial errors could compromise it.

Underestimating entropy is much less dangerous than
overestimating it. A low estimate will waste resources,
reducing program efficiency. However, it cannot com-
promise security.

I have written a daemon program which I believe solves
this problem. I wanted a name distinct from the existing
“Timer entropy daemon” [2], developed by Folkert van
Heusden, so I named mine maxwell(8), after Maxwell’s
demon, an imaginary creature discussed by the great
physicist James Clerk Maxwell. Unlike its namesake,
however, my program does not create exceptions to the
laws of thermodynamics.

2 Existing generators

There are several good ways to get randomness to feed
into the kernel generator already. In many—probably
even most—cases, one of these will be the best choice
and my program will not be necessary. Each of them,
however, has disadvantages as well, so I believe there is
still a niche which a new program can fill.

Ideally, the system comes with a built-in hardware RNG
and failing that, there are other good alternatives. I
limit my discussion to three—Turbid, HAVEGE and
Cryptlib—each of which has both Open Source code
and a detailed design discussion document available. As
I see it, those are minimum requirements for a system to
inspire confidence.

Also, the authors of all those generators are affiliated
with respectable research institutions and have PhDs
and publications; this may not be an essential prerequi-
site for trusting their work, but it is definitely reassuring.

2.1 Built-in hardware

Where it is available, an excellent solution is to use a
hardware RNG built into your system. Intel have one
in some of their chipsets, Via build one into some CPU
models, and so on. If one is buying a server that will be
used for crypto, insisting on a hardware RNG as part of
your specification is completely reasonable.

The main difficulty of with this method is that not all
systems are equipped with these devices. You may not
get to choose or specify the system you work on, so the
one you have may lack a hardware RNG even if your
applications really need one.

Even if the device is present, there will not necessarily
be a Linux driver available. In some cases, there might
be deficiencies in the documentation required to write a
driver, or in the design disclosure and analysis required
before the device can be fully trusted.

In short, this is usually the best choice when available,
but it is not universally available.

A true paranoid might worry about an intelligence
agency secretly subverting such a device during the de-
sign process, but this is not a very realistic worry. For
one thing, intelligence agencies no doubt have easier
and more profitable targets to go after.

Also, if the hardware RNG feeds into random(4) then—
as long as there is some other entropy—the large driver
state plus the complex mixing would make it extremely
difficult to compromise that driver even with many of
its inputs known. Adding a second good source of
entropy—maxwell(8), Turbid or HAVEGE—makes an
attack via RNG subversion utterly implausible.



2014 Linux Symposium • 113

2.2 Turbid

John Denker’s Turbid—a daemon for extracting entropy
from a sound card or equivalent device, with no micro-
phone attached—is another excellent choice. It can give
thousands of output bytes per second, enough for almost
any requirement.

Turbid is quite widely applicable; many motherboards
include a sound device and on a server, this is often un-
used. Failing that, it may be possible to add a device
either internally if the machine has a free slot or ex-
ternally via a USB port. Turbid can also be used on
a system which uses its sound card for sound. Add a
second sound device; there are command-line options
which will tell Turbid to use that, leaving the other card
free for music, VoIP or whatever.

The unique advantage of Turbid is that it provably de-
livers almost perfectly random numbers. Most other
generators—including mine, random(4), and the others
discussed in this section—estimate the randomness of
their inputs. Sensible ones attempt to measure the en-
tropy, and are very careful that their estimates are suf-
ficiently conservative. They then demonstrate that, pro-
vided that the estimate is good, the output will be ad-
equately random. This is a reasonable approach, but
hardly optimal.

Turbid does something quite different. It measures prop-
erties of the sound device and uses arguments from
physics to derive a lower bound on the Johnson-Nyquist
noise [3] which must exist in the circuit. From that,
and some mild assumptions about properties of the hash
used, it gets a provable lower bound on the output
entropy. Parameters are chosen to make that bound
159.something bits per 160-bit SHA context. The doc-
umentation talks of “smashing it up against the asymp-
tote”.

However, Turbid also has disadvantages. It requires a
sound card or equivalent, a condition that is easily sat-
isfied on most systems but may be impossible on some.
Also, if the sound device is not already known to Turbid,
then a measurement step is required before program pa-
rameters can be correctly set. These are analog measure-
ments, something some users may find inconvenient.

The Turbid web page [4] has links to the code and a
detailed analysis.

2.3 HAVEGE

The HAVEGE (HArdware Volatile Entropy Gathering
and Expansion) RNG gathers entropy from the internal
state of a modern superscalar processor. There is a dae-
mon for Linux, haveged(8), which feeds into random(4).

The great advantages of HAVEGE are that the output
rate can be very high, up to hundreds of megabits sec-
ond, and that it requires no extra hardware—just the
CPU itself. For applications which need such a rate,
it may be the only solution unless the system has a very
fast built-in hardware RNG.

However, HAVEGE is not purely a randomness gath-
erer:

HAVEGE combines entropy/uncertainty gath-
ering from the architecturally invisible states
of a modern superscalar microprocessor with
a pseudo-random number generation [5]

The “and Expansion” part of its name refers to a pseudo-
random generator. Arguably, this makes HAVEGE
less than ideal as source of entropy for pumping into
random(4) because any pseudo-random generator falls
short of true randomness, by definition. In this view
one should either discard the “and Expansion” parts of
HAVEGE and use only the entropy gathering parts, or
use the whole thing but give less than 100% entropy
credit.

There is a plausible argument on the other side. Papers
such as Yarrow [7] argue that a well-designed and well-
seeded PRNG can give output good enough for cryp-
tographic purposes. If the PRNG output is effectively
indistinguishable from random, then it is safe to treat
it as random. The HAVEGE generator’s state includes
internal processor state not knowable by an opponent
and moreover it is continuously updated, so it appears
to meet this criterion.

The haveged(8) daemon therefore gives full entropy
credit for HAVEGE output.

Another difficulty is that HAVEGE seems to be ex-
tremely hardware-specific. It requires a superscalar pro-
cessor and relies on:



114 • The maxwell(8) random number generator

a large number of hardware mechanisms that
aim to improve performance: caches, branch
predictors, ... The state of these components is
not architectural (i.e., the result of an ordinary
application does not depend on it). [6]

This will not work on a processor that is not superscalar,
nor on one to which HAVEGE has not yet been carefully
ported.

Porting HAVEGE to a new CPU looks difficult; it de-
pends critically on “non-architectural” features. These
are exactly the features most likely to be undocumented
because programmers generally need only a reference
to the architectural features, the ones that can affect “the
result of an ordinary application.”

These “non-architectural” aspects of a design are by def-
inition exactly the ones which an engineer is free to
change to get more speed or lower power consumption,
or to save some transistors. Hence, they are the ones
most likely to be different if several manufacturers make
chips for the same architecture, for example Intel, AMD
and Via all building x86 chips or the many companies
making ARM-based chips. They may even change from
model to model within a single manufacturer’s line; for
example Intel’s low power Atom is different internally
from other Intel CPUs.

On the other hand, HAVEGE does run on a number of
different CPUs, so perhaps porting it actually simpler
than it looks.

HAVEGE, then, appears to be a fine solution on some
CPUs, but it may be no solution at all on others.

The HAVEGE web page [6] has links to both code and
several academic papers on the system. The haveged(8)
web page [15] has both rationale and code for that im-
plementation.

2.4 Cryptlib

Peter Gutmann’s Cryptlib includes a software RNG
which gathers entropy by running Unix commands and
hashing their outputs. The commands are things like
ps(1) which, on a reasonably busy system, give chang-
ing output.

The great advantage is that this is a pure software solu-
tion. It should run on more-or-less any system, and has
been tested on many. It needs no special hardware.

One possible problem is that the Cryptlib RNG is a large
complex program, perhaps inappropriate for some sys-
tems. On the version I have (3.4.1), the random direc-
tory has just over 50,000 lines of code (.c .h and .s) in it,
though of course much of that code is machine-specific
and the core of the RNG is no doubt far smaller. Also the
RNG program invokes many other processes so overall
complexity and overheads may be problematic on some
systems

Also, the RNG relies on the changing state of a multi-
user multi-process system. It is not clear how well it will
work on a dedicated system which may have no active
users and very few processes.

The Cryptlib website [8] has the code and one of Gut-
mann’s papers [9] has a detailed rationale.

3 Our niche

Each of the alternatives listed above is a fine choice in
many cases. Between them they provide quite a broad
range of options. What is left for us?

What we want to produce is a program with none of
the limitations listed above. It should not impose any
hardware requirements, such as

• requiring an on-board or external hardware RNG

• requiring a sound card or equivalent device like
Turbid

• requiring certain CPUs as HAVEGE seems to

Nor should it be a large complex program, or invoke
other processes, as the Cryptlib RNG does.

Our goal is the smallest simplest program that gives
good entropy. I do at least get close to this; the com-
piled program is small, resource usage is low, and output
quality is high.

3.1 Choice of generator

In the most conservative view, only a generator whose
inputs are from some inherently random process such
as radioactive decay or Johnson-Nyquist circuit noise
should be trusted—either an on-board hardware RNG



2014 Linux Symposium • 115

or Turbid. In this view other generators—random(4),
maxwell(8), HAVEGE, Cryptlib, Yarrow, Fortuna, ... —
are all in effect using system state as a pseudo-random
generator, so they cannot be fully trusted. Taking a
broader view, any well-designed generator can be used
so all those discussed here are usable in some cases; the
problem is to choose among them.

If there is a hardware RNG on your board, or HAVEGE
runs on your CPU, or you have a sound device free for
Turbid—that is the clearly the generator to use. Any of
these can give large amounts of high-grade entropy for
little resource cost. If two of them are available, con-
sider using both.

If none of those is easily available, the choice is more
difficult. It is possible to use maxwell(8) in all cases, but
using the Cryptlib RNG or adding a device for Turbid
should also be considered. In some situations, using an
external hardware RNG is worth considering as well.

3.2 Applications for maxwell(8)

There are several situations where maxwell(8) can be
used:

• where the generators listed above are, for one rea-
son or another, not usable

• when using one of the above generators would be
expensive or inconvenient

• a second generator run in parallel with any of the
above, for safety if the other fails

• when another generator is not fully trusted (“Have
the NSA got to Intel?” asks the paranoid)

• whenever a few kilobits a second is clearly enough

There are three main applications:

Using any generator alone gives a system with a single
point of failure. Using two is a sensible safety precau-
tion in most cases, and maxwell(8) is cheap enough to
be quite suitable as the second, whatever is used as the
first.

With the -f or -g option, maxwell(8) runs faster and stops
after a fixed amount of output. This is suitable for fill-
ing up the entropy pool at boot time, or before some

randomness-intensive action such as generating a large
PGP key.

maxwell(8) can be used even on a very limited
systemi—an embedded controller, a router, a plug com-
puter, a Linux cell phone, ... Some of these may not have
a hardware RNG, or a sound device that can be used for
Turbid, or a CPU that supports HAVEGE. The Cryptlib
RNG is not an attractive choice for a system with lim-
ited resources and perhaps a cut-down version of Linux
that lacks many of the programs that the RNG program
calls. In such cases, maxwell(8) may be the only reason-
able solution.

More than one copy of maxwell(8) can be used. The
computer I am writing this on uses haveged(8) with
maxwell -z (slow but sure) as a second entropy source
and maxwell -g for initialisation. This is overkill on
a desktop system—probably any of the three would be
enough. However, something like that might be exactly
what is needed on a busy server.

4 Design overview

The old joke “Good, fast, cheap — pick any two.” ap-
plies here, with:

good == excellent randomness
fast == high volume output
cheap == a small simple program

I choose good and cheap. We want excellent random-
ness from a small simple program; I argue that not only
is this is achievable but my program actually achieves it.

Choosing good and cheap implies not fast. Some of the
methods mentioned above are extremely fast; we cannot
hope to compete, and do not try.

4.1 Randomness requirements

Extremely large amounts of random material are rarely
necessary. The RFC has:

How much unpredictability is needed? Is it
possible to quantify the requirement in terms
of, say, number of random bits per second?

The answer is that not very much is needed.
... even the highest security system is unlikely



116 • The maxwell(8) random number generator

to require strong keying material of much over
200 bits. If a series of keys is needed, they can
be generated from a strong random seed (start-
ing value) using a cryptographically strong se-
quence ... A few hundred random bits gener-
ated at start-up or once a day is enough if such
techniques are used. ... [1]

There are particular cases where a large burst is needed;
for example, to generate a PGP key, one needs a few K
bits of top-grade randomness. However, in general even
a system doing considerable crypto will not need more
than a few hundred bits per second of new entropy.

For example, if a system supports 300 connections and
re-keys each of them every 20 minutes, then it will do
900 re-keys an hour, one every four seconds on average.
In general, session keys need only a few hundred bits
and can get those from /dev/urandom. Even if each re-
key needed 2048 bits and for some reason it needed the
quality of /dev/random, the kernel would need only 512
bits of input entropy per second to keep up.

This would indicate that maxwell(8) needs to produce a
few hundred bits per second. In fact, it gives an order of
magnitude more, a few K bits per second. Details are in
the “Resources and speed” section.

4.2 Timer entropy

The paper “Analysis of inherent randomness of the
Linux kernel” [10] includes tests of how much random-
ness one gets from various simple sequences. The key
result for our purposes is that (even with interrupts dis-
abled) just:

doing usleep(100), giving 100 µs delay
doing a timer call
taking the low bit of timer data

gives over 7.5 bits of measured entropy per output byte,
nearly one bit per sample.

Both the inherent randomness [10] and the HAVEGE [5]
papers also discuss sequences of the type:

timer call
some simple arithmetic
timer call
take the difference of the two timer values

They show that there is also entropy in these. The time
for even a simple set of operations can vary depending
on things like cache and TLB misses, interrupts, and so
on.

There appears to be enough entropy in these simple
sequences—either usleep() calls or arithmetic—to drive
a reasonable generator. That is the basic idea behind
maxwell(8). The sequence used in maxwell(8) inter-
leaves usleep() calls with arithmetic, so it gets entropy
from both timer jitter and differences in time for arith-
metic.

On the other hand, considerable caution is required here.
The RFC has:

Computer clocks and similar operating sys-
tem or hardware values, provide significantly
fewer real bits of unpredictability than might
appear from their specifications.

Tests have been done on clocks on numerous
systems, and it was found that their behav-
ior can vary widely and in unexpected ways.
... [1]

My design is conservative. For each 32-bit output, it
uses at least 48 clock samples, so if there is 2/3 of a
bit of entropy per sample then the output has 32 bits.
Then it tells random(4) there are 30 bits of entropy per
output delivered. If that is not considered safe enough,
command-line options allow the administrator to in-
crease the number of samples per output (-p) or to re-
duce the amount of entropy claimed (-c) per output.

maxwell(8) uses a modulo operation rather than masking
to extract bits from the timer, so more than one bit per
sample is possible. This technique also helps with some
of the possible oddities in clocks which the RFC points
out:

One version of an operating system running
on one set of hardware may actually pro-
vide, say, microsecond resolution in a clock,
while a different configuration of the “same”
system may always provide the same lower
bits and only count in the upper bits at much
lower resolution. This means that successive
reads of the clock may produce identical val-
ues even if enough time has passed that the



2014 Linux Symposium • 117

value “should” change based on the nominal
clock resolution. [1]

Taking only the low bits from such a clock is problem-
atic. However, extracting bits with a modulo operation
gives a change in the extracted sample whenever the up-
per bits change.

4.3 Keeping it small

Many RNGs use a cryptographic hash, typically SHA-1,
to mix and compress the bits. This is the standard way
to distill a lot of somewhat random input into a smaller
amount of extremely random output. Seeking a small
program, I dispense with the hash. I mix just the input
data into a 32-bit word, and output that word when it
has enough entropy. Details of the mixing are in a later
section.

I also do not use S-boxes, although those can be a fine
way to mix data in some applications and are a staple in
block cipher design. Seeking a small program, I do not
want to pay the cost of S-box storage.

In developing this program I looked an existing “Timer
entropy daemon” [2] developed by Folkert van Heusden.
It is only at version 0.1. I did borrow a few lines of code
from that program, but the approach I took was quite
different, so nearly all the code is as well.

The timer entropy daemon uses floating point math in
some of its calculations. It collects data in a substantial
buffer, 2500 bytes, goes through a calculation to esti-
mate the entropy, then pushes the whole load of buffered
data into random(4). My program does none of those
things.

maxwell(8) uses no buffer, no hashing, and no S-boxes,
only a dozen or so 32-bit variables in various functions.
It mixes the input data into one of those variables until
it contains enough concentrated entropy, then transfers
32 bits into the random device. The entropy estimation
is all done at design time; there is no need to calculate
estimates during program operation.

A facility is provided for a cautious system admin-
istrator, or someone whose system shows poor en-
tropy in testing, to override my estimates at will, us-
ing command-line options, -p (paranioa) to make the
program use more samples per output or -c (claim) to

change the amount of entropy it tells random(4) that it
is delivering. However, even then no entropy estima-
tion is done during actual entropy collection; the user’s
changes are put into effect when the program is invoked.

It is possible that my current program’s method of do-
ing output—32 bits at a time with a write() to deliver the
data and an ioctl() to update the entropy estimate each
time—is inefficient. I have not yet looked at this issue.
If it does turn out to be a problem, it would be straight-
forward to add buffering so that the program can do its
output in fewer and larger chunks.

The program is indeed small, under 500 lines in the main
program and under 2000 overall. SHA-1 alone is larger
than that, over 7000 lines in the implementation Turbid
uses; no doubt this could be reduced, but it could not
become tiny. Turbid as a whole is over 20,000 lines and
the Cryptlib RNG over 50,000.

5 Program details

The source code for this program is available from ftp:
//ftp.cs.sjtu.edu.cn:990/sandy/maxwell/.
The archive includes a more detailed version of this
paper, covering the command-line interface, the internal
design of the program, and testing methodologies for
evaluating the quality of the output.

6 Analysis

This section discusses the program design in more de-
tail, dealing in particular with the choice of appropriate
parameter values.

6.1 How much entropy?

The inherent randomness paper [10] indicates that al-
most a full bit of entropy can be expected per timer
sample. Taking one bit per sample and packing eight of
them into a byte, they get 7.6 bits per output byte. Based
on that, we would expect a loop that takes 16 samples to
give just over 15 bits of entropy. In fact we might get
more because maxwell(8) uses a modulo operation in-
stead of just masking out the low bit, so getting more
than one bit per sample is possible.

I designed the program on the assumption that, on typ-
ical systems, we would get at least 12 bits per 16 sam-
ples, the number from the inherent randomness [10] pa-
per minus something for safety. This meant it needed

ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/
ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/


118 • The maxwell(8) random number generator

-p Options Loops Entropy needed per 16 samples
(paranoia) (other than -p) 2p + 3 for 32 bit out for 30 bits claimed

0 No options 3 11 10
1 5 7 6
2 -x 7 5 5
3 -y 9 4 4
4 -z 11 3 3
...

...
...

...
7 17 2 2
...

...
...

...
15 33 1 1

Table 1: The -p (paranoia) option

-p Options Loops Entropy needed per 16 samples
(paranoia) (other than -p) 2p + 3 for 32 bit out for 30 bits claimed

0 -f, -g 3 11 6

Table 2: The -f or -g options

three loops to be sure of filling a 32-bit word, so three is
the default.

I also provide a way for the user to override the default
where necessary with the -p (paranoia) command-line
option. However, there is no way to get fewer than three
loops, so the program is always safe if 16 samples give
at least 11 bits of entropy. The trade-offs are shown in
Table 1. With the -f or -g options, the claim is reduced,
as shown in Table 2.

All these entropy requirements are well below the 15
bits per 16 samples we might expect based on the inher-
ent randomness paper [10]. They are also far below the
amounts shown by my test programs, described in the
previous section. I therefore believe maxwell(8) is, at
least on systems similar to mine, entirely safe with the
default three loops.

In my opinion, setting -p higher than four is unneces-
sary, even for those who want to be cautious. However,
the program accepts any number up to 999.

6.2 Attacks

The Yarrow paper [7] gives a catalog of possible weak-
nesses in a random number generator. I shall go through
each of them here, discussing how maxwell(8) avoids
them. It is worth noting, however, that maxwell(8) does
not stand alone here. Its output is fed to random(4), so

some possible weaknesses in maxwell(8) might have no
effect on overall security.

The first problem mentioned in [7] is “Entropy Overesti-
mation and Guessable Starting Points”. They say this is
both “the commonest failing in PRNGs in real-world ap-
plications” and “probably the hardest problem to solve
in PRNG design.”

My detailed discussion of entropy estimation is above.
In summary, the outputs of maxwell(8) have 32 bits of
entropy each if each timer sample gives two thirds of a
bit. The Inherent Randomness paper [10] indicates that
about one bit per sample can be expected and my tests
indicate that more than that is actually obtained. Despite
that, we tell random(4) that we are giving it only 30 bits
of entropy per output, just to be safe.

There are also command-line options which allow a
system administrator to overrule my estimates. If
maxwell(8) is thought dubious with the default parame-
ters, try maxwell -p 3 -c 20 or some such. That is secure
if 144 timer samples give 20 bits of entropy.

There is a ”guessable starting point” for each round
of output construction; one of five constants borrowed
from SHA is used to initialise the sample-collecting
variable. However, since this is immediately followed
by operations that mix many samples into that variable,
it does not appear dangerous.



2014 Linux Symposium • 119

The next problem mentioned in [7] is “Mishandling of
Keys and Seed Files”. We have no seed file and do not
use a key as many PRNGs do, creating multiple outputs
from a single key. Our only key-like item is the entropy-
accumulating variable, that is carefully handled, and it
is not used to generate outputs larger than input entropy.

The next is “Implementation Errors”. It is impossible
to entirely prevent those, but my code is short and sim-
ple enough to make auditing it a reasonable proposition.
Also, there are test programs for all parts of the program.

The next possible problem mentioned is “Cryptanalytic
Attacks on PRNG Generation Mechanisms”. We do not
use such mechanisms, so they are not subject to attack.
random(4) does use such mechanisms, but they are de-
signed to resist cryptanalysis.

Of course, our mixing mechanism could be attacked, but
it seems robust. The QHT is reversible, so if its out-
put is known the enemy can also get its input. How-
ever, that does not help him get the next output. None
of the other mixing operations are reversible. Because
the QHT makes every bit of output depend on every bit
of its input, it appears difficult for an enemy to predict
outputs as long as there is some input entropy.

The next attacks discussed are “Side Channel Attacks”.
These involve measuring things outside the program
itself—timing, power consumption, electromagnetic ra-
diation, ...—and using those as a window into the inter-
nal state.

It would be quite difficult for an attacker to mea-
sure maxwell’s power consumption independently of the
general power usage of the computer it runs on, though
perhaps not impossible since maxwell’s activity comes
in bursts every 100 µs or so. Timing would also be hard
to measure, since maxwell(8) accepts no external inputs
and its only output is to the kernel.

A Tempest type of attack, measuring the electromag-
netic radiation from the computer, may be a threat. In
most cases, a Tempest attacker would have better things
to go after than maxwell(8)—perhaps keyboard input,
or text on screen or in memory. If he wants to attack
the crypto, then there are much better targets than the
RNG—plaintext or keys, and especially the private keys
in a public key system. If he does go after the RNG,
then the state of random(4) is more valuable than that of
maxwell(8).

However, it is conceivable that, on some systems, data
for other attacks would not be available but clock in-
teractions would be visible to an attacker because of the
hardware involved. In that case, an attack on maxwell(8)
might be the best possibility for the attacker. If an at-
tacker using Tempest techniques could distinguish clock
reads with nanosecond accuracy, that would compro-
mise maxwell(8). This might in principle compromise
random(4) if other entropy sources were inadequate,
though the attacker would have considerable work to do
to break that driver, even with some known inputs.

The next are “Chosen-Input Attacks on the PRNG”.
Since maxwell(8) uses no inputs other than the timer and
uses the monotonic timer provided by the Linux real-
time libraries, which not even the system administrator
can reset, direct attacks on the inputs are not possible.

It is possible for an attacker to indirectly affect timer be-
haviour, for example by accessing the timer or running
programs that increase system load. There is, however,
no mechanism that appears to give an attacker the sort
of precise control that would be required to compro-
mise maxwell(8)—this would require reducing the en-
tropy per sample well below one bit.

The Yarrow paper [7] then goes on to discuss attacks
which become possible “once the key is compromised.”
Since maxwell(8) does not use a key in that sense, it is
immune to all of these.

Some generators allow “Permanent Compromise At-
tacks”. These generators are all-or-nothing; if the key is
compromised, all is lost. Others allow “Iterative Guess-
ing Attacks” where, knowing the state at one time, the
attacker is able to find future states with a low-cost
search over a limited range of inputs, or “Backtracking
Attacks” where he can find previous states. However,
maxwell(8) starts the generation process afresh for each
output; the worst any state compromise could do is give
away one 32-bit output.

Finally, [7] mentions “Compromise of High-Value key
Generated from Compromised Key”. However, even
if maxwell(8) were seriously compromised, an attacker
would still have considerable work to do to compromise
random(4) and then a key generated from it. It is not
clear that this would even be possible if the system has
other entropy sources, and it would certainly not be easy
in any case.

The program does not use much CPU. It spends most



120 • The maxwell(8) random number generator

Option Delay Samples msec per output K bit/sec
Default 97 48 5 ∼6
-f, -g 41 or 43 48 2 ∼16

-x 101 112 11.3 ∼2.8
-y 103 144 14.8 ∼2.1
-z 107 176 18.8 ∼1.6

Table 3: Output rates

of its time sleeping; there is a usleep(delay) call before
each timer sample, with delays generally around 100 µs.
When it does wake up to process a sample, it does only
a few simple operations.

The rate of entropy output is adequate for many appli-
cations; I have argued above that a few hundred bits per
second is enough on most systems. This program is ca-
pable of about an order of magnitude more than that.
With the default parameters there are 48 usleep(delay)
calls between outputs, at 97 µs each so total delay is
4.56 ms. Rounding off to 5 ms to allow some time
for calculations, we find that the program can output up
to 200 32-bit quantities—over six kilobits—per second.
Similar calculations for other parameter combinations
are shown in Table 3.

Of course, all of these are only approximate estimates.
Testing with dieharder(1) and a reduced delay shows
367 32-bit rands/sec or 11.7 Kbits/sec, showing that
these figures are not wildly out of whack but are likely
somewhat optimistic.

On a busy system, the program may be delayed because
it is timeshared out, or because the CPU is busy deal-
ing with interrupts. We need not worry about this; the
program is fast enough that moderate delays are not a
problem. If the system is busy enough to slow this pro-
gram down significantly for long enough to matter, then
there is probably plenty of entropy from disk or net in-
terrupts. If not, the administrator has more urgent things
to worry about than this program.

The peak output rate will rarely be achieved, or at least
will not be maintained for long. Whenever the ran-
dom(4) driver has enough entropy, it causes any write
to block; the writing program is forced to wait. This
means maxwell(8) behaves much like a good waiter, un-
obtrusive but efficient. It cranks out data as fast as it
can when random(4) needs it, but automatically waits
politely when it is not needed.

7 Conclusion

This program achieves its main design goal: it uses min-
imal resources and provides high-grade entropy in suffi-
cient quantity for many applications.

Also, the program is simple enough for easy auditing.
The user interface is at least a decent first cut, simple
but providing reasonable flexibility.

References

[1] Eastlake, Schiller & Crocker. Randomness Re-
quirements for Security, June 2005. http://
tools.ietf.org/html/rfc4086

[2] Timer entropy daemon web page. http://www.
vanheusden.com/te/

[3] Wikipedia page on Johnson-Nyquist
noise. http://en.wikipedia.org/wiki/

Johnson-Nyquist_noise

[4] Turbid web page. http://www.av8n.com/turbid/

[5] A. Seznec, N. Sendrier. HAVEGE: a user level
software unpredictable random number generator.
http://www.irisa.fr/caps/projects/hipsor/

old/files/HAVEGE.pdf

[6] HAVEGE web page. http://www.irisa.fr/
caps/projects/hipsor/

[7] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-
160: Notes on the Design and Analysis of
the Yarrow Cryptographic Pseudorandom Number
Generator. SAC 99. http://www.schneier.com/
yarrow.html

[8] Cryptlib web page. http://www.cs.auckland.
ac.nz/~pgut001/cryptlib/

http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086
http://www.vanheusden.com/te/
http://www.vanheusden.com/te/
http://en.wikipedia.org/wiki/Johnson-Nyquist_noise
http://en.wikipedia.org/wiki/Johnson-Nyquist_noise
http://www.av8n.com/turbid/
http://www.irisa.fr/caps/projects/hipsor/old/files/HAVEGE.pdf
http://www.irisa.fr/caps/projects/hipsor/old/files/HAVEGE.pdf
http://www.irisa.fr/caps/projects/hipsor/
http://www.irisa.fr/caps/projects/hipsor/
http://www.schneier.com/yarrow.html
http://www.schneier.com/yarrow.html
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/


2014 Linux Symposium • 121

[9] Peter Gutmann. Software Generation
of Practically Strong Random Num-
bers. USENIX Security Symposium, 1998.
http://www.usenix.org/publications/

library/proceedings/sec98/gutmann.html

[10] McGuire, Okech & Schiesser. Analysis of inherent
randomness of the Linux kernel. http://lwn.net/
images/conf/rtlws11/random-hardware.pdf

[11] James L. Massey. SAFER K-64: A Byte-Oriented
Block-Ciphering Algorithm. /em FSE ’93.

[12] Bruce Schneier, John Kelsey, Doug Whit-
ing, David Wagner, Chris Hall, Niels Fer-
guson. Twofish: A 128-Bit Block Cipher.
First AES Conference. http://www.schneier.
com/paper-twofishpaper.html

[13] Xuejia Lai. On the Design and Security of Block
Ciphers. ETH Series in Information Processing,
v. 1, 1992.

[14] Claude Shannon. Communication Theory of Se-
crecy Systems. Bell Systems Technical Jour-
nal, 1949. http://netlab.cs.ucla.edu/wiki/
files/shannon1949.pdf

[15] Web page for haveged(8). http://www.

issihosts.com/haveged/

[16] Gutterman, Pinkas & Reinman. Analysis of
the Linux Random Number Generator. http://
eprint.iacr.org/2006/086

http://www.usenix.org/publications/library/proceedings/sec98/gutmann.html
http://www.usenix.org/publications/library/proceedings/sec98/gutmann.html
http://lwn.net/images/conf/rtlws11/random-hardware.pdf
http://lwn.net/images/conf/rtlws11/random-hardware.pdf
http://www.schneier.com/paper-twofishpaper.html
http://www.schneier.com/paper-twofishpaper.html
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://www.issihosts.com/haveged/
http://www.issihosts.com/haveged/
http://eprint.iacr.org/2006/086
http://eprint.iacr.org/2006/086


122 • The maxwell(8) random number generator


	The maxwell(8) random number generator
	S. Harris
	Overview
	The Linux random device
	Problem statement

	Existing generators
	Built-in hardware
	Turbid
	HAVEGE
	Cryptlib

	Our niche
	Choice of generator
	Applications for maxwell(8)

	Design overview
	Randomness requirements
	Timer entropy
	Keeping it small

	Program details
	Analysis
	How much entropy?
	Attacks

	Conclusion



