
SkyPat: C++ Performance Analysis and Testing Framework

Ping-Hao Chang, Kuan-Hung Kuo, Der-Yu Tsai, Kevin Chen, Luba Tang
Skymizer Software

{peter,ggm,a127a127,kevin,luba}@skymizer.com

Abstract

This paper introduces SkyPat, a C++ performance anal-
ysis toolkit on Linux. SkyPat combines unit tests and
perf_event to give programmers the power of white-
box performance analysis.

Unlike traditional tools that manipulate entire program
as a black-box, SkyPat works on a region of code like a
white-box. It is used as a normal unit test library. It pro-
vides macros and assertions, into which perf_events
are embedded, to ensure correctness and to evaluate per-
formance of a region of code. With perf_events, Sky-
Pat can evaluate running time precisely without inter-
ference to scheduler. Moreover, perf_event also gives
SkyPat accurate cycle counts that are useful for tools
that are sensitive to variance of timing, such as compil-
ers.

We develop SkyPat under the new BSD license, and it is
also the unit-test library of the “bold” project.

1 Introduction

SkyPat is developed by a group of the compiler de-
velopers to satisfy compiler developers’ needs. From
compiler developers’ view, correctness and performance
evaluation are grand challenges for engineering. Com-
piler optimizations have no guarantee of performance
improvement. Sometimes optimizations degrade per-
formance, and sometimes they introduce new faults in
a program. Compiler developers need a tool to verify
correctness and performance of each compiler optimiza-
tions at the same time.

Traditional tools that evaluate the whole program do not
fit our demands. Compilers perform optimization based
on knowledge it has to a region of code, such as loops
or data flows. We need libraries that can evaluate only a
region of code that optimization is interesting in.

For compiler developers, integrating unit-test and per-
formance evaluation libraries for a piece of code is very
rational. SkyPat is such library: by using SkyPat, users
can evaluate correctness and performance by writing
test-cases to evaluate a region of code.

Usually, unit-test tools and performance evaluation tools
are separated tools. For example, GoogleTest [2] is well-
known C++ unit-test framework. GoogleTest can evalu-
ate correctness but cannot evaluate performance. Be-
sides, perf [1] is well-known performance evaluation
toolkit in Linux. perf can evaluate performance of pro-
grams, including its running time, cycles and so on. Al-
though perf can evaluate whole program, using perf to
evaluate a region of code is difficult.

In this paper, we introduce SkyPat, which combines
unit-test and performance evaluation. Programmers
only need to write and execute unit-tests and they can
get correctness and performance. With the help of
perf_event of Linux kernel, SkyPat can provide pre-
cise timer and additional runtime information to mea-
sure a region of code. By integrating unit-test and per-
formance evaluation, SkyPat make evaluation of a re-
gion of code easier.

The organization of this paper is as follows. Related
work is in Section 2. We present SkyPat’s design and
implementation in Section 3 and shows SkyPat testing
and performance framework in Section 4. At last, we
conclude this paper in Section 5.

2 Related Work

Oprofile[3] and perf are two most popular performance
evaluation tools. Oprofile is capable to evaluate not only
the whole system but also a single program. Before
versions 0.9.7 and earlier, it was based on sampling-
based daemon that collects runtime information. Be-
cause sampling-based daemon wasted system resources,

• 97 •



98 • SkyPat: C++ Performance Analysis and Testing Framework

Linux community creates new interfaces, called “Per-
formance Counter”[4] or “perf_event”. After that,
Oprofile is “perf_event”-based in the later version.

By the success in “Performance Counter”, Linux com-
munity builds another performance evaluation tool,
called perf, based on “Performance Counter”, too. Perf
is a performance evaluation toolkit with no daemon to
collect runtime information. perf gets runtime informa-
tion by kernel directly rather than collecting by daemon,
therefore, perf eliminates lots of overhead to bookkeep
profiling information and becomes faster.

Both OProfile and perf evaluate performance of the en-
tire program, not a region of code. And of course,
it makes some efforts to integrate them with unit-test
frameworks.

Regarding unit-test frameworks, GoogleTest has be-
come popular and has been adapted by many projects
recently. GoogleTest is a xUnit test framework for
C++ programs. By providing ASSERT and EXPECT
macros, GoogleTest helps programmers to verify pro-
gram’s correctness by writing test-cases. While execut-
ing test-cases, a program stops immediately if it meets
a fatal error. If a program meets a non-fatal error, the
program shows the runtime value and expected value on
the screen.

3 Implementation and Design

SkyPat is a C++ performance analyzing and testing
framework on Linux platforms. We refer to the concept
of GoogleTest and extend its scope from testing frame-
work into Performance Analysis Framework. With the
help of SkyPat, programmers who wants to analyze their
program, only need to write test cases, and SkyPat tests
programs’ correctness and performance just like normal
unit-test frameworks.

SkyPat provides ASSERT/EXPECT macros for correct-
ness checking and PERFORM macro for performance
evaluation. ASSERT is assertion for fatal condition test-
ing and EXPECT is non-fatal assertion. That is to say,
if a condition of ASSERT fails, the test fails and stops
immediately. On the other hand, when the condition of
EXPECT fails, it just shows messages on screen to in-
dicate that is a non-fatal failure and the test keeps going
on.

A PERFORM macro is used to arbitrarily wrap an block
of code in a testee function. It invokes perf_events at

the beginning and the end of the block of code to mea-
sure the performance. When a program executes at the
beginning of the region of code, the PERFORM macro
calls a system call to kernel to register a performance
monitor to gather process runtime information, such as
execution time. When program executes in the end of
the region of code, a system call is sent to kernel auto-
matically to disable the monitor. SkyPat calculates the
difference of time between the beginning and the end to
get the period of runtime information of the region of
code.

4 SkyPat Testing and Performance Frame-
work

Here are some examples to show how to use SkyPat to
evaluate correctness and performance.

4.1 Declare Test Cases and Test Functions

To create a test, users use the PAT_F() macro to define
a test function. A test function can be thought as a or-
dinary C function without return value. Several similar
test functions for the same input data can be grouped as
a test case.

Figure 1 shows how to define a test-case and test-
functions.

Every PAT_F macro declares a test, with two param-
eters: test-case and test-function names. In Figure 1,
“AircraftCase” is the name of test-case. “take_off_test”
and “landing_test” are the names of test-function be-
longs to “AircraftCase” test case. Test functions
grouped in the same test-case are meant to be logically
related. Users put ASSERT/EXPECT and PERFORM
macros in a test function to evaluate correctness and per-
formance. These macros is described in the following
section.

PAT_F(AircraftCase , take_off_test)
{
// Test Code

}

PAT_F(AircraftCase , landing_test)
{
// Test Code

}

Figure 1: Example for declaring a test



2014 Linux Symposium • 99

PAT_F(MyCase, fibonacci_test)
{
ASSERT_TRUE(0 != fibonacci(10));
EXPECT_EQ(fibonacci(10), 2);
ASSERT_NE(fibonacci(10), 3);

}

PAT_F(MyCase, AP_test)
{
...

Figure 2: Example of assertions

[ RUN ] MyCase.fibonacci_test
[ FAILED ]
main.cpp:53: error: failed to expect
Value of: 2 == fibonacci(10)
Actual: false
Expected: true

[ RUN ] MyCase.AP_test
[ OK ]

Figure 3: Output of Figure 2

4.2 Correctness Checking

We copy the concept from GoogleTest for our correct-
ness evaluation.

There are several variants of ASSERT macros, AS-
SERT_TRUE/FALSE, ASSERT_EQ/NE (equal) and
ASSERT_GT/GE/LT/TE (great/less) series. If the con-
dition of ASSERT fails, the test will stop and exit the test
immediately. EXPECT macros, like ASSERT macros,
there are also some similar variants. If the condition of
EXPECT fails, the test will not stop but keep execute
and display the expected result and real result on screen.

Figure 2 shows how fatal and non-fatal assertions work.
“fibonacci” is a testee for illustration. There are three
assertions: two fatal and one non-fatal.

Figure 3 shows the output of Figure 2. As we mentioned
before, ASSERT assertions stop the execution immedi-
ately and EXPECT assertions try to keep the execution
going on.

4.3 Performance Evaluation

A PERFORM macro measures the performance of a
block of code which it wraps up. Figure 4 shows how to
use PERFORM macro.

PAT_F(MyCase, fibonacci_perf_test)
{
PERFORM {
fibonacci(40);

}
}

Figure 4: Example of PERFORM

[ RUN ] MyCase.fibonacci_test
[CXT SWITCH] 3
[ TIME (ns)] 2363214415

Figure 5: Output of Figure 4

The PERFORM macro registers a performance moni-
tor at the beginning of the code which its wraps up and
detaches the monitor when leaving the block of code.
SkyPat calculates and remembers the performance de-
tails whenever detaching a performance monitor.

The result is shown in Figure 5. SkyPat measures the
execution time and the number of context-switches dur-
ing the region of code. It saves efforts at complicated
interaction between perf and the region of code. Users
just use macros, just works like writing a test program,
and they can easily get the runtime information of the
region of code.

For now, SkyPat measures few information such as the
run-time clock cycles. We will add more features, such
as cache miss and page faults, in the near future.

4.4 Run All Test Cases

To integrate all test-case, user should call Initialize and
RunAll in their program. Initialize(&argc, argv)
initializes outputs. RunAll() runs all the tests you’ve
declared and prints the results on screen. If any test fails,
then RunAll() returns non-zero value.

int main(int argc, char* argv[])
{
pat::Test::Initialize(&argc, argv);
pat::Test::RunAll();

}

Figure 6: Example of Initialize and RunAll



100 • SkyPat: C++ Performance Analysis and Testing Framework

5 Conclusion and Future Works

By integrating unit-test framework and performance
evaluation tool, user can get correctness and perfor-
mance metrics for a region of code by writing test-cases.
Users can get the performance between the region of
code defined by themselves. For programs which needs
high precise timing information and other runtime infor-
mation of the region of code, such as compiler, SkyPat
can give them more ability to measure the bottleneck of
regions of a program.

References

[1] Arnaldo Carvalho de Melo, Redhat, “The New
Linux ‘perf’ tools” in 17 International Linux
System Technology Conference (Linux Kongress),
2010

[2] GoogleTest, Google, https://code.google.com/
p/googletest/

[3] OProfile, http://oprofile.sourceforge.net/

about/

[4] Ingo Molnar, “Performance Counters for Linux”.
Linux Weekly News, 2009. http://lwn.net/
Articles/337493/

https://code.google.com/p/googletest/
https://code.google.com/p/googletest/
http://oprofile.sourceforge.net/about/
http://oprofile.sourceforge.net/about/
http://lwn.net/Articles/337493/
http://lwn.net/Articles/337493/

	SkyPat: C++ Performance Analysis and Testing Framework
	P.H. Chang, K.H. Kuo, D.Y. Tsai, K. Chen, Luba W.L. Tang
	Introduction
	Related Work
	Implementation and Design
	SkyPat Testing and Performance Framework
	Declare Test Cases and Test Functions
	Correctness Checking
	Performance Evaluation
	Run All Test Cases

	Conclusion and Future Works
	Reference



