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Abstract

In recent years, the number of CPUs per platform has
continuously increased, affecting almost all segments
of the computer market. Because of this trend, many
researchers have investigated the problem of how to
scale operating systems better on high core-count ma-
chines. While many projects have used Linux as a ve-
hicle for this investigation, others have proposed new
OS designs. Among them, the replicated-kernel OS
model, specifically the multikernel, has gained traction.
In this paper, we present Popcorn: a replicated-kernel
OS based on Linux. Popcorn boots multiple Linux ker-
nel instances on multicore hardware, one per core or
group of cores. Kernels communicate to give to ap-
plications the illusion that they are running on top of a
single OS. Applications can freely migrate between ker-
nels, exploiting all the hardware resources available on
the platform, as in SMP Linux.

1 Introduction

In recent years, the number of CPUs per platform has
continuously grown, affecting almost all segments of
the computer market. After it was no longer practi-
cal to increase the speed of a processor by increasing
its clock frequency, chip vendors shifted to exploiting
parallelism in order to maintain the rising performance
that consumers had come to expect. Nowadays, multiple
chips, each containing multiple cores, are being assem-
bled into single systems. All cores, across the differ-
ent chips, share the same physical memory by means of
cache coherency protocols. Although researchers were
skeptical that cache coherence would scale [6] the multi
core market continues to grow. Multi core processors
are ubiquitous, they can be found in embedded devices,
like tablets, set top boxes, and mobile devices (e.g.,
Exynos Octa-Core [3]), in home/office computers (e.g.,
AMD Fusion, Intel Sandy Bridge), in high-end servers
(e.g., AMD Opteron [13], Intel Xeon [1]), and in HPC

machines (e.g., SGI Altix [2]). These types of multi-
processor systems, formerly available only as high cost
products for the HPC market, are today more affordable
and are present in the consumer market. Because of this
trend, many researchers have investigated the problem
of how to better scale operating systems on high core
count machines. While some projects have used Linux
as a vehicle for this investigation [6, 7], others have pro-
posed new operating system (OS) designs [5]. Among
them, the replicated-kernel OS model has gained trac-
tion.

Linux has been extended by its large community of de-
velopers to run on multiprocessor shared memory ma-
chines. Since kernel version 2.6, preemption patches,
ticket spinlocks, read/write locks, and read-copy-update
(RCU) have all been added. Several new techniques
have also been added to improve data locality, includ-
ing per_cpu infrastructure, the NUMA-aware memory
allocator, and support for scheduling domains. B. Wick-
izer et al. [6] conclude that vanilla Linux, on a large-
core-count machine, can be made to scale for differ-
ent applications if the applications are carefully written.
In [7] and [12] the authors show that scalable data struc-
tures, specifically scalable locks, like MCS, and RCU
balanced tree, help Linux scale better when executing
select applications.

Although recent research has demonstrated Linux’s
scalability on multicore systems to some extent, and
Linux is already running on high core count machines
(e.g., SGI Altix [2]) and accelerators (e.g., Intel Xeon-
Phi [15]), it is important to understand whether Linux
can be used as the basic block of a replicated-kernel OS.
Understanding the advantages of this OS architecture on
Linux – not just from a scalability standpoint – is im-
portant to better exploit the increasingly parallel hard-
ware that is emerging. If future processors do not pro-
vide high-performance cache coherence, Linux’s shared
memory intensive design may become a significant per-
formance bottleneck [6].
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The replicated-kernel OS approach, advanced in oper-
ating systems including Hive, Barrelfish, FOS, and oth-
ers, is a promising way to take advantage of emerging
high-core count architectures. A. Baumann et al. [5]
with Barrelfish introduced the term multikernel OS and
showed appealing scalability results demonstrating that
their design scales as well, if not better, than SMP Linux
on selected applications up to 32 cores. A multikernel
OS is an operating system that is made up of different
(micro-) kernel instances, each of which runs on a sin-
gle core of a multi core device. Kernels communicate in
order to cooperatively maintain partially replicated OS
state. Each kernel runs directly on bare hardware, no
(hardware or software) virtualization layer is employed.
Because Popcorn does not adhere to such definition we
use the term replicated-kernel OS to identify a broader
category of multikernels, including Popcorn.

Popcorn In this paper, we present Popcorn: a
replicated-kernel OS based on Linux. Popcorn boots
multiple Linux kernel instances on multicore hardware,
one per core or group of cores, with kernel-private mem-
ory and hardware devices. The kernel instances directly
communicate, kernel-to-kernel, in order to maintain a
common OS state that is partially replicated over ev-
ery individual kernel instance. Hardware resources (i.e.,
disks, network interface cards) are fully shared amongst
the kernels. Kernel instances coordinate to maintain the
abstraction of a single operating system (single system
image), enabling traditional applications to run trans-
parently across kernels. Inter-kernel process and thread
migration are introduced to allow application threads
to transparently execute across the kernels that together
form the OS. Considering that vanilla Linux scales well
on a bounded number of cores, we do not put any restric-
tions on how many cores the same kernel image will run
on.

Contributions Our primary contribution is an open-
source replicated-kernel OS using Linux as its basic
building block, as well as its early evaluation on a set
of benchmarks. To the best of our knowledge this is
the first attempt in applying this design to Linux. Mul-
tiple Popcorn kernels, along with the applications that
they hosts, can simultaneously populate a multi core ma-
chine. To facilitate this, we augmented the Linux ker-
nel with the ability to run within a restricted subset of
available hardware resources (e.g. memory). We then

strategically partition those resources, ensuring that par-
titions do not overlap, and dedicate them to single kernel
instances.

To create the illusion of a single operating system on
top of multiple independent kernel instances we intro-
duced an inter-kernel communication layer, on top of
which we developed mechanisms to create a single sys-
tem image (e.g. single filesystem namespace) and inter-
kernel task migration (i.e. task and address space migra-
tion and address space consistency). TTY and a virtual
network switch was also developed to allow for com-
munication between kernels. Our contribution also in-
cludes a set of user-space libraries and tools to support
Popcorn. A modified version of kexec was introduced to
boot the environment; the util toolchain was built to cre-
ate replicated-kernel OS configurations. MPI-Popcorn
and the cthread/pomp library were introduced to sup-
port MPI and OpenMP applications on Popcorn, respec-
tively. Here we describe Popcorn’s architecture and im-
plementation details, in particular, the modifications that
we introduced into the Linux source code to implement
the features required by a replicated-kernel OS design.
We also present initial results obtained on our proto-
type, which was developed on x86 64bit multicore hard-
ware. Popcorn has been evaluated through the use of
cpu/memory intensive, as well as I/O intensive work-
loads. Results are compared to results from the same
workloads collected on SMP Linux and KVM.

Document Organization We first present the existing
work on the topic in Section 2. We introduce our de-
sign choices and architecture in Section 3, and we cover
the implementation details of our prototype in Section 4.
We present the experimental environment in Section 5
and discuss the results we obtained by running selected
benchmarks on Popcorn against mainly vanilla Linux
(called SMP Linux hereafter) in Section 6. Finally, we
conclude in Section 7.

2 Related Work

The body of work related to our approach includes con-
tributions in operating systems, distributed and cluster
systems, and Linux design and performance measure-
ments. We leveraged ideas and experience from these
different efforts in order to build on their findings and to
address their limitations where possible.
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Non-Linux based Several decades ago, Hurricane
[22] and Hive [11] (’92 and ’95) introduced the idea of
a replicated-kernel OS by means of clusters or cells (in
Hive) of CPUs sharing the same kernel image. This is
different from common SMP operating systems, where
a single kernel image is shared by all the CPUs. While
these approaches were built to work on research hard-
ware, the multikernel model was recently revisited by
Barrelfish [5] on modern multicore commodity hard-
ware, with each core loading a single kernel image.
A similar approach was taken by FOS [23] addressing
emerging high core-count architectures where computa-
tional units do not share memory. All these approaches
use message passing for inter-kernel communication.
These message passing mechanisms are implemented
using shared memory programming paradigm. Pop-
corn follows the same approach but differs in the way
the communication mechanism is implemented and in
which data structures are kept consistent amongst ker-
nels. Hurricane, Barrelfish and FOS are microkernel-
based, but Hive was developed as a modification of the
IRIX variant of Unix, similarly to how our work is based
on Linux.

Linux-based approaches To the best of our knowl-
edge there is no previous effort that uses Linux as the
kernel block in a replicated-kernel OS. However, there
are notable efforts in this direction that intersect with
the cluster computing domain, including ccCluster (L.
McVoy), K. Yaghmour’s work [24] on ADEOS, and
Kerrighed [18]. Kerrighed is a cluster operating system
based on Linux, it introduced the notion of a kernel-level
single system image. Popcorn implements a single sys-
tem image on top of different kernels as well, but the
consistency mechanism and the software objects that are
kept consistent are fundamentally different. ccCluster
and ADEOS aim to run different operating systems on
the same hardware on top of a nano-kernel, cluster com-
puting software was used to offer a single system image.
Popcorn kernels run on bare hardware.

We know of three separate efforts that have imple-
mented software partitioning of the hardware (i.e. mul-
tiple kernel running on the same hardware without vir-
tualization) in Linux before: Twin Linux [16], Linux
Mint [19] and SHIMOS [21]. Different from Popcorn,
the source code of these solutions are not available (even
upon request). Although they describe their (different)
approaches, they do not present significant performance

CPUCPU CPU

Linux

Application

Figure 1: SMP Linux software architecture on multi
core hardware. A single kernel instance controls all
hardware resources and manages all applications.

numbers, and they do not explore the functionality of
their solution over 4 CPUs (on the x86 architecture).
Twin Linux was deployed on a dual-core processor. The
authors modified GRUB in order to boot two instances
of Linux in parallel using different images and hard-
ware resource partitions on different cores. To allow
the kernels to communicate with each other, they pro-
vide a shared memory area between the kernels. Linux
Mint, despite similarities to Twin Linux, lacks an inter-
kernel communication facilities. The bootup of differ-
ent kernel instances in Linux Mint is handled sequen-
tially by the bootstrap processor, something we borrow
in our implementation of Popcorn. Popcorn and SHI-
MOS boot different kernel instances sequentially but
any kernel can boot any other kernel. SHIMOS imple-
ments an inter-kernel communication mechanism in or-
der to share hardware resources between different Linux
instances. Despite the fact that the same functionality
is implemented in Popcorn, SHIMOS was designed as
a lightweight alternative to virtualization. Therefore it
does not implement all of the other features that charac-
terize a multikernel OS.

3 Popcorn Architecture

The replicated-kernel OS model, mainly suitable for
multi-core hardware, implies a different software archi-
tecture than the one adopted by SMP Linux. The SMP
Linux software stack is depicted in Figure 1. A single
kernel instance controls all hardware resources. Appli-
cations run in the user space environment that the kernel
creates. Popcorn’s software stack is shown in Figure 2.
Each kernel instance controls a different private subset
of the hardware. New software layers have been intro-
duced to allow an application to exploit resources across
kernel boundaries. These new software layers are ad-
dressed in this section.
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Figure 2: Popcorn Linux software architecture. Each
core or group of cores loads a kernel instance. Instances
communicate to maintain a single system image.

3.1 Software Partitioning of the Hardware

The idea of running different kernels on the same ma-
chine is nowadays associated with virtualization tech-
nologies. The replicated-kernel OS model does not im-
ply a virtualization layer. In a virtualized environment
different guest kernels coexist on top of a hypervisor.
Several virtualization solutions (e.g., Xen, KVM) rely
on the presence of one of the kernels, the host, for ser-
vices, drawing on a hierarchical relationship between
them. There is no hypervisor in our approach. Instead,
all kernel instances are peers that reside within differ-
ent resource partitions of the hardware. Thus, services
can run (virtually) anywhere. Without the hypervisor
enforcing hardware resource partitioning and manag-
ing hardware resource sharing among kernels, the Linux
kernel itself should be able to operate with any subset of
hardware resources available on the machine. Therefore
we added software partitioning of the hardware as first
class functionality in Popcorn Linux.

CPUs Within SMP Linux, a single kernel instance
runs across all CPUs. After it is started on one CPU, as
a part of the initialization process, it sequentially starts
all the other CPUs that are present in the machine (Fig-
ure 1 and Figure 3.a). Within Popcorn, multiple kernel
instances run on a single machine (Figure 2). After an
initial kernel, named primary, has been booted up on
a subset of CPUs (Figure 3.b), other kernels, the secon-
daries, can be booted on the remaining CPUs (Figure 3.c
and 3.d). Like in SMP Linux each Popcorn kernel in-
stance boots up on single CPU (the bootup) and even-
tually brings up a group of application CPUs. In Fig-
ure 3.b Processor 0 Core 0 is the bootup CPU and starts
Processor 0 Core 1. We support arbitrary partitioning
and clustering of CPUs, mapping some number of CPUs
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Figure 3: Partitioning and clustering of hardware re-
sources. A kernel instance can be assigned to different
a single core or a group of cores. Memory is partitioned
on node boundaries (when possible).

to a given kernel instance. Partitioning refers to assign-
ing one kernel instance per processor core (Figure 3.c
and 3.d); clustering refers to configurations where a sin-
gle kernel image runs on multiple processor cores (Fig-
ure 3.b). CPUs that are working together in a kernel
instance do so in SMP fashion.

Memory and Devices Linux is an SMP OS, as such,
when loaded it assumes that all hardware resources
must be discovered and loaded; i.e. all resources belong
to one kernel instance. In Popcorn, different kernels
should coexist, so we start each kernel with a different
subset of hardware resources; enforced partitioning is
respected by each kernel. Popcorn partitioning includes
CPUs (as described above), physical memory and de-
vices. Every kernel owns a private, non overlapping,
chunk of memory, and each device is assigned at startup
to one only kernel.

In Figure 3 depicts an example of partitioning of 4 de-
vices to 3 kernels. Figure 3.b shows that Device 0 is
owned by Kernel 0; Figure 3.c shows that Device 2 and
Device 3 are own by Kernel 1.

On recent multi-core architectures, each group of cores
has a certain amount of physical memory that is di-
rectly connected to it (or closely bounded). Thus, ac-
cessing the same memory area from different processors
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Figure 4: Non-NUMA-aware (a) and NUMA-aware (b)
partitioning/clustering of memory on the x86 architec-
ture. The PCI memory hole and the sharing of the first
1 MB of RAM are enforced by the architecture.

incurs different amounts of latencies (NUMA). Physical
RAM is usually contiguous but it can contain memory
holes, for example to map hardware devices (e.g. PCI
hole in x86). Moreover, depending on host architecture,
parts of the address space must be shared between all
kernels (e.g. in x86 the first 1MB of memory should
be shared because of the boot sequence). The parti-
tioning of physical memory must consider all of these
architecture-specific details. We developed a variety of
memory partitioning policies that apply to CPU parti-
tions or clusters. Figure 4 shows two possible memory
policies: non-NUMA-aware (Figure 4.a), and NUMA-
aware (Figure 4.b). The latter gives greatest weight to
deciding how to allocate private memory windows to the
system topology, with the aim of reducing memory ac-
cess latencies.

3.2 Inter-Kernel Communication

A replicated-kernel OS, strives to provide a single ex-
ecution environment amongst kernels. In order to ac-
complish this, kernels must be able to communicate. In
Popcorn, communication is based on message passing.

To let the kernels communicate we introduced a low-
level message passing layer, deployed over shared mem-
ory. Many message passing techniques have been intro-
duced in the literature [9, 10, 5]. We opted for a commu-
nication mechanism with private receive-only buffers.

Such buffers are allocated in the receiver kernel mem-
ory. The layer provides priority-based, synchronous and
asynchronous messaging between kernels.

It also provides multicast capabilities to allow for one to
many communications. This capability is useful in im-
plementing many distributed algorithms, including dis-
tributed locks, voting mechanisms, and commit proto-
cols.

3.3 Single System Image

Applications running on SMP Linux expect a single sys-
tem image regardless of the CPU they are running on.
That is all the CPUs, peripheral devices, memory, can
be used by all applications concurrently; furthermore
processes communicate and synchronize between them.
In Popcorn, the messaging layer is used to coordinate
groups of kernels to create a single working environ-
ment. Similar to the pioneering work in Plan9 [20],
Popcorn’s single system image includes: single filesys-
tem namespace (with devices and proc), single pro-
cess identification (PID), inter-process communication
(IPC), and CPU namespaces.

Relative to physical memory and available CPUs, hard-
ware peripherals are comparatively limited in number.
After being initialized by a kernel they cannot be ac-
cessed in parallel by different kernels; for the same rea-
son concurrent access to devices in SMP Linux is syn-
chronized through the use of spinlocks. Popcorn makes
use of a master/worker model for drivers to make de-
vices concurrently accessible through any kernel via the
single system image. The master kernel owns the de-
vice, and the worker kernels interact with the device
through message exchange with the master kernel. A
specific example of such a device is the I/O APIC, the
programmable interrupt controller on the x86 architec-
ture. The I/O APIC driver is loaded exclusively on the
primary kernel, that becomes the master, and any other
kernels with a device in their resource partition that re-
quires interrupts registration exchange messages with
that kernel in order to operate with the I/O APIC.

3.4 Load Sharing

In a multikernel OS, as in a SMP OS, an applications’
threads can run on any of the available CPUs on the
hardware. Popcorn was extended to allow user-space
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tasks to arbitrarily migrate between kernels. Most of the
process related data structures are replicated, including
the virtual address space. The virtual address space for
a process with threads executing on different kernels is
maintained consistent over the lifetime of the process.

4 x86 Implementation

Linux was not designed to be a replicated-kernel OS. In
order to extend its design, large parts of Linux had to be
re-engineered. In this section we cover implementation
details that characterize our x86 64bit prototype. We
deployed Popcorn starting from vanilla Linux version
3.2.14. The current Popcorn prototype adds a total of
∼ 31k lines to the Linux kernel source. The user-space
tools are comprised of ∼ 20k lines of code, of which
∼ 4k lines were added to kexec.

4.1 Resource Partitioning

Loading Popcorn Linux requires the establishment of a
hardware resource partitioning scheme prior to booting
the OS. Furthermore, after the primary kernel has been
booted up, all of the remaining kernels can be started.
Once this procedure has been followed, the system is
ready to be used, and the user can switch to the Popcorn
namespace and execute applications on the replicated-
kernel OS. Figure 5.a illustrates the steps involved in
bringing up the Popcorn system - from OS compilation
to application execution. If the Hotplug subsystem is
available, the steps in Figure 5.b can be followed in-
stead.

In support of partitioning, we have built a chain of appli-
cations that gather information on the machine on which
Popcorn will run. That information is then used to create
the configuration files needed to launch the replicated-
kernel environment. This tool chain must be run on
SMP Linux, on the target machine, since it exploits
resource enumeration provided by the Linux kernel’s
NUMA subsystem. A vast set of resource partitioning
rules can be used to generate the configuration, includ-
ing and not limited to one-kernel per core, one-kernel
per NUMA node, same amount of physical memory per
kernel, memory aligned on NUMA boundary. The con-
figuration parameters that are generated are mostly in
the form of kernel command-line arguments.
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Figure 5: Two different ways of booting Popcorn Linux.
Without and with hotplug (CPU and memory) support.

4.2 Booting Multiple Kernels

The kexec software is normally used to reboot a ma-
chine into a new kernel from an already-running ker-
nel. We modified both the kexec application itself and
the backend code in the Linux kernel to load new kernel
instances (secondary kernels) that run in parallel with
the current one, but on a different partition of hardware
resources. Kernels are booted in sequence.

As part of the kexec project, the Linux kernel was made
relocatable, and can potentially be loaded and executed
from anywhere within the physical address space [14].
However, it was necessary to rewrite the kernel bootup
code in head_64.S to boot kernels at any location
throughout the entire physical address space. This mod-
ification required an addition to the early pagetable cre-
ation code on x86 64bit. In order to boot secondary ker-
nels, we modified the trampoline, that is the low level
code used to boot application processors in SMP Linux.
We added trampoline_64_bsp.S whose memory space
gets reserved in low memory at boot time. The same
memory range is shared by all kernels. Because the
trampolines are used by all CPUs, kernels should boot
in sequences. The structure boot_param has been also
modified in order to support a ramdisk sit everywhere in
the physical address space.

The boot sequence of a secondary kernel is triggered
by a syscall to the kexec subsytem. A kernel image is
specified in a syscall argument. Rather than reusing the
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Figure 6: Linux’s bzImage objects loading addresses.
bzImage is a compressed kernel image. It self-extracts
the vmlinux binary executable at 16MB.

same bzImage used by the primary kernel to bring up
the machine, a decompressed and stripped kernel binary
is used to boot the secondary kernels. Figure 6 shows
the organization of the bzImage format. We extract and
boot the “Compressed kernel image”, i.e. a stripped ver-
sion of vmlinux, to keep the size bounded and speed up
the boot process.

The modified kexec copies the kernel binary and the
boot ramdisk to the selected physical locations. It then
initializes the secondary kernel’s boot_paramswith the
appropriate kernel arguments and ramdisk location/size.
At this point kexec sets the remote CPU’s initial instruc-
tion pointer to point to the Popcorn trampoline, and
sends an inter-processor interrupt (IPI) to the CPU to
wake up. After the remote CPU executes its trampoline,
which loads Popcorn’ 64bit identity-mapped pagetable
for the appropriate region, the CPU is able to start a ker-
nel located anywhere in the physical address space.

4.3 Partitioning CPUs

In SMP Linux, each CPU receives an incremental log-
ical identifier, starting from 0, during boot. This log-
ical id can be acquired by kernel code with a call to
smp_processor_id(). This identifier is separate from
the local APIC identifier adopted in the x86 architecture
to distinguish processor cores. In a multicore machine
Popcorn tries to keep the same CPU enumeration as is
used in SMP Linux; for example CPU identifiers of Ker-
nel 0 and Kernel 1 in Figure 3.b and 3.c will be 0,1 and
2 respectively (not 0,1 and 0). This was achieved by re-
lying on the APIC ids and the ACPI tables passed in by
the BIOS.

We furthermore modified the Linux source to up-
grade the legacy subsystems initialization, based on
a check on the kernel id, to a more generic mecha-
nism. Many kernel subsystems were initialized only
if smp_processor_id() was 0. In Popcorn, a new
function has been added that returns true if the cur-
rent CPU is booting up the kernel. Another function,
is_lapic_bsp(), reveals whether the kernel is the pri-
mary.

In order to select which CPUs are assigned to a
kernel we introduce the kernel command line ar-
gument present_mask, which works similarly to
possible_mask added by the Hotplug subsystem.
Booting a kernel on a cluster of cores can be done by
choosing any combination of core ids. It is not neces-
sary that they are contiguous.

4.4 Partitioning Memory and Devices

A resource-masking feature was implemented to let pri-
mary and secondary kernels boot with the same code, on
the same hardware. Linux comes with a set of features
to include and exclude memory from the memory map
provided by the BIOS. We exploited the memmap family
of kernel command line arguments to accomplish mem-
ory partitioning.

In Popcorn, we restrict each kernel to initialize only
the devices in its resource partition. When SMP Linux
boots, it automatically discovers most of the hardware
devices present on the system. This process is possible
by means of BIOS enumeration services and dynamic
discovery. Dynamic discovery is implemented in several
ways, e.g. writing and then reading on memory locations
or I/O ports, writing at an address and then waiting for
an interrupt. This feature is dangerous if executed by
kernel instances other than the kernel that contains a de-
vice to be discovered in its resource partition. Currently
only the primary kernel has dynamic discovery enabled.

BIOS enumeration services provide lists of most of the
devices present in the machine (in x86 ACPI). Each ker-
nel in our system has access to these lists in order to
dynamically move hardware resources between running
kernels. If the static resource partition of a kernel in-
stance does not include a hardware resource, this re-
source must not be initialized by the kernel. For ex-
ample, in the PCI subsystem, we added a blacklisting
capability to prevent the PCI driver from initializing a
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device if it was blacklisted. In our implementation, the
blacklist must be provided as a kernel command line ar-
gument (pci_dev_flags).

4.5 Inter-Kernel Message Passing

A kernel-level message passing layer was implemented
with shared memory and inter processor interrupt (UPI)
signaling to communicate between kernel instances.
The slot-based messaging layer uses cache-aligned pri-
vate buffers located in the receivers memory. The
buffering scheme is multiple writer single reader; con-
currency between writers is handled by means of a tick-
eting mechanism. After a message has been written into
a buffer, the sender notifies the receiver with an IPI. In
order to mitigate the inter processor traffic due to IPIs,
our layer adopts a hybrid of polling and IPI for notifi-
cation. While the receiver dispatches messages to tasks
after receiving a single IPI and message, senders can
queue further messages without triggering IPIs. Once
all messages have been removed from the receive buffer,
IPI delivery is reinstated.

A multicast messaging service is also implemented. In
order for a task to send a multicast message it first
should open a multicast group. Every message sent to
the group is received by the groups subscribers. Multi-
cast groups are opened and closed at runtime. When a
message is sent to a group, it is copied to a memory lo-
cation accessible by all subscribers and an IPI is sent to
each of them iteratively. Because in a replicated-kernel
OS different kernels coexist on the same hardware, we
disable IPI broadcasting (using the kernel command line
argument no_ipi_broadcast). IPI broadcasting will
add additional overhead if used for multicast notifica-
tion. Nonetheless, the hardware we are using does not
support IPI multicast (x2 APIC).

The message passing layer is loaded with
subsys_initcall(). When loaded on the pri-
mary kernel, it creates an array of buffer’s physical
addresses (rkvirt, refer to Figure 7). These arrays are
populated by each of the kernels joining the replicated-
kernel OS with their respective receiver buffer addresses
during their boot processes. The address of this special
array is passed via boot_param struct to each kernel.
Every time a new kernel joins the replicated-kernel
OS it adds its receiver buffer address to rkvirt first,
and then communicates its presence to all the other
registered kernels by message.
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Figure 7: Receiver buffers are allocated in the kernel’s
private memory. In gray is the private memory of each
kernel. rkvirt, the array holding the addresses of the
receiving buffers, is allocated on the primary kernel.

4.6 Namespaces

Namespaces were introduced into SMP Linux to cre-
ate sub-environments, as a lightweight virtualization al-
ternative implemented at the OS level. Kerrighed [18]
uses namespaces (containers) to migrate applications in
a cluster by reproducing the same contained environ-
ment on different kernels. Popcorn uses namespaces to
provide a single environment shared between kernels.
Each kernel’s namespace is kept consistent with the oth-
ers’ through the messaging layer.

Linux 3.2.14, on top of which we developed Popcorn,
supports uts, mount, IPC, PID and network namespaces,
though the API is incomplete. Hence code has been
back ported from Linux kernel 3.8. Popcorn was ex-
tended to include a CPU namespace (see below). Mech-
anisms were also added to create namespaces that are
shared between kernels. Currently the mount names-
pace relies on NFS. The network namespace is used to
create a single IP overlay.

After kernels connect via the messaging layer, static
Popcorn namespaces are created in each kernel. A
global nsproxy structure is then made to point to Pop-
corn’s uts, mount, IPC, PID, network and CPU names-
pace objects. Namespaces on each kernel are updated
whenever a new kernel joins the replicated-kernel OS.
Because Popcorn namespaces get created by an asyn-
chronous event rather than the creation of a task, instead
of using the common /proc/PID/ns interface we added
/proc/popcorn. Tasks join Popcorn by associating to its
namespaces through the use of the setns syscall, which
has been updated to work with statically created names-
paces. When a task is migrated to another kernel it starts
executing only after being (automatically) associated to
Popcorn namespaces.
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CPU Namespace An application that joins Pop-
corn’s CPU namespace can migrate to any kernel
that makes up the replicated-kernel OS, i.e., by mean
of sched_setaffinity(). Outside Popcorn’s CPU
namespace, only the CPUs on which the current ker-
nel is loaded are available to applications. If Linux’s
namespaces provides a subset of the resources (and for
CPUs Linux includes cgroups or domains), Popcorn’s
namespaces show a superset.

We added the kernel command line parameter
cpu_offset. This is the offset of the current
cpumask_t in the Popcorn CPU namespace. We added
the field cpuns of type struct cpu_namespace *
to the struct nsproxy. We augment task_struct
with a new list_head struct to hold a variable
length cpu bitmap. Amongst the other, the functions
sched_getaffintiy and sched_setaffinity have
been updated to work based on the current CPU names-
pace. Finally, a task in a different CPU namespace
will read different contents from /proc/cpuinfo. In the
Popcorn namespace it will see all the CPUs available in
all joining kernels.

4.7 Devices

Following the peer kernel paradigm, implied by the
replicated-kernel OS design, we adopted inter-kernel
coordination in order to access remotely owned hard-
ware resources. Devices rely on namespaces for enu-
meration purposes, and message passing for access and
coordination. Access to a device can be proxied by a
kernel (e.g. the I/O APIC example from Section 3.3)
otherwise ownership of a device can be passed to an-
other kernel (in the case where exclusive ownership is
required, i.e. CD-ROM burning application). On kernels
in which a device is not loaded, a dummy device driver
monitors application interaction with that device. Based
on the device type, application’s requests are either for-
warded to the owner kernel (proxied access), or locally
staged waiting for local device driver re-initialization
(ownership passing).

The following inter-kernel communication devices were
implemented outside the messaging dependent mecha-
nism described above for debugging and performance
reasons.

Virtual TTY For low-bandwidth applications (e.g.
launching processes or debugging) a virtual serial line

device, controlled by a TTY driver, is provided between
any kernel pair. Each kernel contains as many virtual
TTY device nodes (/dev/vtyX) as there are kernels in
Popcorn (X is the smallest CPU id of the kernel to con-
nect to). Each kernel opens a login console on /dev/vty0
during initialization. A shared memory region is divided
between all of the device nodes in a bidimensional ma-
trix. Each cell of the matrix holds a ring buffer and the
corresponding state variables. The reading mechanism
is driven by a timer that periodically moves data from
the shared buffer to the flip buffer of the destination ker-
nel.

Virtual Network Switch As in virtual machine envi-
ronments, we provide virtual networking between ker-
nel instances. The kernel instance that owns the network
card acts as the gateway and routes traffic to all the other
clients. In this setup each kernel instance has an asso-
ciated IP address, switching is automatically handled at
the driver level. A network overlay, constructed using
the network namespace mechanism, provides a single
IP amongst all kernels. We developed a kernel level net-
work driver that is based on the Linux TUN/TAP driver
but uses IPI notification and fast shared-memory ring
buffers for communication. Our implementation uses
the inter-kernel messaging layer for coordination and
check-in (initialization).

4.8 Task Migration

To migrate tasks, i.e. processes or threads, between ker-
nel instances, a client/server model was adopted. On
each kernel, a service is listening on the messaging layer
for incoming task migrations. The kernel from which a
task would like to out-migrate initiates the communica-
tion.

An inter-kernel task migration comprises of three main
steps. First, the task which is to be migrated is stopped.
Secondly, the whole task state is transferred to the
server, where a dummy task, that acts as the migrated
task, is created on the remote kernel. Thirdly, all the
transferred information about the migrated task are im-
ported into the dummy task, and the migrated task is
ready to resume execution.

The task that was stopped on the sending kernel remains
behind, inactive, as a shadow task. A shadow task is
useful for anchoring resources, such as memory and file
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descriptors, preventing reuse of those resources by the
local kernel. Shadow tasks also serve the purpose of
speeding up back migrations. When a task is migrated
back to a kernel that it has already visited, its current
state is installed in the shadow task, and the shadow task
is reactivated.

Task State The state of a task is comprised of reg-
ister contents, its address space, file descriptors, sig-
nals, IPCs, users and groups credentials. Popcorn cur-
rently supports migrating struct pt_regs and union
thread_xstate, as CPU’s registers on the x86 archi-
tecture. The address space must also be migrated to
support the continued execution of migrated tasks. An
address space is comprised of virtual memory area in-
formation struct vm_area_struct, and the map of
physical pages to those virtual memory areas. The
latter can obtained by walking the page tables (using
walk_page_range). Address space mappings are mi-
grated on-demand, in keeping with Linux custom. Map-
pings are migrated only in response to fault events. This
ensures that as a task migrates, overhead associated with
carrying out mapping migrations is minimized by mi-
grating only mappings that the task needs. When an
application needs a mapping, that mapping is retrieved
from remote kernels, and replicated locally. Page level
granularity is supported. If no mapping exists remotely,
one is created using the normal Linux fault handling
routine. This is how tasks come to rely on memory
owned by multiple kernels. As a task migrates and
executes, it’s memory is increasingly composed of lo-
cally owned memory pages and remote owned mem-
ory pages (the latter do not have an associated struct
page, therefore are not normal pages). Remote pages
are guaranteed to remain available due to the presence of
shadow tasks. A configurable amount of address space
prefetch was also implemented, and found to have posi-
tive performance effect in some situations. Prefetch op-
erations are piggy-backed on mapping retrieval opera-
tions to reduce messaging overhead.

State Consistency No OS-level resources are shared
between tasks in the same thread group which happen to
be running on different kernels. Instead, those resources
are replicated and kept consistent through protocols that
are tailored to satisfy the requirements of each replicated
component.

Inter-kernel thread migration causes partial copies of
the same address space to live on multiple kernels. To
make multi-threaded applications work correctly on top
of these different copies, the copies must never contain
conflicting information. Protocols were developed to
ensure consistency as memory regions are created, de-
stroyed, and modified, e.g. mmap, mprotect, munmap,
etc.

File descriptors, signals, IPCs and credentials are also
replicated objects and their state must also be kept con-
sistent through the use of tailored consistency protocols.

5 Evaluation

The purpose of this evaluation is to investigate the be-
havior of Popcorn when used as 1) a tool for software
partitioning of the hardware, and 2) a replicated-kernel
OS. A comparison of these two usage modes will high-
light the overheads due to the introduced software mech-
anism for communication, SSI and load sharing between
kernels. We compared Popcorn, as a tool for software
partitioning of the hardware, to a similarly configured
virtualized environment based on KVM, and to SMP
Linux. Popcorn as a replicated-kernel OS is compared
to SMP Linux.

Hardware We tested Popcorn on a Supermicro
H8QG6 equipped with four AMD Opteron 6164HE pro-
cessors at 1.7GHz, and 64GB of RAM. Each processor
socket has 2 physical processors (nodes) on the same
die, each physical processor has 6 cores. The L1 and
L2 caches are private per core, and 6 MB shared L3
cache exist per processor. All cores are interconnected
cross-die and in-die, forming a quasi-fully-connected
cube topology [13]. RAM is equally allocated in the
machine; each of the 8 nodes has direct access to 8GB.

Software Popcorn Linux is built on the Linux 3.2.14
kernel; SMP Linux results are based on the same vanilla
kernel version. The machine ran Ubuntu 10.04 Linux
distribution, the ramdisk for the secondary kernels are
based on Slackware 13.37.

In a first set of experiments we used the most recent
version of KVM/Nahanni available from the project
website [17]. We adopted libvirt (version 0.10.2)
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for managing the VMs. Since libvirt does not cur-
rently support ivshmem devices (Nahanni), we modi-
fied the libvirt source code. To run the MPI experi-
ments, KVM/Nahanni includes a modified version of
MPICH2/Nemesis called MPI-Nahanni (although not
publicly available). The modified version exploits
Nahanni shared memory windows for message pass-
ing. The code we received from the authors re-
quired some fixes to work properly. Based on MPI-
Nahanni we implemented an MPI-Popcorn version of
MPICH2/Nemesis.

The OpenMP experiments do not use glibc/pthread nor
glibc/gomp. Instead a reduced POSIX threading library,
without futexes, is adopted, called cthread. Furthermore
gomp is replaced by a modified version of the custom
OpenMP library derived from the Barrelfish project, we
called it pomp as Popcorn OpenMP.

In all experiments we setup KVM/Nahanni with one vir-
tual machine per core. Similarly, we configure Popcorn
with one kernel per core. Linux runs with all available
cores on the machine active but not when running the
OpenMP experiments. In this case we set the number of
active cores equal to the number of threads.

5.1 CPU/Memory Bound

To evaluate Popcorn on CPU/memory bounded work-
loads, we used NASA’s NAS Parallel Benchmark (NPB)
suite [4]. In this paper we present results from Class A
versions of Integer Sort (IS), Conjugate Gradient (CG),
and Fourier Transform (FT) algorithms. We chose Class
A, a small data size, in order to better highlight operat-
ing system overheads. NPB is available for OpenMP
(OMP) and MPI. The OMP version is designed for
shared memory machines, while the MPI version is
more suitable for clusters.

Because they use two different programming
paradigms, OMP and MPI are not directly compa-
rable. Because of that, we use both versions to quantify
the overhead, compared to Linux, of the software
partitioning of the hardware functionality, and the full
software stack required by the replicated-kernel OS.

MPI A setup in which multiple kernel instances co-
exist on the same hardware resembles a virtualiza-
tion environment. Therefore we decided to compare

Popcorn, not only with SMP Linux but also with
KVM/Nahanni [17] (that resemble the Disco/Cellular
Disco replicated-kernel OS solution [8]).

Nahanni allows several KVM virtual machines, each
running Linux, to communicate through a shared mem-
ory window. MPI applications are used in this test be-
cause despite there is shared memory, an OpenMP appli-
cation can not run across multiple virtual machines. Be-
cause this test focuses on compute/memory workloads,
we used MPI-Nahanni, which does use network com-
munication, only for coordination, i.e. there is no I/O
involved after the application starts. For this test Pop-
corn is not exploiting it’s messaging layer, SSI, or load
sharing functionality. MPI-Popcorn relies only on the
presence of the standard /dev/mem, although the virtual
network switch is used to start the MPI application.

OpenMP As a replicated-kernel OS, Popcorn is able
to transparently run a multithreaded application across
multiple kernels. Therefore we compare the perfor-
mance of the aforementioned NPB applications while
running on SMP Linux and Popcorn. OMP NPB ap-
plications were compiled with gcc once with cthread,
and pomp, and then run on both OSes. This experiment
highlights the overhead due to all of Popcorn’s software
layers.

5.2 I/O Bound

This test investigates the response time of a web server
running on our prototype in a secondary kernel. Be-
cause our inter-kernel networking runs below the SSI
layer, this test stresses the software partitioning of the
hardware functionality of Popcorn.

We run the event-based nginx web server along with
ApacheBench, a page request generator from the
Apache project. From a different machine in the same
network, we generate http requests to SMP Linux, to
secondary kernels in Popcorn, and to guest kernels on
KVM. This configuration is shown in Figure 8. Al-
though higher-performance network sharing infrastruc-
tures exist for KVM, we use the built-in bridged net-
working that is used in many research and industrial se-
tups.
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Apache 

Bench is 

running here

Figure 8: The network configuration used to generate
the results in Figure 15.

6 Results

6.1 CPU/Memory workloads

MPI Figures 9, 10 and 11 show how Popcorn and its
competitors perform on integer sort, the Fourier trans-
form, and the conjugate gradient benchmarks, respec-
tively, within MPI. Graphs are in log2 scale. For each
data point, we ran 20 iterations, and provide average
and standard deviation. Popcorn numbers are always
close to SMP Linux numbers, and for low core counts
Popcorn performs better. In the best case (on 2 and 4
cores running CG), it is more than 50% faster than SMP
Linux. In the worst case (on 16 cores running FT), Pop-
corn is 30% slower the SMP Linux.

In Linux, MPI runs a process per core, but such pro-
cesses are not pinned to the cores on which they are cre-
ated: they can migrate to another less loaded core if the
workload becomes unbalanced. In Popcorn, each pro-
cess is pinned by design on a kernel running on a single
core; if the load changes, due to system activities, the
test process can not be migrated anywhere else. This is
part of the cause of the observed SMP Linux’s trends.
Popcorn must also pay additional overhead for virtual
networking and for running the replicated-kernel OS en-
vironment. We believe that communication via the vir-
tual network switch is the main source of overhead in
Popcorn. Considering the graphs, this overhead appears
to be relatively small, and in general, the numbers are
comparable. Finally, Popcorn enforced isolation results
in a faster execution at low core counts; this shows that
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Figure 9: NPB/MPI integer sort (IS) benchmark results.
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Figure 10: NPB/MPI fast Fourier transform (FT) bench-
mark results.

Linux’s distributed work stealing scheduling algorithm
can be improved.

Nahanni is the worst in terms of performance. It is up
to 6 times slower than SMP Linux and Popcorn (on 32
cores running either CG or FT). Although Nahanni’s one
core performance is the same as SMP Linux, increas-
ing the core count causes the performance to get worse
on all benchmarks. A slower benchmark execution was
expected on Nahanni due to the overhead incurred by
virtualization. However, the high overhead that was ob-
served is not just because of virtualization but is also
due to inter-VM communication and scheduling on the
Linux host.
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Figure 11: NPB/MPI conjugate gradient (CG) bench-
mark results.

OpenMP Figures 12, 13 and 14 show how Popcorn
and SMP Linux perform on IS, FT, and CG benchmarks,
respectively, within OpenMP. Graphs are in log2 scale.
For each data point, we ran 20 iterations, and we provide
average and standard deviation.

Unlike the MPI experiments, there is no obvious com-
mon trend among the experiments. In the IS exper-
iment, Popcorn is in general faster than SMP Linux,
SMP Linux is up to 20% slower (on 32 cores). The
FT experiment shows similar trends for Popcorn and
SMP Linux, although SMP Linux is usually faster (less
than 10%) but not for high core counts. In the CG ex-
periment Popcorn performs poorly being up to 4 times
slower than SMP Linux on 16 cores.

These experiments show that the performance of Pop-
corn depends on the benchmark we run. This was ex-
pected, as our address space consistency protocol per-
formance depends on the memory access pattern of the
application. Analysis and comparison of the overhead in
SMP Linux and Popcorn Linux reveals that the removal
of lock contention from SMP Linux yields significant
gains for Popcorn over SMP Linux. This contention re-
moval is an artifact of the fact that data structures are
replicated, and therefore access to those structures does
not require significant synchronization. However, Pop-
corn must do additional work to maintain a consistent
address space. These two factors battle for dominance,
and depending on the workload, one will overcome the
other. Mechanisms are proposed to reduce the Popcorn
overhead with the goal of making further performance
gains on SMP Linux.
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Figure 12: NPB/OpenMP integer sort (IS) benchmark
results.
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Figure 13: NPB/OpenMP fast Fourier transform (FT)
benchmark results.
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Figure 14: NPB/OpenMP conjugate gradient (CG)
benchmark results.
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Figure 15: Apache Bench results on nginx web server
on SMP Linux, Popcorn and KVM. Response time in
ms on the x axis, number of requests on the y axis.

6.2 I/O Bound

We set ApacheBench to run 10000 requests with a con-
currency level of 100 and 1000 threads to obtain the data
in Figure 15.

The data show that the Popcorn architecture does not
hinder the performance of running a web server (I/O
bound benchmark) on the selected hardware, when com-
pared to SMP Linux. Figure 15 shows that in most
cases, Popcorn can serve a request faster then Linux,
which is attributable both to scheduling and to the fact
that the task of handling the hardware network interface
is shared with the kernel instance that owns it. KVM
suffers due to virtualization and scheduling overhead.

7 Conclusions

We introduced the design of Popcorn Linux and the re-
engineering required by the Linux kernel to boot a coex-
istent set of kernels, and make them cooperate as a sin-
gle operating system for SMP machines. This effort al-
lowed us to implement and evaluate an alternative Linux
implementation while maintaining the shared memory
programming model for application development.

Our project contributes a number of patches to the
Linux community (booting anywhere in the physical
address space, task migration, etc.). Popcorn’s boot-
ing anywhere feature offers insight into how to re-
engineer Linux subsystems to accommodate more com-
plex bootup procedures. Task migration enables Linux

to live migrate execution across kernels without virtual-
ization support. Next steps include completing and con-
solidating the work on namespaces, using rproc/rpmsg
instead of kexec and re-basing the messaging on virtio.

Our MPI results show that Popcorn provides results sim-
ilar to Linux, and that it can outperform virtualization-
based solutions like Nahanni by up to a factor of 10. The
network test shows that Popcorn is faster than Linux and
Nahanni. Popcorn is not based on hypervisor technolo-
gies and can be used as an alternative to a set of virtual
machines when CPUs time-partitioning is not necessary.
The OpenMP results show that Popcorn can be faster,
comparable to, or slower then Linux, and that this be-
haviour is application dependent. The replicated-kernel
OS design applied to Linux promises better scaling, but
the gains are sometimes offset by other source of over-
heads (e.g. messaging). An analysis on a thousands of
cores machine can provide more insight into this solu-
tion.

It turns out that a replicated-kernel OS based on Linux
aggregates the flexibility of a traditional single-image
OS with the isolation and consolidation features of a vir-
tual machine, but on bare metal, while being potentially
more scalable on high core count machines. The full
sources of Popcorn Linux and associated tools can be
found at http://www.popcornlinux.org.
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