
Policy-extendable LMK filter framework for embedded system
LMK: the state of the art and its enhancement

Kunhoon Baik
Samsung Electronics Co., Ltd.

Korea Advanced Institute of Science and Technology
knhoon.baik@samsung.com, knhoon.baik@kaist.ac.kr

Jongseok Kim
Korea Advanced Institute of Science and Technology

paldad@kaist.ac.kr

Daeyoung Kim
Korea Advanced Institute of Science and Technology

kimd@kaist.ac.kr

Abstract

Background application management by low memory
killer (LMK) is one of the outstanding features of Linux-
based platforms such as Android or Tizen. However,
LMK has been debated in the Linux community because
victim selection mechanism with a specific policy is not
suitable for the Linux kernel and a flexible way to apply
new policies has been required. Thus, several develop-
ers have tried implementing a userspace LMK like the
ulmkd (userspace low memory killer daemon). How-
ever, not much work has been done regarding applying
new polices.

In this paper, we present a policy-extendable LMK filter
framework similar to the out-of-memory killer filter dis-
cussed at the 2013 LSF/MM Summit. The framework
is integrated into the native LMK. When the LMK is
triggered, each LMK filter module manages processes
in the background like packet filters in the network
stack. While the native LMK keeps background applica-
tions based on a specific policy, the framework can en-
hance background application management policy. We
describe several benefits of the enhanced policies, in-
cluding managing undesirable power-consuming back-
ground applications and memory-leaking background
applications. We also present a new LMK filter module
to improve the accuracy of victim selection. The mod-
ule keeps the applications which could be used in the
near future by predicting which applications are likely
to be used next from the latest used application based

on a Markov model.

We implemented the framework and the module on
Galaxy S4 and Odroid-XU device using the Linux 3.4.5
kernel and acquired a preliminary result. The result
shows that the number of application terminations was
reduced by 14%. Although we implemented it in the
kernel, it can be implemented as a userspace daemon
by using ulmkd. We expect that the policy-extendable
LMK filter framework and LMK filter will improve user
experience.

1 Introduction

Modern S/W platforms for embedded devices support a
background application management. The applications
stacked in the background are alive until the operating
system meets a specific condition such as memory pres-
sure, if a user does not kill the applications intention-
ally. The background application management permits
fast reactivation of the applications for later access [2],
battery lifetime can be longer because energy consumed
by applications re-loading can be reduced. [13]

However, applications cannot be stacked infinitely in the
background because memory capacity is limited. In-
stead, the operating system needs to effectively manage
the background applications in low memory situation.
To handle such a situation, the operating system pro-
vides out-of-memory handler. Unfortunately, it causes
significant performance degradation to user interactive

• 49 •

50 • Policy-extendable LMK filter framework for embedded system

User-Space

Kernel

User-Space task management

Task categorization

Task prioritization

Set oom score of process

based on task prioritization

Memory management

Low memory

 Killer

When low memory

Out of memory

Killer

Processes

Process #1

Process #2

Process #n

When no available memory

Kill a process

a) Type A - Kill a process in the kernel

 at low memory situation

 ex) Android LMK

User-Space

task management

User-Space

low memory handler

Processes

Process #1

Process #2

Process #n

Memory management

Memory pressure

Handler

notification

Kill a process or

Request to reclaim

application cache

Out of memory

Killer

When no available memory

Kill a process

b) Type B - Kill a process in the user-space

 after receiving low-mem notification from Kernel

 ex) VM pressure notification + ulmkd

Processes

Process #1

Process #2

Process #n

Memory management

Safe Guard

Killer

When extreme

low memory

Out of memory

Killer

When no available

memory

Memory pressure

Handler

User-Space

task management

User-Space

low memory handler

Kill a process or

Request to reclaim

application cache

When low memory

c) Hybrid Approach

ex) Tizen lowmem notifier

Set simple

oom score of process

like foreground/background

Figure 1: Architecture according to types of low memory killer

applications by excessive demand paging because the
operating system triggers the OOM killer under desper-
ately low memory conditions.

To avoid excessive demand paging, it was necessary for
the operating system to trigger a low memory handler
before falling into desperately low memory conditions.
Several approaches have been introduced [10, 12, 6, 15,
16, 11]. The approaches can be categorized into two
types from a structural perspective. Figure 1 shows the
operation flow according to the types of low memory
handler. The type-A approach, which is shown in Fig-
ure 1-(a), is to kill a process with the lowest priority
in the kernel, according to the process priority config-
ured in the user-space when a low memory handler is
triggered. The type-B approach, which is shown in Fig-
ure 1-(b), is to kill a process after prioritizing processes
in the user-space when a low memory handler is trig-
gered. The type-A approach is hard to change the pri-
ority of a process in a low memory situation, and the
type-B approach suffers from issues like latency until a
process is killed after a low memory handler is triggered.

The Android low memory killer (LMK) is one of the
type-A approaches, and it has been used for a long
time in several embedded devices based on the An-
droid platform. However, to apply a new victim se-
lection policy, the user-space background application
management must be modified, and it is impossible to
re-prioritize the priority of processes in a low memory

situation. Therefore, type-B approaches like userland
low-memory killer daemon (ulmkd), have received at-
tention again because the kernel layer provides simple
notification functionality, and the approach can give the
user-space an opportunity to dynamically change a vic-
tim selection policy. However, the user-space LMK is
unlikely to handle a low memory situation in a timely
way for a case of exhausted memory usage. Although
related developers have made several attempts, the user-
space LMK still has unresolved issues. [11] Thus, it is
still too early to use the user-space LMK to dynamically
apply a new victim selection policy.

While the type-B approach has been actively discussed
and developed, applying new victim selection polices
has not progressed, even though an advanced LMK vic-
tim selection policy would improve user experience and
system performance. In the case of smartphones, most
S/W platforms adopt the least recently used (LRU) vic-
tim selection algorithm to select a victim application in a
low memory situation. However, the LRU victim selec-
tion algorithm sometimes selects applications to be used
in the near future because the applications is likely to de-
pend on the last-used application, hour of day, and loca-
tion. [9] Likewise, the LRU victim selection algorithm
does not preferentially select undesirable applications,
such as memory-leaking applications, in a low memory
situation. [13] Thus, if a system provides a mechanism
to easily apply a new victim selection policy, it would

2014 Linux Symposium • 51

improve the user experience and system performance.

In this paper, we propose an LMK filter framework to
provide such a policy extension. To do that, we sug-
gest a new architecture, modifying the type-A approach,
because the type-B approach is still difficult to apply
in a commercial device. We re-factored Android LMK
to solve the limitation of the type-A approach. Based
on the re-factored Android LMK, we created an LMK
filter framework to provide real-time policy extension.
The LMK filter framework provides the interfaces for
managing policy modules with a policy extension, and
the engine for applying the new policy of the policy
modules. In addition, we present a task-prediction fil-
ter module to improve the accuracy of victim selection.
With the results provided, we expect that the LMK filter
framework and the module will improve user’s experi-
ence.

The rest of this paper is organized as follows. Section 2
briefly describes previous approaches to memory over-
load management in the Linux kernel. Section 3 de-
scribes previous studies for applying a new victim selec-
tion policy. Section 4 provides the LMK filter frame-
work and detailed implementation. Section 5 provides
the task-prediction filter module to enhance the accu-
racy of victim selection. Section 6 shows a preliminary
result for the suggested LMK filter framework and the
module. The remaining sections offer discussion and
conclusions.

2 Previous Approaches for Memory Overload
Management in Linux

There have been several approaches to handling mem-
ory overload in swap-less devices. As described in Sec-
tion 1, the approaches can be categorized into two types.
The type-A approach is to give hints with oom_score_
adj 1 to the kernel and kill a process in the kernel with
the hints. The type-B approach is to kill a process in the
user-space after receiving low memory notification from
the kernel. In this section, we briefly describe these ap-
proaches.

1oom_score_adj is used as the adjustment of each process’s at-
tractiveness to the OOM killer. The variable is also used as hints in
LMK

Category Status

System/Persistent
Process is system or persistent pro-
cess

Foreground
Process is in the foreground or re-
lated to the foreground application.

Visible
Process is visible or related to visi-
ble applications.

Perceptible
Process is not interacting with user
but it can be perceptible to user.

Heavy
Process has cantSaveState flag in its
manifest file.

Backup
Process has backup agent currently
work on.

Service A/B Process hosts service.

Home
Process is home application (like
Android launcher)

Previous
Process was foreground application
at previous.

Hidden
Process is in the background with
no above condition.

Empty
Process has no activity and no ser-
vice.

Table 1: Process Categorization of Android v4.3

2.1 Type-A Approach - Android Low Memory
Killer

Android LMK is one of the type-A approaches. The
Android platform gives hints to the Android LMK with
oom_score_adj, and Android LMK selects a victim
based on the given oom_score_adj. When the oper-
ating system triggers the Android LMK, Android LMK
determines the minimum oom_score_adj of a process
to be killed according to six-level memory thresholds
and six-level oom_score_adj thresholds defined by the
Android platform. Android LMK selects processes as
victim candidates when they have an oom_score_adj
higher than the minimum oom_score_adj, and it kills
the process with the highest oom_score_adj. If there
are several processes with the highest oom_score_adj,
it selects the process with the largest memory as the final
victim.

To give hints to the Android LMK, the Android platform
categorizes processes according to the status of process
components. Table 2.1 shows the process categorization
of Android V4.3. Based on the categorization, the An-
droid activity manager assigns the proper value to the
oom_score_adj of each process. Thus, six thresholds

52 • Policy-extendable LMK filter framework for embedded system

of the Android LMK are closely related to the Android
process categorization, because the Android LMK tries
to kill an application in a specific categorization at a spe-
cific memory threshold.

Hidden or empty process categories in the low priority
group must be prioritized. Android internally manages
a processes list based on LRU according to the launched
or resumed time of applications. For the hidden or
empty process category, Android assigns process prior-
ity based on the LRU. That is, if a process has been more
recently used, Android assigns a high priority value to
that process. As a result, Android LMK is likely to kill
the least recently used process in the hidden or empty
process category.

Android LMK has been used for a long time in several
embedded devices. However, it is not easy to apply a
new victim selection policy because the activity man-
ager of the Android or Android LMK must be modified.

2.2 Type-B Approach - Memory Pressure Notifica-
tion

Several developers have tried to notify the user-space of
memory pressure. The Nokia out-of-memory notifier is
one of the early attempts. It attaches to the Linux se-
curity module (LSM). [10] Whenever the kernel checks
that a process has enough memory to allocate a new vir-
tual mapping, the kernel triggers the low memory han-
dler. At that time, the module decides to send a notifica-
tion to the user-space through the uevent if the number
of available pages is lower than a user-defined threshold.
The module sends a level1 notification or a level2 noti-
fication based on the user-defined thresholds. However,
this method has been hard to use as a generic notifica-
tion layer for a type-B approach because it only consider
a user-space allocation request.

The mem_notify_patch is one of the generic mem-
ory pressure notifications. [6] The mem_notify patch
sends a low memory notification to applications like the
SIGDANGER signal of AIX. Internally, it was integrated
into the page reclaim routine of the Linux kernel. It
triggers a low memory notification when an anonymous
page tries to move to the inactive list. If an application
polls the "/dev/mem_notify" device node, the applica-
tion can get the notification signal. The concept of the
approach has led to other approaches like the Linux VM
pressure notifications [12] and the mem-pressure control

group [15]. Such approaches have improved the mem-
ory pressure notification.

In type-B approach, user-space programs have the re-
sponsibility of handling low memory notification with
a policy because the memory pressure notification is
the backend of the type-B approach. Thus, the type-
B approach expects that the user-space programs re-
lease their cache immediately or kill themselves. How-
ever, the expectation is somewhat optimistic because
all user-space programs may ignore the notification, or
user-space programs may handle the notification belat-
edly. As a result, the system is likely to fall into out-
of-memory in such situations. Thus, kernel/user-space
mixed solutions, as shown Figure 1-(c), have been de-
veloped to improve the limitation of the type-B ap-
proach. The Tizen lowmem notifier is one of those
hybrid approaches. [16] The Tizen lowmem notifier
provides the low memory notification mechanism, and
the safeguard killer kills an application based on the
oom_score_adj given by a user-space daemon when
the available memory of the system is very low. Thus,
the safeguard killer prevents a system from falling into
out-of-memory even when the user-space programs ne-
glect to handle a low memory notification. However,
the structure of the low memory handler is quite com-
plicated.

2.3 Type-B Approach - Userland Low Memory
Killer Daemon (ulmkd)

Ulmkd is one of frontend solutions of the type-B ap-
proach using generic memory pressure notification. The
default notification backend of ulmkd is a low mem-
ory notification layer on top of cgroups. After receiving
a memory notification from the kernel, ulmkd behaves
the same way as the Android LMK driver by reading
the oom_score_adj of each process from the proc file
system. Thus, ulmkd needs to read the memory usage
information of the system/process from the kernel. As
a result, ulmkd can cause a lot of unnecessary system
call in a low memory situation. In addition, the pro-
cess page of ulmkd should not be reclaimed, to prevent
unintended memory allocation by page remapping. Al-
though the author of ulmkd tries to solve the issues by
using approaches like locking of the process page, and
using task-list management of specific user-space plat-
form components, ulmkd still has issues to resolve. [11]

Although it requires lots of stability testing before ap-
plying to commercial devices, due to radical issues of

2014 Linux Symposium • 53

user-space LMK, it is quite attractive because it make
it easier to change the victim selection policy than the
type-A approach. However, ulmkd does not provide a
framework to apply the new victim selection policy dy-
namically or to apply multiple victim selection policies.

To the best of our knowledge, there are no existing so-
lutions for extending the victim selection policy. A sim-
ilar issue for the OOM killer was discussed at the 2013
LSF/MM summit and an idea to apply a new victim se-
lection policy was suggested [3]. The idea is to create a
framework similar to packet filters in the network stack.
In this paper, we will present such a framework for dy-
namically extending victim selection policy.

3 Previous Studies for Enhancing Victim Se-
lection Policy

Although mechanisms for handling the low memory sit-
uation is major topic in the industry, not much work has
been done for enhancing victim selection policy. How-
ever, there are several benefits to enhancing the victim
selection policy. In this section, we introduce such stud-
ies and benefits.

3.1 Considering Expected Delay

Yi-Fan Chung et al. utilized the concept of expected de-
lay penalty to enhance victim selection [2]. Expected
delay penalty was calculated by multiplying application
launch probability by application launching time. If an
application has a high expected delay penalty, the appli-
cation is kept in the background. As a result, frequently
used applications with long launch times are kept in the
background instead of being killed.

3.2 Considering Undesirable Applications

Yi-Fan Chung et al. also utilized the concept of expected
power saving to enhance victim selection. [2] After
they calculated the power consumption of a background
application, they calculated expected power saving by
multiplying the application launch probability by the
background power consumption of each background ap-
plication. If an application has low expected power sav-
ing, it is kept in the background. Thus, less frequently
used applications with high power consumption in the
background are selected as victims.

Mingyuan Xia et al. studied how memory-leaking appli-
cations can easily cripple background application man-
agement with victim selection based on LRU. [13] They
noted that normal applications lost the opportunity to be
cached in the background when memory-leaking appli-
cations were kept in the background. They implemented
a light weight memory-leak detector and they modified
the Android process prioritization policy. If the detec-
tor detects a suspected memory-leaking application, the
process is set to the lowest priority. Thus, Android LMK
kills the suspected memory-leaking application.

3.3 Considering Personalized Factors

Tingxin Yan et al. predicted applications to be pre-
launched by investigating application usage behaviour.
[14] They investigated three application usage patterns:
"follow-trigger", "location clustering", and "temporal
burst". The application usage behaviours were used to
predict which applications were likely to be used in the
near futures, and the system assigned high priority to
such applications. If applications with high priority did
not exist in the background, the applications were pre-
launched. Likewise, if applications with low priority ex-
isted in the background, the applications were selected
as victims.

Predicting applications to be used in the near future can
enhance victim selection policy. There have been sev-
eral studies focused on predicting applications that will
be used in the near future. Choonsung Shin et al. found
that it was effective to predict applications from the last
application used, and Cell ID and time of day. [9]. Xun
Zou et al. showed a solution for predicting applications
from the latest application used based on the Markov
model. [17]

If a system provides a mechanism to easily apply the de-
scribed victim selection policies, it would improve the
user experience and system performance. In this paper,
we present the LMK filter framework to apply such vic-
tim selection policies, and we show the system improve-
ment by applying a new victim selection policy based on
a prediction mechanism.

4 The Policy-extendable LMK Filter Frame-
work

In this section, we present a policy-extendable LMK
filter framework to extend new policies to an existing

54 • Policy-extendable LMK filter framework for embedded system

User-Space

Kernel

User-Space task management

Task categorization

Task prioritization

Set oom score of process

based on task prioritization

Memory management

LMK filter framework

Out of memory

Killer

Processes

Process #1

Process #2

Process #n

When no available memory

Kill a process
Filter Engine

Filter #1

Filter #2

Filter #n

Manage a process

(Kill, Keep, Reclaim per process, ...)

Policy Module

Manager

Figure 2: Architecture of LMK filter framework

LMK for a specific purpose or for general improvement.
With the LMK filter framework, a module with a new
victim selection policy can be applied at any time with-
out modification. The purpose of the LMK filter frame-
work is to provide following functionality.

• Adjust the victim selection policy of the LMK
engine by adding/removing/changing policy mod-
ules;

• Support multiple policy modules effectively.

To adjust the policy of LMK in runtime, a policy is
consisted of an independent device module. The pol-
icy of LMK is adjusted by managing the device module
with a policy. To support multiple policy modules, the
LMK filter framework implements a first-match resolu-
tion mechanism based on the order of policies. With the
first-match resolution, the LMK filter framework mini-
mizes a policy conflict and a policy redundancy by the
installed several policies. In our implementation, we
have termed a policy module and a first-match resolu-
tion engine to a filter module and a filter engine.

Figure 2 shows the architecture of the low memory han-
dler with the LMK filter framework. The LMK filter
framework and filters replace the LMK driver of the

type-A approach. To create a policy-extendable LMK
filter framework, we modified the Android LMK be-
cause the Android LMK has been used popularly. The
type-B approach is more suitable for the LMK filter
framework due to its flexibility. However, we chose the
type-A approach because the type-B approach has still
issues to solve. Although we implemented the LMK fil-
ter framework to the type-A approach, it is not difficult
to apply to the type-B approach.

4.1 Re-factoring Android LMK

To create a generic LMK filter framework without
changing the behaviour of the Android LMK, we ana-
lyzed the flow of the Android LMK. Figure 3-(a) shows
the detail flow of Android LMK. Android LMK has a
generic part for checking available memory, and for se-
lecting an application as victim based on oom_score_
adj. In addition, Android LMK has a specific part for
filtering applications based on the six-level thresholds.
Thus, we replaced the specific part with the filter en-
gine routines of the LMK filter framework. Figure 3-(b)
shows the re-factored Android LMK.

We replaced the "determine minimum oom_score_adj
based on six-level thresholds" stage with a generic pre-
processing stage for each filter module, and we re-
placed the "filter out processes based on minimum
oom_score_adj" stage with a generic filtering stage for
each filter module. Finally, we placed a generic post-
processing stage for each filter module after iterating
processes. Thus, the sequence of the modified Android
LMK is the following. The modified LMK checks the
available memory including reclaimable memory, and
checks the minimal memory threshold to fall routines
for killing a process. After that, the LMK calls pre-
processing routines for each filter module to prepare
each filter module. After the filtering out processes per-
formed by the filtering routines of each filter module, a
process with the highest oom_score_adj or a process
decided by a filter module is selected as victim, Finally,
the LMK kills the victim after calling post-processing
routines for each filter module. If the LMK filter frame-
work does not have any filters, the LMK kills the process
with the highest oom_score_adj. That is, the default
behaviour of the LMK filter framework is to kill a pro-
cess by generic decision based on oom_score_adj. We
discuss the default behaviour further in Section 7

2014 Linux Symposium • 55

Determine minimum oom score

from 6-level oom score thresholds

based on 6-level memory thresholds and

computed available pages

Kill the final victim

Exit

YES

Compute available pages from

free pages and reclaimable pages

For each process

Set the process as victim candidate

if highest oom score and highest task size

No
Find minimum oom score?

Filter out the process based on

basic conditions like user-thread

Filter out if oom score of the process is

lower than mimimum oom score

End of iteration?

YES

not filtered

not filtered

Android specific part (based on 6-level thresholds)

(a) Original Android LMK

Call pre-processing routine of each filter module

Kill the final victim

Exit

YES

Compute available pages from

free pages and reclaimable pages

For each process

Set the process as victim candidate

if highest oom score and highest task size

No Computed available pages are lower than

minimum memory threshold?

Filter out the process based on

basic conditions like user-thread

Filter out the process based on

the first-match resolution with

policy filter modules

End of iteration?

YES

not filtered

not filtered

Generic Filter Framework

(b) Our Approach - Generic LMK Filter Framework

Call post-processing routine for each filter module

KEEP

KILL

set as final victim

Figure 3: Comparison between native LMK and our approach

4.2 The LMK filter framework

The LMK filter framework consists of two parts: the fil-
ter chain manager and the filter engine. The filter chain
manager manages the list of filter modules and the life-
cycle of filter modules. The manager supports to add a
new filter module to the LMK filter engine, and to re-
move an existing filter module from the LMK filter en-
gine. In addition, the manager supports to change the
order of filter modules for the first-match resolution.

The filter engine is the core of the LMK filter frame-
work. The filter engine operates the first-match resolu-
tion in the low memory situation and exposes filtering
interfaces for filter modules. Figure 4 shows the first-
match resolution flow for a process. If a filter module

decides that a process should be preserved in the back-
ground in the filtering stage, that process is not killed
and the traversing filter chain for the process is termi-
nated. Likewise, if a filter module decides that a process
should be killed, the filter engine sets the process as a
victim and the traversing filter chain of the process is
terminated. If a filter module does not make any de-
cision for a process, the filter engine calls the filtering
routine of the next filter module in the filter chain. This
means that filter modules have a priority based on their
position in the filter chain.

The filter engine provides an interface for a filter mod-
ule. With the interface, each filter module is required to
register three routines: a pre-processing routine, post-
processing routine, and filtering routine. As shown in
Figure 3-(b), the pre-processing and post-process rou-

56 • Policy-extendable LMK filter framework for embedded system

PREPARE ERROR

Check the status of the filter module

PREPARE OK

For each policy module in filter chain

Apply the filter for the input process

Check the decision of the filter module

IGNORE

Keep the process

SHOULD_BE_KEPT

Set the process as victim

SHOULD_BE_KILLED

Figure 4: The first-match resolution of filter engine

tines are called once in a low memory handling flow, and
the filtering routine is called for every process, whenever
the filter engine iterates processes.

In a pre-processing routine, a filter module must run
preparation to filter a process like setting a filter-owned
threshold. A module should return PREPARE_DONE or
PREPARE_ERROR in the routine. If a module returns
PREPARE_ERROR for any reason, the filter engine ex-
cludes the filter module in the low memory handling
flow. In a filtering routine, a filter module can filter
a process based on the filter module’s specific victim
selection policy. In a filtering routine, a filter mod-
ule can return one of three decisions for each process:
IGNORE, SHOULD_BE_VICTIM, SHOULD_BE_KEPT. If a
filter module returns SHOULD_BE_VICTIM for a process,
the process is set as a victim. If a filter module re-
turns SHOULD_BE_KEPT, the process is kept in the back-
ground. When a filter module does not make any deci-
sion for a process, the filter module can return IGNORE.

4.3 Android Specific Filter Module

To execute the same operation with a native Android
LMK, we implemented a filter module for the Android.
The module implements the a specific part of Android
LMK.

In the pre-processing routine, the module finds the min-
imum oom_score_adj from the six-level oom_score_
adj thresholds defined by a user-space platform af-
ter comparing the six-level memory thresholds defined
by a user-space platform with the calculated available
memory pages. If the module finds the minimum
oom_score_adj, the module returns a PREPARE_DONE
value. In the filtering routine, the module compares
the oom_score_adj of a process to the minimum oom_

score_adj decided in the preparation stage. If the
oom_score_adj of a process is higher than the min-
imum oom_score_adj, the module returns IGNORE.
Otherwise, the module returns SHOULD_BE_KEPT. Thus,
if the oom_score_adj of processes are lower than the
minimum oom_score_adj, the processes will be kept
in the background. If there are other filters, other fil-
ters modules will decide the termination of the ignored
processes.

5 The Task-Prediction Filter Module

To show a policy-extension with the LMK filter frame-
work, we implemented a new policy module. The vic-
tim selection in Android is decided by application cate-
gorization and LRU. Therefore, the Android LMK may
select an application to be re-used in the near future as
a victim because recently used processes may not be
reused in the near future. The accuracy of victim se-
lection can be improved by carefully predicting appli-
cations what will be reused in the near future. In par-
ticular, the last application provides hints to predict an
application reused in the near future [9]. To extend the
study, we considered the last N-applications. In addi-
tion, we considered the memory used by a process to
give a penalty for a process using large memory. Thus,
we suggest a filter module to keep processes to be reused
in the near future based on the last N-application and
process memory usage.

The main functionality of the filter module consists of
two parts. The first is to maintain an application transi-
tion probability matrix and an application usage history,
and the other is the filter-preparation function and the
filtering function of the LMK filter module provided for
keeping the predicted applications in a low memory sit-
uation.

5.1 Training prediction matrix

To predict which application would be used next from
last N-applications, the transition probability between
applications was observed during a training phase.
The trained transition probability matrix was used as
a Markov chain matrix to predict applications which
could be used in the next step. To determine the tran-
sition probability between applications, we tracked the
foreground application of the Android. To track the

2014 Linux Symposium • 57

foreground application, we modified the write opera-
tion of proc_oom_adjust_operations in the Linux
kernel. Whenever the oom_score_adj of a process
is changed, the oom_score_adj hook function of our
filter module is called. The hook function logs the
foreground application, which has the foreground oom_
score_adj of the Android platform. When the hook
function recognizes a foreground application, the mod-
ule inserts the information of the application into a
queue which has finite-length to maintain the applica-
tion usages history, and the module updates the informa-
tion of a transition probability matrix by relationship.

5.2 Implementation of the filter module

To predict applications to be reused in the near future,
we utilized the Markov chain models for link prediction
of Ramesh R. Sarukkai.[7] From the model, a proba-
bility of the next transition from n-past information can
be acquired. Thus, the probability of next application’s
transition from last N-applications is acquired with the
model.

Let M represent the trained application transition prob-
ability matrix, and let S(t) represent the state of a fore-
ground application at time t. The following formula de-
rives the transition probability using the Markov chain
models for link prediction of Ramesh R. Sarukkai.

s(t +1) = α1s(t)M+α2s(t −1)M2 +α3s(t −2)M3 + ...

In the pre-processing routine, the filter module prepares
the transition probability matrix for the formula. In the
filtering routine, we generate the final transition proba-
bility from the formula.

To filter a process, we considered an additional factor
– the memory usage of a process. Although the tran-
sition probability of a process is higher than others, if
the memory usage of the process is higher than others,
it is possible that keeping the process will cause a de-
crease in the total number of applications kept in the
background. That is, when the prediction is incorrect,
keeping a process with large memory is likely to pro-
duce side-effects. Thus, to reduce such side-effect, the
memory usage of a process was also considered with the
transition probability.

Based on the transition probability derived from the for-
mula and the memory usage of a process, the filter mod-
ule computes a transition score. If an application has

LMK

Filter Chain

Android

Specific Filter

Module

Task-Prediction

Filter

Module

Preparation Stage

PREPARE_DONE

PREPARE_ERR

PREPARE_DONE or PREPARE_ERROR

Filtering Stage (Applying each policy to processes)

SHOULD_BE_KEPT or

SHOULD_BE_KILL or

IGNORE

If Android specific filter returns "IGNORE"

SHOULD_BE_KEPT or SHOULD_BE_KILL or IGNORE

for each

process

end of

iteration

Filter out a process

based on transition probability

and memory usage

Filter out a process

after comparing minimum oom score

to oom score of a process

Compute transition matrix

for n-recent applications

based on a Markov model

Find mimimum oom score

based on 6-level thresholds

Figure 5: LMK filter flows with the task-prediction filter
module

a high transition probability and low memory usage,
the application has a high transition score. Otherwise,
if an application has a low transition probability and
high memory usage, the application has a low transition
score.

As a result, the filtering function of the filter module
keeps applications with a high transition probability and
low memory usage, after computing the transition score.
If a process has a high transition score, the module re-
turns SHOULD_BE_KEPT for the process. Otherwise, the
module returns IGNORE. Thus, the filter module tries to
keep applications that will be reused in the near future
from recent applications with minimal side effects.

The task-prediction filter module is inserted as the sec-
ond filter module in Android device. Thus, the filter
module enhances the LRU-based victim selection pol-
icy of Android without changing a victim selection pol-
icy by application categorization. Figure 5 shows the
sequence of the LMK decision after inserting the task-
prediction filter module with an Android specific filter
module. The filter module decides the life of a process
when the Android specific filter module does not make
a decision about the life of the process.

58 • Policy-extendable LMK filter framework for embedded system

6 Evaluation

In this section, we evaluate the effectiveness of the LMK
filter framework and the task-prediction filter module.
We implemented the LMK filter framework and the fil-
ter module on a Galaxy S4 and Odroid-XU using the
Linux 3.4.5 kernel.

Android platform supports process-limit feature to limit
the number of background applications. Based on the
number of process limitation, Android platform kills an
application in background application cache. Thus, if
a device has enough memory, the LMK is rarely trig-
gered because Android platform is likely to manage
background applications based on process limit before
falling into low memory situation. Unfortunately, two
devices in our experiments equips enough memory for
stacking the default number of process-limit. Thus, the
LMK is rarely happen in the devices. Thus, to evaluate
our algorithm, we adjusted the amount of memory of
the two devices instead of increasing the process limit
of Android. We discuss the process limit further in Sec-
tion 7.

To evaluate our scheme, we created an evaluation frame-
work based on real usage data in a smartphone. With
the evaluation framework, we show that the number of
application terminations is reduced. In a specific appli-
cation usage sequence, the decrease of the number of
application terminations means the increase of the hit
rate for the background application reuse. In addition,
it means the decrease of the data loss probability by the
LMK forced termination.

6.1 Evaluation Framework

We created an evaluation framework to run applications
automatically according to a given input sequence of ap-
plications. The framework launches an application in
order from the given input applications sequence. To
launch an application, the framework executes an activ-
ity manager tool through the shell command of android
debug bridge (adb). The framework reads the input se-
quence of application and launches the next application
every 10 seconds. At the same time it is performing the
application launch, the evaluation framework monitors
the number of application terminations provided by the
LMK filter framework.

We referenced the usage sequence of applications col-
lected from the Rice LiveLab user study to evaluate our

User Length of input seq. Usage duration
A00 162 4 days 10 hours
A01 139 1 day
A03 233 2 days 21 hours
A07 154 6 days 11 hours
A10 218 8 days 8 hours
A11 179 6 days 19 hours
A12 159 3 days 9 hours

Table 2: Extracted input sequences

scheme [8, 4]. We generated the input sequence by find-
ing corresponding Android applications in Google Play
after extracting a part of the original sequence. Table-
2 shows information about the input sequences of each
users.

6.2 Estimation

We evaluated our frameworks by using 3-fold cross vali-
dation with each user’s application usage data. One third
of the total sequence was used for training set. We also
conducted online training when a test set is tested. The
task-prediction filter module predicted next applications
from 1-recent applications history to 4-recent applica-
tions history. Each user’s application usage data were
tested five times, and we took the average from the re-
sults. Figure 6 shows the number of application termi-
nations in both native LMK and the LMK filter frame-
work with the task-prediction filter module when the fil-
ter module predicts the next application from 4-recent
applications history. The result was normalized to the
number of application terminations in native LMK.

The LMK filter framework with the task-prediction filter
module was improved by average 14% compared with
the native LMK. In addition, our proposed scheme gave
better results for most users. In case of specific user a10,
the number of application terminations was improved by
26%. Although we did not experiment with all real us-
age data, the preliminary result proves that an enhanced
application replacement algorithm can be created eas-
ily by the LMK filter framework without modifying the
entire process prioritization. In addition, in case of spe-
cific user a11, the number of application terminations
was increased. It shows that a specific policy is not
easy to fit to all users because the most appropriate pol-
icy for each user differ. The LMK filter framework can
solve such problems by applying other policy modules
for each user.

2014 Linux Symposium • 59

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

USER0 USER1 USER3 USER7 USER10 USER11 USER12

N
u

m
b

e
r

o
f

a
p

p
lic

a
ti
o

n
 t

e
rm

in
a

ti
o

n
s
(n

o
rm

a
liz

e
d

)

Users

Native LMK
the LMK filter framework

Figure 6: Number of application termination in both
native LMK and LMK filter framework with the task-
prediction filter module

Routine N-recent applications Overheads
1 31549 ns
2 74020 ns

Pre-Processing 3 109090 ns
4 146699 ns
1 3371 ns
2 3522 ns

Filtering 3 3632 ns
4 3411 ns

Table 3: Average overheads according to n-recent appli-
cations

6.3 Overheads

We observed the overheads of the LMK filter frame-
works and filter modules. The overheads was mea-
sured in the pre-processing stage and the filtering stage.
Table 6.3 shows the overheads. Most overheads was
caused by the task-prediction filter module. In the pre-
processing stage, the task-prediction filter module mul-
tiplies the transition matrix by n times according to n-
recent applications history. Thus, the overheads were
increased according to n. In the filtering stage, the
filter module computes transition scores. The table
shows computation the overheads of computing transi-
tion score about a process. Thus, the total overheads
can be obtained by multiplying the number of iterated
processes in the LMK filter framework. In our experi-
ments, it was not significant overheads because the av-
erage number of iterated processes was about 10.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4
 0

 50

 100

 150

 200

N
u

m
b

e
r

o
f

a
p

p
lic

a
ti
o

n
 t

e
rm

in
a

ti
o

n
s
(n

o
rm

a
liz

e
d

)

in
c
re

a
s
e

d
 t

o
ta

l
la

te
n

c
y
(u

s
)

Observed n-recent applications

Native LMK
the LMK filter framework

Overheads(us)

Figure 7: Average number of application terminations
and overheads according to n-recent applications

6.4 Accuracy of the Task-Prediction Filter Module

The task-prediction filter module enhances the accuracy
of victim selection by predicting the next application
from the n-recent applications history. If many n-recent
applications are used, application prediction is more ac-
curate. However, the computation overhead is also in-
creased significantly by matrix multiplications. Figure 7
shows the number of application terminations and over-
heads according to n-recent applications history. As
the number of recent applications used for prediction
increased, the number of application terminations was
slightly reduced. However, the performance overhead
is also increased by matrix multiplication. Thus, the n
value should be applied properly according to the degree
of urgency when handling a low memory situation.

7 Discussion

7.1 The default behaviour of the LMK Filter
Framework

The default behavior of LMK filter framework is to kill
a process with the highest oom_score_adj, and to kill a
process with the largest memory when there are several
processes with the highest oom_score_adj. However,
such behavior may cause a reduction in the total number
of applications kept in the background. If many appli-
cations with large memory are kept in the background,
the total number of applications kept in the background
is reduced because the memory capacity of the device
is limited. Thus, the OOM killer of the kernel decides

60 • Policy-extendable LMK filter framework for embedded system

the badness of a process based on the percentage of pro-
cess memory in total memory. The oom_score_adj of
a process is used to adjust it. As a result, the behavior
of the OOM killer is likely to keep more applications in
the background.

For embedded devices, we believe that the oom_score_
adj of applications given by a specific rules of user-
space, such as application categorization of Android, is
more important than the percentage of process memory
in total memory because such hints include user expe-
rience related factors, such as visibility to user. How-
ever, this should be decided carefully after further exper-
iments in several embedded devices with several users.
To do that, the default behavior of the LMK filter frame-
work also should be changeable. The works are left as
our future work.

7.2 The first-match resolution mechanism

The LMK filter framework implements a first-match
resolution mechanism. The mechanism is effective to
minimize policy conflicts and to reduce redundant op-
erations by policy redundancy. However, to integrate
several policies, the order of policy modules should be
decided carefully. For example, suppose that there are
three policy modules: a memory-leak based policy mod-
ule, the task-prediction module, the Android specific
module. The memory-leak based policy module selects
a memory-leak suspected application as victim, as de-
scribed Section-3. If the order of the policy module
is "the Android specific module – the task-prediction
module – the memory-leak based policy module", a
memory-leak suspected application can be kept in the
background by previous two policy modules. Thus, the
order of policy module should considered carefully for
desirable integration of several policy modules.

7.3 Other Benefits of the LMK Filter Framework

The specific victim selection policies described in
Section-3 were applied by individually modifying the
process prioritization routine of the Android platform.
However, the policies can be applied by using the LMK
filter framework without platform modification. In ad-
dition, the policies can be activated at the same time by
the LMK filter framework.

Instead of applying a new victim selection policy, a new
memory management policy for processes can be ap-
plied with the LMK filter framework. For example, per-
process page reclamation can be implemented as a fil-
ter module. A filter module can reclaim a process’s
page in the filtering routine after checking a process’s
reclaimable memory. After per-process reclamation, if
the filter module returns SHOULD_BE_KEPT for the pro-
cess, the process will be kept in the background. With-
out such a mechanism, although per-process page recla-
mation is provided to the user-space [5], the process is
likely to be killed by LMK in a low memory situation.

7.4 User-space LMK filter framework

Implementing policies in the user-space might allow po-
lices to be applied gracefully because user-space’s infor-
mation can be utilized easily. Meanwhile, the user-space
program is unlikely to acquire OS-dependent informa-
tion like the page-mapping information of the process.
Above all, the user-space low memory killer is hard to
handle quickly for urgently handling a low memory sit-
uation.

Thus, there are advantages and disadvantages with the
in-kernel LMK filter framework. We expect that the in-
kernel LMK filter framework will be able to apply new
polices gracefully if the operating system manages con-
text information, such as the context-aware OS service,
to enhance the operating system’s behaviour [1]. How-
ever, we also believe that the LMK filter framework can
be easily applied to the user-space LMK, and the user-
space LMK filter framework can apply various victim
selection policies dependent on specific applications.

7.5 Victim Selection by Process Limit

A S/W platform for embedded device, such as Android,
manages background applications based on the number
of process limit. If the number of background processes
exceeds a pre-defined number of process limitation, the
S/W platform kills an application. Unfortunately, in the
type-A approach like Android, the victim selection by
process limit is executed in the user-space, and the vic-
tim selection by LMK is executed in the kernel. Thus,
they try to synchronize the victim selection policy by
hints, such as oom_score_adj of a process. In our im-
plementation, we did not consider the synchronization.
However, the problem can be easily solved by querying
victim selection to LMK filter framework.

2014 Linux Symposium • 61

8 Conclusion

We presented a policy-extendable LMK filter frame-
work and a filter module to enhance LMK victim se-
lection, and showed the effectiveness of the customized
LMK and several benefits provided by the LMK filter
framework. Although we implemented it in the kernel,
it can be implemented as a user-space daemon. We ex-
pect that this policy-extendable LMK filter framework
and LMK filter will improve user experience.

Acknowledgments

This research was supported by the International Re-
search & Development Program of the National Re-
search Foundation (NRF) funded by the Ministry
of Science, ICT & Future Planning (Grant number:
2013064540).

References

[1] David Chu, Aman Kansal, Jie Liu, and Feng Zhao.
Mobile apps: It’s time to move up to condos.
In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS’13,
pages 16–16, Berkeley, CA, USA, 2011. USENIX
Association.

[2] Yi-Fan Chung, Yin-Tsung Lo, and Chung-Ta
King. Enhancing user experiences by exploiting
energy and launch delay trade-off of mobile multi-
media applications. ACM Trans. Embed. Comput.
Syst., 12(1s):37:1–37:19, March 2013.

[3] Jonathan Corbet. Lsfmm: Improving the out-
of-memory killer. http://lwn.net/Articles/
146861/ , 2013.

[4] Rice Efficient Computing Group. Livelab: Mea-
suring wireless networks and smartphone users in
the field. http://livelab.recg.rice.edu/
traces.html/.

[5] Minchan Kim. mm: Per process reclaim. http:
//lwn.net/Articles/544319/ , 2013.

[6] KOSAKI Motohiro. mem_notify v6. http://
lwn.net/Articles/268732/ , 2008.

[7] Ramesh R. Sarukkai. Link prediction and path
analysis using markov chains. In Proceedings
of the 9th International World Wide Web Con-
ference on Computer Networks : The Interna-
tional Journal of Computer and Telecommunica-
tions Netowrking, pages 377–386, Amsterdam,
The Netherlands, The Netherlands, 2000. North-
Holland Publishing Co.

[8] Clayton Shepard, Ahmad Rahmati, Chad Tossell,
Lin Zhong, and Phillip Kortum. Livelab: Mea-
suring wireless networks and smartphone users
in the field. SIGMETRICS Perform. Eval. Rev.,
38(3):15–20, January 2011.

[9] Choonsung Shin, Jin-Hyuk Hong, and Anind K.
Dey. Understanding and prediction of mobile ap-
plication usage for smart phones. In Proceedings
of the 2012 ACM Conference on Ubiquitous Com-
puting, UbiComp ’12, pages 173–182, New York,
NY, USA, 2012. ACM.

[10] William McBride Aderson Traynor. Nokia out of
memory notifier module. http://elinux.org/
Accurate_Memory_Measurement#Nokia_
out-of-memory_notifier_module, 2006.

[11] Anton Vorontsov. Userspace low memory
killer daemon. https://lwn.net/Articles/
511731/ , 2012.

[12] Anton Vorontsov. vmpressure_fd: Linux
vm pressure notifications. http://lwn.net/
Articles/524299/ , 2012.

[13] Mingyuan Xia, Wenbo He, Xue Liu, and Jie Liu.
Why application errors drain battery easily?: A
study of memory leaks in smartphone apps. In Pro-
ceedings of the Workshop on Power-Aware Com-
puting and Systems, HotPower ’13, pages 2:1–2:5,
New York, NY, USA, 2013. ACM.

[14] Tingxin Yan, David Chu, Deepak Ganesan, Aman
Kansal, and Jie Liu. Fast app launching for mobile
devices using predictive user context. In Proceed-
ings of the 10th International Conference on Mo-
bile Systems, Applications, and Services, MobiSys
’12, pages 113–126, New York, NY, USA, 2012.
ACM.

[15] Bartlomiej Zolnierkiewicz. The mempressure
control group proposal. http://lwn.net/
Articles/531077/ , 2008.

http://lwn.net/Articles/146861/
http://lwn.net/Articles/146861/
http://livelab.recg.rice.edu/traces.html/
http://livelab.recg.rice.edu/traces.html/
http://lwn.net/Articles/544319/
http://lwn.net/Articles/544319/
http://lwn.net/Articles/268732/
http://lwn.net/Articles/268732/
http://elinux.org/Accurate_Memory_Measurement#Nokia_out-of-memory_notifier_module
http://elinux.org/Accurate_Memory_Measurement#Nokia_out-of-memory_notifier_module
http://elinux.org/Accurate_Memory_Measurement#Nokia_out-of-memory_notifier_module
https://lwn.net/Articles/511731/
https://lwn.net/Articles/511731/
http://lwn.net/Articles/524299/
http://lwn.net/Articles/524299/
http://lwn.net/Articles/531077/
http://lwn.net/Articles/531077/

62 • Policy-extendable LMK filter framework for embedded system

[16] Bartlomiej Zolnierkiewicz. Efficient memory
management on mobile devices. In LinuxCon,
2013.

[17] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang
Pan. Prophet: What app you wish to use next. In
Proceedings of the 2013 ACM Conference on Per-
vasive and Ubiquitous Computing Adjunct Pub-
lication, UbiComp ’13 Adjunct, pages 167–170,
New York, NY, USA, 2013. ACM.

	Policy-extendable LMK filter framework for embedded system
	K. Baik, J. Kim, D. Kim
	Introduction
	Previous Approaches for Memory Overload Management in Linux
	Type-A Approach - Android Low Memory Killer
	Type-B Approach - Memory Pressure Notification
	Type-B Approach - Userland Low Memory Killer Daemon (ulmkd)

	Previous Studies for Enhancing Victim Selection Policy
	Considering Expected Delay
	Considering Undesirable Applications
	Considering Personalized Factors

	The Policy-extendable LMK Filter Framework
	Re-factoring Android LMK
	The LMK filter framework
	Android Specific Filter Module

	The Task-Prediction Filter Module
	Training prediction matrix
	Implementation of the filter module

	Evaluation
	Evaluation Framework
	Estimation
	Overheads
	Accuracy of the Task-Prediction Filter Module

	Discussion
	The default behaviour of the LMK Filter Framework
	The first-match resolution mechanism
	Other Benefits of the LMK Filter Framework
	User-space LMK filter framework
	Victim Selection by Process Limit

	Conclusion

