
“Now if we could get a solution to the home directory dotfile hell!”[11]
Making Linux NFS-mounted home directories useful again.

Andrei Warkentin
VMware, Inc.

andreiw@vmware.com

Abstract

Unix environments have traditionally consisted of
multi-user and diverse multi-computer configurations,
backed by expensive network-attached storage. The re-
cent growth and proliferation of desktop- and single
machine- centric GUI environments, however, has made
it very difficult to share a network-mounted home di-
rectory across multiple machines. This is particularly
noticeable in the context of concurrent graphical logins
or logins into systems with a different installed soft-
ware base.The typical offenders are the “modern” bits of
software such as desktop environments (e.g. GNOME),
services (dbus, PulseAudio), and applications (Firefox),
which all abuse dotfiles.

Frequent changes to configuration format prevents the
same set of configuration files from being easily used
across even close versions of the same software. And
whereas dotfiles historically contained read-once con-
figuration, they are now misused for runtime lock files
and writeable configuration databases, with no effort
to guarantee correctness across concurrent accesses and
differently-versioned components. Running such soft-
ware concurrently, across different machines with a net-
work mounted home directory, results in corruption,
data loss, misbehavior and deadlock, as the majority of
configuration is system-, machine- and installation- spe-
cific, rather than user-specific.

This paper explores a simpler alternative to rewriting all
existing broken software, namely, implementing sepa-
rate host-specific profiles via filesystem redirection of
dotfile accesses. Several approaches are discussed and
the presented solution, the Host Profile File System, al-
though Linux-centric, can be easily adapted to other
similar environments such as OS X, Solaris and the
BSDs.

1 Introduction

The title of this paper has been kindly borrowed from
a BYU UUG email [11], that originally inspired me to
find a solution.

While some systems prefer a centralized approach to
storing user-specific program configuration settings,
Unix-like systems typically keep user preferences un-
der a number of hidden files and directories kept in the
root of the home directory. These hidden files and direc-
tories are distinguished by a leading dot in their name,
and are thus generally called dotfiles. The historical be-
havior is to store read-once configuration to avoid hard-
coded choices, for example .profile stores instruc-
tions for customizing the shell session, .emacs stores
EMACS editor settings, and so on. Perhaps due to Unix-
like systems being used in extensively networked, re-
mote access and shared storage environments, dotfiles
were never meant to be used as a persistent database for
runtime-modified preferences, or as a locking mecha-
nism, since that would have compromised the ability to
log in concurrently into several machines with the same
account stored on the network. There was always some
degree of inflexibility, where the same configuration file
would not work exactly as expected across different ver-
sions of software1, yet the read-only nature of these files
and conservative changes to setting schema meant you
could come up with a valid subset of settings for all ma-
chines and operating systems in use.

The recent rise of “user-friendly”, graphical user
interface-driven and largely PC-centric applications,
however, has resulted in a number of popular software
packages which are incompatible with the typical uni-
versity or corporate heterogeneous environment based
around network-mounted home directories and network
logins. For recent software, such as the GNOME

1E.g., .emacs or .vimrc for the famous editors.

• 55 •

56 • “Now if we could get a solution to the home directory dotfile hell!”[11]

Desktop Environment, there are no simple solutions
to making them work in an environment where net-
work mounted home directories are a possibility, largely
due to ever evolving and fluid configuration formats.
Software distribution-specific minutiae and breaking
changes across seemingly compatible major revisions of
software, results in an inability to share the same con-
figuration files. In environments where the user can
make some guarantees as to software versioning and
configuration compatibility, concurrent network logins
are largely impossible due to the storage of writeable
preferences and runtime data within dotfiles. Given
that programs such as web browsers, WYSIWYG edi-
tors and desktop environments also manipulate configu-
ration from within the applications, treating their dot-
files as writable databases, you immediately run into
write collisions and configuration corruption when run-
ning concurrent sessions on several machines. Fre-
quently, such software attempts to protect itself by cre-
ating lock files (see Figure 1), which results in denial
of service condition during concurrent logins. Finally,
the trend towards providing services via remote pro-
cedure call mechanisms, seen in software such as IPC
buses and audio daemons like Enlightened Sound Dae-
mon or PulseAudio, has resulted in storing named pipes,
sockets, authentication cookies, and other unspeakable
things within their dotfiles, with largely predictable re-
sults.

As an example of all of these, logging in to a Red Hat
Linux RHEL 5 and SUSE Linux SLES11 system, con-
currently or not, will result in a corrupted desktop on
both hosts. Both of these systems use some variation of
GNOME 2. A typical file system layout for GNOME 2
configuration can be seen in Figure 2. These issues are
not new nor are they the only ones. Configuration file
collisions across different versions of software, com-
pounded by fragility and expressive verbosity for de-
fault auto-generated settings2 has also been a bane for
upgrading such software and its configuration success-
fully.

2 Related Work

The problem space itself is not particularly novel.
Roaming User Profiles and Folder Redirection are two
similar technologies available to Microsoft Windows
users, which specifically deal with networked logins,

2As seen with GNOME 2, moving into GNOME 3.

$HOME

.mozilla

firefox

2o1nz6r9.default

lock

.parentlock

...

Figure 1: Partial structure of Mozilla Firefox configura-
tion.

$HOME

.esd_auth

.gconf

apps

evolution

gnome-terminal

...

desktop

.gnome

...

system

http-proxy

proxy

...

.gconfd

saved-state

.gnome

.gnome2

Figure 2: Typical structure of GNOME 2 configuration.

remote home directories and operating system-specific
profiles [8].

Roaming User Profiles (RUP) synchronize the local
copy of the user profile, consisting of user directories
and a user-specific registry hive holding configuration
entries, with the remote server upon login and logout.
Conflicts are resolved based on modification time, and
the registry hive is treated as an opaque binary ob-
ject, with no fine grained synchronization. The weak-
est spot of the entire mechanism is specifically rely-
ing on a synchronization mechanism and being largely
unaware of what is being synchronized. Copying data
back and forth imposes a noticeable penalty, on the or-
der of minutes, for anything but the most trivial profile,
forcing users to store their data locally. By not relying
on network file access and locking semantics for con-
current access, there is always the potential for silent
data loss caused by the “last modified wins” policy or

2012 Linux Symposium • 57

by failures during synchronization. Additionally, RUP
is not capable of distinguishing between synchroniz-
ing settings and synchronizing application data. A lack
of fine-grained synchronization of registry keys, and a
lack of state separation between user settings and host-
specific user settings, results in inconsistent profile be-
havior across systems configured with a different set of
applications or with different versions and revisions of
Windows. These limitations are somewhat addressed by
using completely separate profiles for Vista and newer
versions, and by using the Folder Redirection mecha-
nism to alias certain predefined user profile directories3

to network locations, bridging the separate profiles to
the degree that is possible and reducing the usability
“threat” posed by synchronization.

A Roaming User Profile-like approach is not particu-
larly feasible on Linux. Implementing such Windows
semantics would mean using a local cache as the real
home directory, which would then be synchronized un-
der the user’s credentials with the network copy on log-
ging in and logging out. This relies on having a mech-
anism capable of resolving conflicts, and thus aware of
all the possible applications, and having a complex con-
flict resolution policy. Getting this to work smoothly
implies, at the very least, root access to all the machines
affected, and some pretty serious source-level hacks4 to
get it all to work in a transparent and fail safe manner.

3 Solutions

Due to the limitations of a synchronization-based de-
sign, the proposed solution for the problems described
above is dotfile access redirection. By redirecting dot-
file accesses to local, host- or operating system- specific
copies, we create separate configuration namespaces,
thus resolving conflicts arising from concurrent accesses
or versioning mismatches. A few approaches involv-
ing access redirection were investigated. The benefits of
separate configuration namespaces are clear. Whatever
the implementation details, a few design goals were kept
in mind. In particular:

• All dotfile accesses are redirected.

• Accesses to dotfiles from each host are redirected
to a special directory, specific for that environment.

3My Documents, etc.
4I, of course, mean changes to the authorization and authentica-

tion system, PAM.

$HOME

profiles

andreiw-lnx ... Dotfiles
specific to host
andreiw-lnx.

.gnome2

.xyzzy

...

andreiw-vmw ... Dotfiles
specific to host
andreiw-vmw.

.gnome2

...

andreiw-vm1 ... Dotfiles
specific to host
andreiw-vm1.

.gnome2

...

.gnome2

.xyzzy ... Visible here because
we are on host
andreiw-lnx.

...

Figure 3: View of a home directory on host andreiw-lnx,
with dotfile redirection enabled.

• Mechanism and policy are separate.

• System configuration changes are minimal, ideally
not requiring root access.

With this design there are, by default, no configura-
tion collisions, conflicts and deadlocks. If a few of the
dotfiles can indeed be safely shared, then a few strate-
gic symbolic links can be employed. Learning from
RUP, which suffers both from a poor mechanism and
from mixing both mechanism and policy, the user has
full control over how the redirection target directory is
picked, whether it is by host name, IP or Ethernet ad-
dress, or something completely different. The resulting
mechanism is very flexible. See Figure 3 for a typical
home directory layout with this design. Note that the
visible dotfiles in the home directory root are really lo-
cated inside the environment-specific directory.

One investigated approach was to override standard
C library calls by loading a custom library with the
LD_PRELOAD environment variable, similar to how the
fakeroot package works [3]. The LD_PRELOAD en-
vironment variable signals the dynamic linker to load
a specified library and attempt resolving symbols be-

58 • “Now if we could get a solution to the home directory dotfile hell!”[11]

process

libc.so application

sys_open(.vimrc) open(.vimrc)

VFS
NFS

/home/andreiw

kernel

Figure 4: Regular open() path for an application.

fore loading all the libraries required by the loaded ex-
ecutable. Conceptually, calls like open(), chmod(),
unlink() and the rest could be intercepted and mod-
ified to redirect accesses to dotfiles elsewhere (see Fig-
ures 4 and 5). In practice, however, this suffers from a
few problems. The most significant issue is that it works
only for executables dynamically linked to the C library.
Statically linked software would bypass the redirection
completely. Additionally, the method is very fragile and
operating system dependent. The preloaded redirector
would need to be tailored for the specific version of the
C library in the system, as certain functionality is ex-
posed and implemented differently, like the stat() and
mknod family of routines5. The redirector would also
need to properly handle both absolute and relative ac-
cesses to ensure isolation against malicious activity, and
finally, would need to deal with the the *at()6 variants,
which operate relative to an opened file descriptor, by
maintaining state about every opened file descriptor.

Another alternative implementation relied on
ptrace(), coupled with process memory patch-
ing to intercept and redirect actual system calls, as
fakeroot-ng does [3]. This solves the C library
dependence issues along with being able to redirect
calls made by statically-linked executables, yet at a cost
of architecture dependence and severe performance
penalties [5].

The long-term solution would be the FreeDesktop.org
XDG Base Directory Specification [2], which separates

5GNU libc, for example, wraps mknod() with a versioned call to
xmknod(), and stat() as versioned calls to xstat(), fxstat(),
and lxstat(). See /usr/include/stat.h.

6openat(), faccessat() and similar calls were added in
Linux 2.6.18, and are meant to address race conditions resulting
from opening files in directories other than the current one [7].

libc.so application

sys_open(redir/.vimrc) open(.vimrc)

VFS
NFS

/home/andreiw

kernel

process

libprofile.so

hp_open(redir/.vimrc)

Figure 5: Modified open() path for an application with
a file system redirector loaded using LD_PRELOAD.

application user data, caching-related, configuration and
runtime-specific application data across four base direc-
tories, specified by environment variables as illustrated
in Figure 6. In an environment where concurrent logins
are expected, some or all of the base directories can be
redirected to locations specific to the OS or host used,
thus avoiding conflicts. However, all affected software
needs to be rewritten to take this specification into ac-
count - a long and dire process with a nebulous future.
In defense, many of the heavyweights such as GNOME,
LibreOffice and the K Desktop Environment are fully
behind the specification. Unfortunately, this does not
help at all with older software and existing systems that
do not follow the specification.

The solution presented in the remainder of this paper,
the Host Profile File System, is built with the Filesys-
tems in Userspace (FUSE) [1] framework and is consid-
ered superior to other possible solutions, both described
above and not7, because:

• It is transparent to the system.

• It does not rely on kernel changes.

• It does not require any changes to system services
or programs.

7Like a redirfs [4]-based solution, with which a dotfile redirector
could be implemented, yet would require additional kernel drivers
and root access.

2012 Linux Symposium • 59

$HOME

$XDG_DATA_HOME ... Application data
files.

app1

datafile

...

$XDG_CONFIG_HOME ... Application
settings.

app1

configfile

...

$XDG_CACHE_HOME ... Non-essential
data, cache.

app1

cachefile

...

$XDG_RUNTIME_DIR ... Named pipes,
sockets, auth
cookies, locks.

app1

lockfile

...

Figure 6: Simplified view of application data and set-
tings under the XDG Base Directory Specification.

• It does not even require root access on the machine
to enable.

• It is not based on fragile interfaces, or have ma-
chine dependence.

• The performance penalty is minimal.

• It is reasonably portable.

4 FUSE

FUSE is a Linux kernel driver that provides the nec-
essary glue to have a fully user space implementation
of a file system. This takes much of the complexity
out of implementing a file system, due to not having to
worry about complex locking and memory management
interactions. FUSE also has a stable and OS-agnostic
interface with consideration for backwards compatibil-
ity, meaning that maintainability is not an issue. FUSE
has been ported to other Unix systems such as Solaris
and OS X, which makes a FUSE-based solution vi-
able in heterogeneous environments. Because a FUSE-
based file system looks just like any other kind of VFS-
provided file system, applications access it transpar-
ently. And most importantly, FUSE allows a user to

mount their own private file system, meaning that nei-
ther system changes nor root access is necessary.

There is some overhead associated with the lack of di-
rect mmap() semantics and with copying data between
the FUSE driver and FUSE daemons. Tests with a
pass-through FUSE file system have shown a 2% over-
head [6]. A likely more realistic local test run, involv-
ing copying 22GiB of various software repositories, has
shown a difference of under 9%8 in total time spent,
which is reasonable, given the end goal of accessing an
NFS-mounted home directory, which wouldn’t be used
for I/O intensive workloads or large files anyway. FUSE
overhead and performance has been critically analyzed
elsewhere [9] with similar results.

5 The Host Profile File System

The Host Profile File System (HPFS) implements the
previously described dotfile redirection design as a fil-
ter file system, mounted over the user’s home directory.
HPFS is implemented as a FUSE file system, and runs
as a daemon with user privileges. The daemon forwards
all file and directory accesses to the overlaid file sys-
tem, and is able to do so by capturing the file descriptor
of the user’s home directory prior to the actual mount
operation and by leveraging the *at() series of system
calls to perform file I/O relative to an open file descrip-
tor (See Figure 7). Without the *at() series of system
calls this would not have been possible.

Incidentally, in a FUSE-based design we lose most of
the complexity arising in a LD_PRELOAD-based solution,
as all paths passed by FUSE are absolute (see Figure 8).
Handling readdir() is slightly tricky, due to the need
to hide existing dotfiles in the home directory root, and
the need to account for dotfiles inside the redirection
target directory. The current implementation does not
virtualize the structdirent offset field, so applica-
tions relying on caching directory entries returned by the
readdir() system call may see unexpected behavior.
This limitation is not FUSE-specific, and would need
to be addressed even if HPFS functionality were to be
implemented as a VFS extension similar to GoboLinux
GoboHide [10], which allows hiding files and directo-
ries from readdir().

The redirection directory is passed to the HPFS dae-
mon as a command line parameter, and is meant to

831m51s versus 34m56s.

60 • “Now if we could get a solution to the home directory dotfile hell!”[11]

application hpfs

sys_open(~/.vimrc) sys_open(~/redir/.vimrc)

FUSE
/home/andreiw

NFS
/home/andreiw

kernel

process process

VFS

Figure 7: HPFS in action. HPFS is mounted over the al-
ready NFS-mounted /home/andreiw, hiding the original
files from the user.

static int hp_open(const char *path,
struct fuse_file_info *fi)

{
/*
* priv.fd contains the real $HOME
* priv.redir_fd points to where
* dotfiles are redirected to.
*/
int fd = priv.fd;

if (*path == ’/’)
path++;

if (!*path)
path = ".";

else if(*path == ’.’)
fd = priv.redir_fd;

fd = openat(fd, path, fi->flags);
if (fd == -1)
return -errno;

fi->fh = fd;
return 0;

}

Figure 8: open() handler for HPFS.

be derived by the support scripts. Two support scripts
have been developed, one for the Bourne-Again Shell
(.bash_profile), and one for the X11 Window Sys-
tem (.xprofile), to support redirection on both con-
sole and GUI logins. The scripts figure out the redirec-
tion path based on the host name, and enable the HPFS
daemon if need be, while avoiding race conditions. The
current version expects the system and CPU architec-
ture to be the same everywhere, and a more complete
version could thus be more intelligent in the choice of
HPFS binary to run.

6 Conclusion

HPFS is fully functional and transparently usable in a
real environment, and has been in active use for the
past seven months across several machines. Further
improvements would be improving readdir() virtu-
alization, extended attributes support, filtering redirec-
tion by effective user ID (EUID), porting to other Unices
and improving the surrounding ecosystem of scripts and
helpers. Additionally, further performance impact mea-
surements need to be done with HPFS and NFS. HPFS
is open source, and the sources are freely available [12].

7 Acknowledgments

Many thanks to Alexandre Depoutovitch for his feed-
back on the paper, as well as Edward Goggin and Aju
John for their support.

References

[1] Filesystem in userspace, 2011. http://fuse.
sourceforge.net/.

[2] W. Bastian, R. Lortie, and L. Poetter-
ing. XDG Base Directory Specification.
http://standards.freedesktop.org/
basedir-spec/basedir-spec-latest.html.

[3] Fakeroot-NG. Ptrace ld_preload compari-
son, 2009. http://fakeroot-ng.lingnu.
com/index.php/PTRACE_LD_PRELOAD_
comparison.

[4] F. Hrbata. RedirFS. 2007. http:
//www.redirfs.org/docs/linuxalt_2007/
paper.pdf.

http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://fakeroot-ng.lingnu.com/index.php/PTRACE_LD_PRELOAD_comparison
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf
http://www.redirfs.org/docs/linuxalt_2007/paper.pdf

2012 Linux Symposium • 61

[5] Jörg Zinke. System call tracing overhead, 2009.
http://www.linux-kongress.org/2009/
slides/system_call_tracing_overhead_
joerg_zinke.pdf.

[6] S. A. Kiswany, M. Ripeanu, S. S. Vazhkudai, and
A. Gharaibeh. stdchk: A Checkpoint Storage Sys-
tem for Desktop Grid Computing. 2008. http:
//arxiv.org/pdf/0706.3546.pdf.

[7] Linux Programmer’s Manual. openat(2), 2009.
http://man7.org/linux/man-pages/man2/
openat.2.html.

[8] Microsoft Corporation. Managing roam-
ing user data deployment guide. August
2006. http://technet2.microsoft.
com/WindowsVista/en/library/
fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.
mspx?mfr=true.

[9] A. Rajgarhia and A. Gehani. Performance and
extension of user space file systems. 2010.
http://www.csl.sri.com/users/gehani/
papers/SAC-2010.FUSE.pdf.

[10] L. C. V. Real. Gobohide: surviving aside the
legacy tree, 2006. http://www.gobolinux.
org/?page=doc/articles/gobohide.

[11] M. Torrie. [uug] Gnome vs KDE, 2009.
http://uug.byu.edu/pipermail/uug-list/
2009-March/002134.html.

[12] A. Warkentin. Host Profile File System
source repository, 2012. https://github.com/
andreiw/HPFS.

http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://www.linux-kongress.org/2009/slides/system_call_tracing_overhead_joerg_zinke.pdf
http://arxiv.org/pdf/0706.3546.pdf
http://arxiv.org/pdf/0706.3546.pdf
http://man7.org/linux/man-pages/man2/openat.2.html
http://man7.org/linux/man-pages/man2/openat.2.html
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsVista/en/library/fb3681b2-da39-4944-93ad-dd3b6e8ca4dc1033.mspx?mfr=true
http://www.csl.sri.com/users/gehani/papers/SAC-2010.FUSE.pdf
http://www.csl.sri.com/users/gehani/papers/SAC-2010.FUSE.pdf
http://www.gobolinux.org/?page=doc/articles/gobohide
http://www.gobolinux.org/?page=doc/articles/gobohide
http://uug.byu.edu/pipermail/uug-list/2009-March/002134.html
http://uug.byu.edu/pipermail/uug-list/2009-March/002134.html
https://github.com/andreiw/HPFS
https://github.com/andreiw/HPFS

62 • “Now if we could get a solution to the home directory dotfile hell!”[11]

	``Now if we could get a solution to the home directory dotfile hell!''t:em
	A. Warkentin
	Introduction
	Related Work
	Solutions
	FUSE
	The Host Profile File System
	Conclusion
	Acknowledgments

