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Abstract

This paper describes the improvements we have done to
eCryptfs, a POSIX-compliant enterprise-class stacked
cryptographic filesystem for Linux. The major improve-
ments are as follows. First, for stacked filesystems, by
default, the Linux VFS framework will maintain page
caches for each level of filesystem in the stack, which
means that the same part of file data will be cached
multiple times. However, in some situations, multiple
caching is not needed and wasteful, which motivates us
to perform redundant cache elimination, to reduce ide-
ally half of the memory consumption and to avoid un-
necessary memory copies between page caches. The
benefits are verified by experiments, and this approach
is applicable to other stacked filesystems. Second, as
a filesystem highlighting security, we equip eCryptfs
with HMAC verification, which enables eCryptfs to de-
tect unauthorized data modification and unexpected data
corruption, and the experiments demonstrate that the de-
crease in throughput is modest. Furthermore, two minor
optimizations are introduced. One is that we introduce
a thread pool, working in a pipeline manner to perform
encryption and write down, to fully exploit parallelism,
with notable performance improvements. The other is
a simple but useful and effective write optimization. In
addition, we discuss the ongoing and future works on
eCryptfs.

1 Introduction

eCryptfs is a POSIX-compliant enterprise cryptographic
filesystem for Linux, included in the mainline Linux
kernel since version 2.6.19. eCryptfs is derived from
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Cryptfs [5], which is part of the FiST framework [6].
eCryptfs provides transparent per file encryption. Af-
ter mounting a local folder as an eCryptfs folder
with identity authentication passed, the file copied into
the eCryptfs folder will be automatically encrypted.
eCryptfs is widely used, for example, as the basis
for Ubuntu’s encrypted home directory, natively within
Google’s ChromeOS, and transparently embedded in
several network attached storage (NAS) devices.

eCryptfs is implemented as a stacked filesystem inside
Linux kernel, it does not write directly into a block de-
vice. Instead, it mounts on top of a directory in a lower
filesystem. Most POSIX compliant filesystem can act as
a lower filesystem, for example, ext4 [2], XFS [4], even
NFS [3]. eCryptfs stores cryptographic metadata in the
header of each file written, so that encrypted files can be
copied between hosts, and no additional information is
needed to decrypt a file, except the ones in the encrypted
file itself.

The rest of this paper is organized as follows. For back-
ground information, Section 1 introduces the eCryptfs
cryptographic filesystem. Section 2 describes the opti-
mizations for eCryptfs performance. Section 3 presents
the data integrity enforcement for eCryptfs security.
Section 4 discusses our ongoing and future works on
eCryptfs. Section 5 concludes the paper.

2 Performance Improvements
2.1 Redundant Cache Elimination

The page cache is a transparent filesystem cache imple-
mented in Linux VES (Virtual File System) framework.
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The fundamental functionality is to manage the memory
pages that buffer file data, avoiding frequent slow disk
accesses. For eCryptfs (and other stacked file systems in
Linux), there exist (at least) two levels of page caches,
as shown in Figure 1. The upper level is the eCryptfs
page cache, which buffers the plain text data to interact
with the user applications. The lower level page cache
belongs to the file system on top of which eCryptfs is
stacked, and it buffers the cipher text data as well as
the eCryptfs file metadata. The eCryptfs file read/write
works as follows,

e Read operations result in the call of VFS vfs_
read, which searches the eCryptfs page cache. If
no matching page is found, vfs_read calls the
file system specific readpage call back routine to
bring the data in. For eCryptfs this is eCryptfs_
readpage, which calls vfs_read again to cause
the lower file system to read the data from the disk
into eCryptfs page cache. The data is then de-
crypted and copied back to the user application.

e Write operations result in the call of VFS vfs_
write, which copies the data from user space
buffer into the eCryptfs page cache, marks the cor-
responding page dirty, then returns without en-
cryption (unless the system currently has large
amount of dirty pages). Encryption is normally
performed asynchronously by the dedicated OS
kernel thread, during the job of flushing dirty
pages into lower page cache, by invoking file sys-
tem specific writepage call back routine, here is
ecryptfs_writepage. This routine encrypts a
whole page of data into a temporary page, then in-
vokes vEs_write to copy the encrypted data from
the temporary page into the lower page cache.

In real life, eCryptfs is often deployed in archive and
backup situations. For the former case, people archive
their private documents into an eCryptfs protected direc-
tory, consequently, the corresponding eCryptfs files are
created and opened for writing, and those files are later
opened generally for reading. The latter case is simi-
lar, user copies files out from eCryptfs folder, modifies,
and copies the revised files back to replace the original
ones. In this case, the eCryptfs files are opened for either
reading or writing as well, in other words, in the above
situations, the files are almost never online edited, i.e.,
opened for both reading and writing. This is also true
for some other situations.
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Figure 1: Page caches for eCryptfs on top of ext4 under
original implementation.
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Figure 2: Page caches for eCryptfs on top of ext4 under
read optimization for encrypted file.

If the eCryptfs file is opened only for reading, the lower
page cache is not needed since the cipher data will not
be used after decryption. This motivates us to perform
redundant cache elimination optimization, thus reduce
ideally half of the memory consumption. The page
cache is maintained only at the eCryptfs level. For first
read, once the data has been read out from disk, de-
crypted and copied up to eCryptfs page cache, we free
the corresponding pages in the lower page cache im-
mediately by invoking invalidate_inode_pages2_
range, as shown in Figure 2. A better solution is to
modify the VFS framework to avoid allocating the lower
page entirely, but that would be much more compli-
cated, and we want to limit our revisions in the scope
of eCryptfs codes.

If the eCryptfs file is opened for writing, and the write
position is monotonic increasing, which guarantees the
same data area will not be repeatedly written, then the
eCryptfs page cache is not needed since the plain data
will not be used after encryption. It is beneficial to main-
tain the page cache only at the lower level. Once the
data has been encrypted and copied down to lower page
cache, the corresponding pages in eCryptfs page cache
are freed immediately.
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enum efsrwstate {
ECRYPTFS RW _INIT,
ECRYPTFS RW_RDOPT,
ECRYPTFS RW_WROPT,
ECRYPTFS_RW_NOOPT,

33

struct ecryptfs_rw_state {
struct mutex lock;
efsrwstate state;

35

struct ecryptfs_inode_info {

struct ecryptfs rw_state rw_state;

35

Figure 3: The data structures for redundant cache elim-
ination for encrypted file.
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Figure 4: The state machine for redundant cache elimi-
nation for encrypted file.

To achieve this optimization, we maintain a simple state
machine as an indicator. There are four states as shown
in Figure 3, ECRYPTFS_RW_INIT indicates an initial-
ized state, with neither readers nor writers. ECRYPTFS_
RW_RDOPT indicates the file is currently opened only for
reading, and the read optimization, i.e, lower page cache
early release applies. ECRYPTFS_RW_WROPT indicates
the file is currently opened only for writing and the write
position is monotonic increasing, in which case, the
write optimization, i.e, upper page cache early release
applies. ECRYPTFS_RW_NOOPT applies for remaining
cases. As shown in Figure 4, when a file data struc-
ture is initialized, the state is set to ECRYPTFS_RW_INIT.
If it is then opened for reading, the state transitions to
ECRYPTFS_RW_RDOPT, and remains unchanged until a

1 static int ecryptfs_readpage(struct file * file,
struct page *page)
{

2

3

4 flags = inode_info->crypt_stat.flags.

5 /* skip non-encrypted file */

6 if (!(flags & ECRYPTFS_ENCRYPTED))

7 goto out;

8 mutex_lock(&inode_info->rw_state.lock);

9 state = inode_info->rw_state.state;

10  if (state == ECRYPTFS_RW_RDOPT) {

11 pgoff_t index;

12 /* calculate the lower page index */

13 index = (ecryptfs_lower_header_size(
crypt_stat) >> PAGE_CACHE_SHIFT)

+ page->index;

14 /* release the lower page */

15 invalidate_inode_pages2_range(
lower_inode->i_mapping, index, index);

16 }

17 mutex unlock(&inode_info->rw_state.lock);

18 out:

19 ..

20 }

Figure 5: The readpage routine for eCryptfs for en-
crypted file.

writer gets involved. In that case, the state changes from
ECRYPTFS_RW_RDOPT to ECRYPTFS_RW_NOOPT. If the
file is initially opened for writing, the state becomes
ECRYPTFS_RW_WROPT, and remains unchanged until the
write position decreases or any reader gets involved, in
which case, the state becomes ECRYPTFS_RW_NOOPT.
After the file is closed by the last user, the state returns
to ECRYPTFS_RW_INIT.

Figure 5 shows the eCryptfs code implementing
readpage. After the data have been copied into
eCryptfs page cache, and redundant cache elimination
is applicable, in line 13, the corresponding lower page
index is calculated, then in line 15, the lower page is
released.

We evaluate redundant cache elimination on a machine
with a Pentium Dual-Core E5500 2.8GHz CPU, 4G of
memory (DDR3), the kernel version 3.1.0-7 1686 with
PAE enabled, the same test system is used for all the ex-
periments of this paper described. We use the command
‘iozone -tx-sy-r 4M -i 1’ to measure ‘Re-read’
throughput. Here x ranges from 1 to 256, increasing by
orders of 2, representing the number of processes, and
y ranges from 2G to 8M, representing the file size, such
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Figure 6: Re-read throughput for redundant cache elim-
ination over original implementation.

that the total operated data set x *y is always equal to
2G.

As shown in Figure 6, the optimized eCryptfs achieves
a big speedup under this group of tests. This is because
the data set is 2G, if two level of page caches are present,
it will consume up to 4G memory, thus lead to a poor
re-read throughput due to memory page thrashing. With
the redundant cache elimination, the memory is enough
to buffer the data set, therefore brings a good through-
put.

There is furthermore a special case when the eCryptfs
folder is mounted with ecryptfs_passthrough flag
set, which allows for non-eCryptfs files to be read and
written from within an eCryptfs mount. For those non-
eCryptfs files, eCryptfs just relays the data between
lower file system and user applications without data
transformations. In this case, the data will be double
cached in each level of page cache, and the eCryptfs
page cache is not needed at all. For this case, we di-
rectly bypass the eCryptfs page cache by copying data
between lower file system and user buffer directly.

For example, Figure 7 shows the codes implementing
read. In line 14, vfs_read is invoked with the lower
file and user buffer as input, this will read data from
lower file system directly to user buffer. In line 19, the
eCryptfs inode attributes are updated according to the
ones of the lower inode.

Linux as well as most other modern operation systems
provide another method to access file, namely the mem-
ory mapping by means of the mmap system call. This
maps an area of the calling process’ virtual memory to
files, i.e, reading those areas of memory causes the file
to be read. While reading the mapped memory areas for
the first time, an exception is triggered and the architec-
ture dependent page fault handler will call file system

flags & ENCRYPTFS_ENCRYPTED)
8 goto out;
9 lower_file = ecryptfs_file to_lower(file);
10 /%
11 * directly read data into the user buffer from
12 * the lower file, bypass the ecryptfs page cache
13 */
14  err= vfs_read(lower _file, buf, count, &pos_copy);

15 /* update the ecryptfs inode attributes */

16  lower_file->f pos = pos_copy;

17 *ppos = pos_copy;

18  if (err>=0) {

19 fsstack_copy_attr_atime(file->f dentry->d_inode,
lower_file->f dentry->d_inode);

20 3}

21 return err;
22}

Figure 7: The read routine for eCryptfs for non-
ecrypted file.

const struct file_operations ecryptfs main_fops = {

1
2
3 .mmap = ecryptfs_file_ mmap,
4 5

5 static int ecryptfs_file_mmap(struct file *file,
struct vimn_area_struct *vma)

6

7

8 vma->vm_file = lower_file;

9 rc =lower_file->f_op->mmap(lower_file, vima);

10 get_file(lower _file);

11 new_ops = &inode_info->ecryptfs_vm_ops;

12 mutex_lock(&inode_info->lower_file mutex);

13 if (!inode_info->lower_vm_ops) {

14 inode_info->lower_vm_ops = vma->vm_ops;

15 new_ops.fault = ecryptfs vma_fault;

16 ... // the assigns to other interfaces omitted

17 }

18 mutex_unlock(&inode_info->lower_file_mutex);

19 vma->vim_ops = new_ops;

20 vma->vm_private_data = file;

21 return rc;

22}

Figure 8: The mmap routine for eCryptfs for non-
encrypted file.
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1 static int ecryptfs_vma_fault(struct vim_area_struct *
vma, struct vin_fault *vif)

2 {

3 file = vma->vm_private_data;

4 inode = file->f dentry->d_inode;

5 inode_info = ecryptfs_inode_to_private(inode);

6 return inode_info->lower_vm_ops->fault(vma, vmf);

73

Figure 9: The fault routine for eCryptfs for non-
encrypted file.

specific readpage routine to read the data from disk
into page cache.

With regard to mmap, to bypass the eCryptfs page cache,
the approach is shown in Figure 8. In line 8, the owner
of the vma address space is replaced with the lower file.
In line 9, the lower filesystem mmap implementation is
called, this will assign the lower filesystem implemented
operation set to the field vm_ops of vma. In line 14,
this set is saved and then vm_ops is replaced with the
eCryptfs implemented operation set in line 19, which,
in most cases, simply call the saved lower operation set,
and update some attributes, if necessary. For example,
the implementation of fault interface is shown in Fig-
ure 9. By this approach, the eCryptfs page cache will
not be generated.

2.2 Kernel Thread Pool based Encryption

Linux-2.6.32 introduced the feature of per-backing-
device based writeback. This feature uses a dedicated
kernel thread to flush the dirty memory of each storage
device. eCryptfs makes use of this feature by registering
an ‘eCryptfs’ backing device while mounting a eCryptfs
folder. Therefore, a dedicated kernel thread will be gen-
erated to flush the pages dirtied by eCryptfs from the
ecryptfs page cache to the lower page cache. Basically,
the kernel thread achieves this goal in two steps, first en-
crypting the data, then writing encrypted data to lower
page cache. Since encryption is CPU intensive task,
and the current write back framework supports only one
thread per device, it could not exploit the power of mul-
tiple CPU cores to perform parallel encryption, and will
slow down the speed of submitting pages to lower page
cache.

A better way is to use a kernel thread pool to do this
job in a pipeline manner. Two groups of kernel threads
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120 ——

Throughput (MB/s)

1 2 4 8 16 32 64 128 256

Number of Processes

Figure 10: Write throughput for thread pool based en-
cryption over original implementation and ext4.

are generated, one is responsible for encryption, called
e-thread. the other is for writing data down, called
w-thread. The number of e-thread is twice of the num-
ber of CPU cores. w-threads are spawned on-demand.
ecryptfs_writepage submits the current dirty page
to pipeline, wakes up the e-threads, then returns. The
e-threads grab dirty pages from the pipeline, perform
encryption, submit the encrypted pages to the next sta-
tion of the pipeline, and dynamically adjust the number
of w-threads according to the number of write pending
pages, if necessary. w-threads write the encrypted pages
to the lower page cache.

This approach is evaluated by measuring ‘Write’
throughput using iozone. For comparison, the through-
put on ext4 is also tested to give an upper bound. The
parameters are ‘iozone -tx -sy-r 4M -i 0 -+n’,
where x is from 1 to 256, corresponding, y from 8G
to 32M. As shown in Figure 10, the optimized codes
achieve an obviously higher throughput than the origi-
nal implementation.

2.3 Write Optimization

The Linux VFS framework performs buffered writes at
a page granularity, that is, it copies data from user space
buffers into kernel page cache page by page. During
the process, VES will repeatedly invoke the file sys-
tem specific write_begin call back routine, typically
once per page, to expect the file system to get the ap-
propriate page in page cache ready to be written into.
For eCryptfs, the routine is ecryptfs_write_begin,
which looks for the page cache, and grabs a page (allo-
cates it if desired) for writing. If the page does not con-
tain valid data, or the data are older than the counterpart
on the disk, eCryptfs will read out the corresponding
data from the disk into the eCryptfs page cache, decrypt
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Figure 11: Write throughput for write optimization over
original implementation.

them, then perform writing. However, for current page,
if the length of the data to be written into is equal to page
size, that means the whole page of data will be overwrit-
ten, in which case, it does not matter whatever the data
were before, it is beneficial to perform writing directly.

This optimization is useful while using eCryptfs in
backup situation, user copies file out from eCryptfs
folder, modifies, and copies the revised file back to re-
place the original one. In such situation, the file in
eCryptfs folder is overwritten directly, without reading.

Although the idea is simple, there is one more issue to
consider related to the Linux VFS implementation. As
described above, VFS calls write_begin call back rou-
tine to expect the file system to prepare a locked updated
page for writing, then VFS calls iov_iter_copy_
from_user_atomic to copy the data from user space
buffers into the page, at last, VFS calls write_end call
back routine, where, typically, the file system marks
the page dirty and unlocks the page. iov_iter_copy_
from_user_atomic may end up with a partial copy,
since some of the user space buffers are not present in
memory (maybe swapped out to disk). In this case, only
part of data in the page are overwritten. Our idea is to
let ecryptfs_write_end return zero at this case, to
give iov_iter_fault_in_readable achance to han-
dle the page fault for the current iovec, then restart the
copy operation.

This optimization is evaluated by measuring ‘Write’
throughput using iozone. The command parameters
are ‘iozone -tx-sy-r 4M -i 0 -+n’, where x is
from 1 to 256, correspondingly, y is from 8G to 32M,
and the files written into have valid data prior to the ex-
periments. As shown in Figure 11, the optimized codes
enjoy around 3x speedup over the original implementa-
tion under this group of tests.
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Figure 12: Write throughput for eCryptfs with HMAC-
MDS5 verification over the one without.

3 Data Integrity Enforcement

In cryptography, HMAC (Hash-based Message Authen-
tication Code) [1] is used to calculate a message authen-
tication code (MAC) on a message involving a crypto-
graphic hash function in combination with a secret key.
HMAC can be used to simultaneously verify both the
data integrity and the authenticity of a message. Any
cryptographic hash function, such as MD5 or SHA-1,
may be used in the calculation of an HMAC; the result-
ing MAC algorithm is termed HMAC-MD5 or HMAC-
SHAT1 accordingly. The cryptographic strength of the
HMAC depends upon the cryptographic strength of the
underlying hash function, the size of its hash output
length in bits, and on the size and quality of the cryp-
tographic key.

We implemented HMAC verification for eCryptfs, en-
abling it to detect the following situations,

o Unauthorized modification of file data

e Data corruption introduced by power loss, disk er-
ror etc.

Each data extent is associated with a HMAC value. Be-
fore an extent is encrypted and written to lower file page
cache, its HMAC is calculated, with the file encryption
key and the data of the current extent as input, and the
HMAC is saved in the lower file as well. When the data
is later read out and decrypted, its HMAC is recalcu-
lated, and compared with the value saved. If they do
not match, it indicates that the extent has been modi-
fied or corrupted, eCryptfs will return an error to user
application. Since the attacker does not know the file
encryption key, the HMAC value cannot be faked.
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The HMAC values are grouped into dedicated extents,
rather than appended at end of each extent due to a per-
formance issue. According to our test, vis_read and
vis_write with non extent-aligned length are much
slower than the aligned counterpart. Accordingly, the
data extents are split into groups.

The decrease in throughput due to HMAC verifica-
tion is evaluated by measuring ‘Write’ throughput us-
ing iozone, the hash algorithm is MD5. The command
parameters are ‘iozone -tx-sy-r 4M -i 0 -+n’,
where x is from 1 to 256, corresponding, y from 8G to
32M. As shown in Figure 12, the decrease is modest.

4 Future Work

We are implementing per-file policy support for
eCryptfs. That is, allow to specify policies at a file gran-
ularity. For example, a file should be encrypted or not,
what encryption algorithm should be used, what is the
length of the key, etc. In addition, we are consider-
ing to implement transparent compression support for
eCryptfs.

Related to VFS, we are taking into account to modify
VES to give filesystems more flexibilities, to maintain
page cache at their decisions.

5 Conclusion

This paper presents the optimizations to eCryptfs for
both performance and security. By default, Linux VFS
framework maintains multiple page caches for stacked
filesystems, which, in some situations, is needless and
wasteful, motivating us to develop redundant cache
elimination, the benefits of which have been verified
experimentally. Furthermore, this approach is applica-
ble to many other stacked filesystems. We enhance the
eCryptfs security by introducing HMAC verification. To
exploit parallelism, we introduce a thread pool, work-
ing in a pipeline manner to do the encryption and write
down jobs. We have also presented a simple write op-
timization, which is very useful while using eCryptfs in
backup situation.
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