
Out of band Systems Management in enterprise Computing Environment

Divyanshu Verma
Dell India R&D Centre.
Divyanshu_Verma@Dell.com

Srinivas G Gowda
Dell India R&D Centre.
Srinivas_G_Gowda@Dell.com

Ashokan Vellimalai
Dell India R&D Centre.

Ashokan_Vellimalai@Dell.com

Surya Prabhakar
Dell India R&D Centre.
Surya_Prabhakar@Dell.com

Technical Reviewers: {Ramkrishna_Rama, Jagadeesh_Raju, Neti_Prasad}@Dell.com

Abstract

Out of band systems management provides an inno-
vative mechanism to keep the digital ecosystem inside
data centers in shape even when the parent system goes
down. This is an upcoming trend where monitoring and
safeguarding of servers is offloaded to another embed-
ded system which is most likely an embedded Linux
implementation.

In today’s context, where virtualized servers/workloads
are the most prevalent compute nodes inside a data cen-
ter, it is important to evaluate systems management and
associated challenges in that perspective. This paper ex-
plains how to leverage Out Of Band systems manage-
ment infrastructure in virtualized environment.

1 Introduction

Out Of Band systems management is the de-facto capa-
bility in enterprise computing world to manage physical
servers inside a data center. It provides remote adminis-
trators the ability to connect, gather server information
and at the same time control the servers even in non-OS
environment.

Today’s enterprise computing environment is dominated
by virtualization technology which allows one single
server to be used by many virtual machines. In this pa-
per we look at how we can make Out Of Band System
management utility scale up to this new challenge of vir-
tualization. We talk about the ways in which an existing
systems management utility can be used to handle vir-
tual machines. Later on we also discuss some of the
security challenges that may be posed while trying to
implement this method.

1.1 Acronyms and Abbreviations

OOB - Out Of Band Management

VMS - Virtual Management Software

VM - Virtual Machine

VMM-I - Virtual Machine Management Interface

BMC - Base Board Management Controller

IPMI - Intelligent Management Platform Controller

LAN - Local Area Network

OOB-I - Out Of Band Management Interface

RMCP+ - Remote Management Control Protocol.

TOPT - Time-Based One-Time Password Algorithm

DES - Data Encryptions Standard

2 Evolution and Design of Managing Virtual
Machines using Out Of Band Channel

In a typical virtualization setup, Virtual Machines and
Physical servers are managed and controlled using man-
agement software. In this paper we refer to this manage-
ment software as Virtual Management Software (VMS).
This VMS provides advanced features such as High
Availability and Live Migration. All the physical servers
in data center are connected to VMS over Ethernet. In
summary, VMS at an application level manages Virtual
Machines (VMs) using a hypervisor that is deployed on
each of the physical systems. VMS usually dedicates a

• 71 •

72 • Out of band Systems Management in enterprise Computing Environment

Hypervisor

VMM-I

BMC

Hypervisor

VMM-I

BMC

Hypervisor

VMM-I

BMC

Virtualization

Management

Software

Server Server

Server

Figure 1: Current Architecture

system interface on each of the physical servers to com-
municate with the hypervisor. This interface is called as
the VM Management Interface (VMM-I) and is shown
in Figure 1.

The physical servers used in data centers today are
mostly Enterprise grade equipped with Out Of Band
Systems Management capability. One of the widely
used OOB Management implementations has a Base-
board Management Controller (BMC) embedded inside
the physical server. BMC supports the industry-standard
Intelligent Platform Management Interface (IPMI) spec-
ification, which enables users to configure, monitor,
and recover systems remotely. Each of these physi-
cal servers hosts a base hypervisor and VMs on top of
it. Each of these hypervisors are connected to VMS
through VMM-I.

2.1 Proposed Solution

Figure 2 depicts the proposed model, wherein we are us-
ing the Out Of Band Management Interface (OOB-I) as
a secondary interface to manage the VMs using the hy-
pervisors. Similar to VMM-I, each OOB-I is also con-
nected to VMS. VMS uses OOB-I channel to commu-
nicate with BMC by using IPMI over LAN. IPMI Over-
LAN is a functionality that provides remote machines
the ability to send IPMI messages over Network to BMC
using UDP protocol (IPv4). The UDP packets are for-
matted to contain IPMI request/response messages with
IPMI session headers and Remote Management con-
trol Protocol (RMCP+) headers (IPMI v2.0 Spec). For
IPMI OverLAN to work, BMC needs to have a dedi-
cated Management Network interface associated to it.

Hypervisor

VMM-I

BMC

Hypervisor

VMM-I

BMC

Hypervisor

VMM-I

BMC

Virtualization

Management

Software

Server Server

Server

Figure 2: Proposed Architecture

2.2 Architecture of Proposed Data Path to establish
OOB communication channel between VMS
and hypervisor

When VMS intends to send a message to hypervisor, it
will encode the message in an IPMI message format and
send this message using RPMCP+ protocol over OOB-I
channel. Once sent to BMC, these messages are picked
up by the hypervisor and decoded back to the original
format (VMS message). Similarly when the hypervisor
needs to send data to VMS, it will send it to BMC and
VMS reads these messages over OOB-I.

In this solution we implemented two Buffer queues in
BMC, one to hold the data that VMS sends to hypervisor
and the other to temporarily store data sent from hyper-
visor to VMS. To access these buffers we need four new
sets of IPMI commands to read and write the respective
queues. Figure 3 gives an overview of the stack

Figure 3 shows the different modules that are involved in
enabling the OOB-I channel between VMS and hypervi-
sor. When VMS needs to communicate with the hyper-
visor over OOB-I, VMS would encode the message into
an IPMI packet as payload and send it over the OOB-
I. In this solution the four IPMI commands associated
with the BMC Buffer Queues are implemented as OEM
Commands. The idea is to carry these VMS/hypervisor
messages as payload using IPMI Commands, so the en-
coding and decoding logic would be confined to the pay-
load and would keep the IPMI/BMC changes at min-
imal. This design avoids decoding of every message
VMS/hypervisor sends as a separate IPMI message.

2012 Linux Symposium • 73

Hypervisor

 IPMI DRIVER

KERNEL

Local IPMI Interface

BMC

OOB-I

VMM-I
Virtual

Management

Software

(VMS)

VMVM VM

Figure 3: Proposed stacks overview

2.3 Low-level Details of the Implementation

Consider a scenario when VMS decides to communicate
with a hypervisor. VMS would encode the message that
needs to be sent to the hypervisor in IPMI format and
use the new IPMI commands to send this message to the
appropriate BMC. For VMS to communicate with hy-
pervisor it needs to know the IP address of OOB-I apart
from VMM-I IP. VMS message structure that needs to
be sent to hypervisor.

struct vms_message {
cmd_id cmd, //actual command id
vm_id vm_name, //name of virtual machine
ip_addr oob_i, //IP address of OOB-I
ip_addr vmm_i, //IP address of VMM-I
. //meta data
.
};

API to convert vms_message into raw IPMI format

char *ipmi_payload convert_to_raw_ipmi\
_data(struct vms_message *vms_data) {
// returns *ipmi_payload - VMS message
// converted into IPMI format
};

API to send the vms_message to BMC over OOB-I using
RMCP+ protocol. IPMI over LAN requires user authen-
tication.

char ipmi_send_message (char *ipmi_\

payload, structipmi_system_interfac\
e_addr bmc_addr)\
{
.
.
char *user_name,
char *passwd,

Request message
[NetFn]
[CMD] - [COPY_VMS_TO_BMC_BUFF_1]
[Payload] - [ipmi_payload]
char *ipmi_payload
.
.

};

BMC on receiving the IPMI message from VMS, saves
the payload in Buffer Queue1 (Figure 3). hypervi-
sor periodically check for any VMS requests in Buffer
Queue1. Any messages in this Queue are picked up by
hypervisor using the new IPMI command. The next task
is to decode the payload message from BMC, which is
exactly the reverse of the encoding mechanism that was
carried out in VMS.

IPMI command to read message from Buffer Queue1

Request

[NetFn] [Cmd] [OEM_ID] [READ_BMC_BUFF\
_QUEUE1]

Response

[Completion Code] [Payload]

API to read the vms_message to BMC (Queue1) over
local IPMI interface.

char *ipmi_payload ipmi_get_message (\
struct ipmi_system_interface_addr bmc_\
addr) {
.
.
Read Payload from BMC-Queue1
[NetFn]
[CMD] - [READ_BMC_BUFF_ QUEUE1]
.
.
Response message
[Completion Code]
[IPMI_Payload]

74 • Out of band Systems Management in enterprise Computing Environment

return ipmi_payload
};

API to decode the ipmi_payload into original VMS mes-
sage format

struct vms_message *vms_data \
convert_to_vms_format (ch\
ar *ipmi_payload)

3 Out of Band Systems Management with Vir-
tualization - Challenges

Out of band management of VMs brings additional chal-
lenges to the table, some of which are discussed below.
In section 3.1 we discuss how to secure the OOB-I chan-
nel end to end, i.e. starting from VMS to hypervisor.
Then in section 3.2 we discuss how to ensure that only
a rightful authority can initiate state changes to the vir-
tual machines. Both scenarios will be explored using a
Linux/hypervisor case study.

3.1 Securing the OOB-I communication Channel

The complete communication channel for the proposed
solution comprises of multitude of components, as illus-
trated in Figure 4.

• OOB-I

• BMC layer

• Linux Kernel Layer

• Exposed Userspace IPMI device

• Userspace hypervisor software

In the above mentioned components, OOB-I is generally
secured using RMCP+ protocol. BMC access is typ-
ically controlled by a password authentication. Linux
kernel space is off-limits to user space processes and
hence is considered secure. In this implementation
the modified hypervisor software uses the IPMI Device
interface (/dev/ipmi) to obtain the information from
BMC. So any stray read/write to BMC through this de-
vice can reveal the payload.

Hypervisor

 IPMI DRIVER
KERNEL

Local IPMI Interface

BMC

OOB-I

Virtual

Management

Software

(VMS)

VMVM VM

User Credential Encryption

Encrypted OOB-I

Encrypted

Message

TOTP/Cipher based

Encryption

Engine

Figure 4: TOTP-Cipher Encryption

We used “time-based one-time password Algorithm”
(TOPT, RFC6238) signature engine to generate a se-
cret key within VMS. This secret key is used as aux-
iliary input to a symmetric key algorithm based cipher
(DES/AES) to encrypt the outgoing payload. This en-
crypted payload is then transferred through OOBI. A
stray read/write to BMC cannot decode the payload
since it does not have the TOPT signature.

The hypervisor layer also has the TOPT signature en-
gine with same algorithm, which it uses internally to
decrypt and verify the payload it received from BMC.
Once the hypervisor has decrypted the payload, it sepa-
rates the user credential, associated VM-ID and control
message.

3.2 Protection against accidental state change

In a traditional virtualization setup, the hypervisor has
all the authority to carry out management tasks on all
virtual machines. This allows the hypervisor to shut
down, close or change the state of VMs without any re-
striction. However, with the growing level of (mission-
critical) work load running on VMs, it is important that
there should be additional security layer to help avoid
any accidental state change in VMs. We investigated
this problem and proposed a request-challenge-verify
interface between hypervisor and VMs.

In the solution, whenever a state change request is given
to VM, the request is verified against an authorization
list. Here it checks that if state change request coming
from an authorized process or not. If the request is valid,

2012 Linux Symposium • 75

Figure 5: Request-challenge-authenticate

then it is accepted and state change activity is carried
out, otherwise the hypervisor rejects the state change
request and sends an alert to a registered user to inform
about unauthorized attempt to change the state of a VM.
This is illustrated in Figure 5.

4 Known Constraints

This implementation needs changes in VMS, hypervisor
and BMC. In the absence of VMM-I, the scope of net-
work critical tasks such as Live migration over OOB-I
is limited.

5 Conclusion

We explored a method in which Systems management
capability can be used to handle virtual machines on
the servers and perform various tasks in the same way
it would be done on a physical server. We also explored
use cases in terms of handling security situations which
are evolving in a virtualized data center environment.
The finding here is that in a virtualized environment
were each VM can be running different tasks, it is un-
safe to have unquestioned authority resting with VMS,
since any error can prove very costly. The other aspect
is the protection of data that travels from VMS to hy-
pervisor. These challenges are unique and they need
special attention in the virtualized data centers. One
important finding is that, we need further explore what
are the repercussions of creating a request-challenge-
authenticate framework since VMS does not enjoy super
user status any more.

6 References / Additional Resources

IPMI Home Page http://www.intel.com/design/
servers/ipmi/index.htm

IPMI SPEC http://download.intel.com/design/
servers/ipmi/IPMI2_0E4_Markup_061209.pdf

LibVirt Virtualization http://libvirt.org

Kernel Based Virtual Machine http://www.
linux-kvm.org/page/Main_Page

TOTP: Time-Based One-Time Password Algorithm
http://tools.ietf.org/html/rfc6238

http://www.intel.com/design/servers/ipmi/index.htm
http://www.intel.com/design/servers/ipmi/index.htm
http://download.intel.com/design/servers/ipmi/IPMI2_0E4_Markup_061209.pdf
http://download.intel.com/design/servers/ipmi/IPMI2_0E4_Markup_061209.pdf
http://libvirt.org
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://tools.ietf.org/html/rfc6238

76 • Out of band Systems Management in enterprise Computing Environment

	Out of band Systems Management in enterprise Computing Environment
	D. Verma, S. Gowda, A. Vellimalai, S. Prabhakar
	Introduction
	Acronyms and Abbreviations

	Evolution and Design of Managing Virtual Machines using Out Of Band Channel
	Proposed Solution
	Architecture of Proposed Data Path to establish OOB communication channel between VMS and hypervisor
	Low-level Details of the Implementation

	Out of Band Systems Management with Virtualization - Challenges
	 Securing the OOB-I communication Channel
	 Protection against accidental state change

	Known Constraints
	Conclusion
	References / Additional Resources

