
ClusterShell, a scalable execution framework for parallel tasks

Stéphane Thiell, Aurélien Degrémont, Henri Doreau, Aurélien Cedeyn
Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA)

{stephane.thiell,aurelien.degremont,henri.doreau,aurelien.cedeyn}@cea.fr

Abstract

Cluster-wide administrative tasks and other distributed
jobs are often executed by administrators using locally
developed tools and do not rely on a solid, common and
efficient execution framework. This document covers
this subject by giving an overview of ClusterShell, an
open source Python middleware framework developed
to improve the administration of HPC Linux clusters or
server farms.

ClusterShell provides an event-driven library interface
that eases the management of parallel system tasks, such
as copying files, executing shell commands and gather-
ing results. By default, remote shell commands rely on
SSH, a standard and secure network protocol. Based
on a scalable, distributed execution model using asyn-
chronous and non-blocking I/O, the library has shown
very good performance on petaflop systems. Further-
more, by providing efficient support for node sets and
more particularly node groups bindings, the library and
its associated tools can ease cluster installations and
daily tasks performed by administrators.

In addition to the library interface, this document ad-
dresses resiliency and topology changes in homoge-
neous or heterogeneous environments. It also focuses
on scalability challenges encountered during software
development and on the lessons learned to achieve max-
imum performance from a Python software engineering
point of view.

1 Introduction

From a logical perspective, cluster system software is
what differentiates a cluster from a collection of individ-
ual nodes. Having a scalable and resilient cluster system
management toolkit is essential to the successful opera-
tion of clusters. According to the TOP500 [1] list, more
than 80% of installed HPC systems are running Linux,

and open source software is now used as the foundation
of most general-purpose1 supercomputers. But even the
simplest cluster-wide administrative task can become a
nightmare when executed on a petaflop supercomputer
of thousands of nodes. Often, tools or services are tuned
to scale on a case-by-case basis. As a result, clusters of-
ten rely on a fragile administration software layer, suf-
fering from the lack of robustness, usability and from
management complexity. ClusterShell answers this by
providing an open source, robust and scalable frame-
work for cluster management and administration, that
can be used by both system administrators and software
developers. Indeed, benefiting from full-featured and
scalable tools can save a lot of time for administrators,
resulting in more efficient daily operations and reduced
downtime during scheduled maintenance.

ClusterShell is available as a Free Software product un-
der the terms of the CeCILL-C license [5], a French
transposition of the GNU LGPL, and is fully LGPL-
compatible. It consists in a Python (v2.4 to 2.7) li-
brary and a small set of command-line tools. It takes
care of common administration issues encountered on
clusters, such as operating on groups of nodes, run-
ning distributed commands using optimized execution
algorithms, as well as helping result analysis by gather-
ing and merging identical command outputs, or retriev-
ing return codes. It takes advantage of existing remote
shell facilities already installed on most systems, such
as SSH. The command-line tools, clush, clubak and
nodeset are efficient building blocks for administrators
that also allow traditional shell scripts to benefit from
some of the library features. Figure 1 shows an overview
of the ClusterShell framework.

Primarily, the ClusterShell Python library implements
an efficient event-based mechanism for parallel ad-
ministrative tasks, whether they be local or distant.
The ClusterShell Python API2 provides an event-driven

1General purpose as defined in [7]
2http://packages.python.org/ClusterShell/

• 77 •

http://packages.python.org/ClusterShell/

78 • ClusterShell, a scalable execution framework for parallel tasks

user.py

)

remote

Python Library

ClusterShell API

CLI
clush, nodeset, ...

SSHSSH Local cmd
(Popen)

otherother

Figure 1: ClusterShell overview

and object-oriented interface that allows application to
schedule actions, like running shell commands or copy-
ing a file, and to register for specific events from these
local or remote tasks. Several helper methods are then
available to analyze results during the execution or af-
terwards.

2 Cluster naming scheme

Computer clusters often use a systematic naming
scheme, such as a common node prefix conform-
ing to RFC 1178 “Choosing a name for your com-
puter” [14] plus a numbering scheme. For exam-
ple, high-availability clusters [10], database clusters
and Hadoop clusters (for HDFS DataNodes [19]) fre-
quently use simple serial naming procedures for indi-
vidual servers. The naming policy of high-performance
computing cluster nodes is often as simple, but can also
be more complex by adopting a multi-dimensional num-
bering scheme. A numbering system that matches phys-
ical locations in a server room is sometimes adopted (eg.
nodes are named according to the rack and slot number
in [20, 6, 18] like r01n03). Another example could be
to use logical positions in a multi-dimensional intercon-
nection network (eg. torus-1-2-3). In this section, we
define the nodeset and node group notations and present
associated features available in ClusterShell to easily
and efficiently manage these cluster naming schemes.

curie0

curie0,hwm0

stor[02-08]

curie[50,100-120,1500-6000]

curie[200-249]-ipmi

curie[200-249],gaia[20-59]

da[10-19]c[1-2]

Figure 2: Common nodeset examples

curie[2-8/2] ⇐⇒ curie[2,4,6,8]
stor[01-10/3]⇐⇒ stor[01,04,07,10]
curie[50,1500-2000/2,3000-6000/4]-ipmi

Figure 3: Stepped nodeset examples

2.1 The nodeset notation

The nodeset notation presented here is a syntax for
specifying a set of cluster nodes or host names. The
comma (,) is used to separate different naming pat-
terns (eg., to address multiple clusters). This notation
is an extension of the one already used in cluster tools,
such as SLURM resource manager [11], pdsh [16] or
kanif [9]. Indeed with clusters growing, a commonly
adopted notation has emerged mainly to allow the use of
ranges whenever possible. A continuous range is spec-
ified by starting and an ending number, separated by a
dash (e.g. 0-9). Numbers may be expressed with a fixed
length padding of leading zeros (0). Each discontinuous
range, or single number, is separated by a comma (,).
This makes a set or ranges, or rangeset. Within a node-
set, square brackets are used to signal a rangeset. Fig-
ure 2 shows this naturally compact cluster nodes naming
scheme.

As an extension to the traditional rangeset notation,
the stepping syntax already seen for LustreTM network-
ing [2] appends to a continuous range a slash character
(/) and a step size. For example, the 2-8/2 format in-
dicates a range of 2-8 stepped by 2; that is 2,4,6,8.
Figure 3 shows some examples of this nodeset nota-
tion extension.

Moreover, our practical experience in cluster adminis-
tration has shown that being able to embody some basic
set operations in nodeset can be very convenient, and
thus even more when working with node groups (dis-
cussed below). We define as a valid nodeset notation
the following special operators:

• , as the union operator,

2012 Linux Symposium • 79

• ! as the difference operator,

• & as the intersection operator,

• ^ as the symmetric difference operator.

nodeset patterns are read from left to right, and character
operators are processed as they are met. Figure 4 shows
a simple example.

curie[0-50]!curie5⇐⇒ curie[0-4,6-50]

curie[0-10]&curie[8-20]⇐⇒ curie[8-10]

Figure 4: nodeset character operator examples

2.2 Node groups

A node group represents a collection of nodes. Work-
ing with node groups is much more convenient and
much safer when administrating large compute clusters
or server farms. For example, a node group can cor-
respond to nodes using the same set of resources or a
specific type of hardware. Node groups can be used
for a variety of reasons. In most cases, cluster soft-
ware already provides several sources of static or dy-
namic node groups (eg., from a cluster database, gen-
ders [15], SLURM nodes, partitions or jobs [11], etc.).
ClusterShell is able to bind to these node group sources
and to provide unified information to the cluster man-
agement software. Node group provisioning is done
through user-defined shell commands or through library
extensions in Python. That is, ClusterShell itself doesn’t
manage node group definitions. Still, binding to a node
group source based on flat files is straightforward3.

The unified node group string notation introduced with
ClusterShell is invariably prefixed by the arobase char-
acter (@) and constructed from the node group source
followed by a separator character (:) and a node group
name, the latter being freely expressed by the source.
The notation can be further simplified using relative
naming by omitting the node group source. In this case,
the node group source configured by default is used to
resolve the group. Figure 5 illustrates this syntax.

Moreover, when node group names are themselves
adopting a systematic naming scheme as seen in sec-
tion 2 for node names, we are able to represent a set

3A node group source example, based on a flat file, is provided
by default.

@compute︸ ︷︷ ︸
group name
in default

group source

@slurm︸ ︷︷ ︸
explicit
group
source
name

:bigmem︸ ︷︷ ︸
group name

Figure 5: Overview of nodeset syntax for node groups

of node groups in a similar fashion. The following ex-
ample illustrates how to represent twenty Scalable Stor-
age Units in a storage cluster: @ssu[00-19], that is
@ssu00, @ssu01, etc., up to node group @ssu19, each
one corresponding to a set a nodes.

Evaluating node groups in a nodeset notation is quite
straightforward, they are simply substituted by their cor-
responding nodes when needed. As for a regular set of
nodes, the special operator characters seen in section 2.1
are supported with node groups. Figure 6 shows an ex-
ample.

@slurm:standard&@ethswnode:sw[0-6/2]

stands for nodes from the SLURM partition named
standard which are also connected to even-numbered
switches (sw0, sw2, sw4 and sw6)

Figure 6: Example of nodeset notation using node
groups and the intersection operator

Using a node group explicitly indicates a grouping in-
tention so operations are computed on the whole group,
but also on the whole set of groups when brackets
are used to designate a set of ranges. Otherwise, the
operator-separated list of elements is evaluated from left
to right. Intentionally, there is no support for parenthe-
ses or other ways to explicitly indicate precedence by
grouping specific parts. Indeed, we tried to keep the
syntax simple enough, focusing on the wide variety of
tasks that cluster administrators perform.

2.3 Working with nodesets

nodeset objects are omnipresent in the ClusterShell
framework within the NodeSet Python class. Two user-
interfaces are available to manipulate nodeset strings
whose syntax is described in section 2.1: one is

80 • ClusterShell, a scalable execution framework for parallel tasks

$ nodeset -f da1c1 da1c2 da3c1 da3c2

da[1,3]c[1-2]

Figure 7: Example of multi-dimensional nodeset fold-
ing using the nodeset command-line tool

the NodeSet Python class and the second one is the
nodeset command-line tool.

For instance, nodeset provides optional switches to
count the number of nodes within a nodeset (-c), to ex-
pand it (-e), to fold nodes into a nodeset (-f), to access
node groups information, etc. It has become for us an
essential command for daily cluster administration and
an integral part of our shell scripts. All of its features are
described in the documentation and on the ClusterShell
Wiki4.

The rest of this section describes some implementation
aspects of different nodeset features.

2.3.1 nodeset folding

To fold a nodeset, we need a way to fold a set of ranges
(a rangeset), as seen on section 2.1. RangeSet is the
Python class that manages a rangeset. The latest im-
plementation uses a standard Python set object to store
the set of indices. We discuss in section 3.2 performance
issues encountered on this topic. The folding implemen-
tation uses an iterator5 on slice found objects, each one
representing a set of indices specified by a range, plus a
possible step. This is called, for example, when display-
ing a nodeset as a string.

Uni-dimensional nodeset is thus mainly solved by hav-
ing a way to fold a rangeset. Multi-dimensional node-
set folding is more complicated. While expanding a
multi-dimensional nodeset is easily achieved through a
Cartesian product of all dimensions (we use Python’s
itertools.product()), folding is achieved by com-
paring rangeset vectors two by two, and to merge these
vectors if they differ only by one item. Figure 7 shows
an example of this multi-dimensional folding feature,
available starting with ClusterShell version 1.7.

4https://github.com/cea-hpc/clustershell/wiki
5RangeSet._folded_slices()

2.3.2 Node groups regrouping

Another interesting ClusterShell feature is the ability to
find fully matching node groups for a specified node-
set. This is called the regroup functionality. A simple
heuristic implementation determines whether to use the
list (list all groups) plus map (group to nodes) external
commands, or to use reverse (node to groups). It then
resolves node groups, returning largest groups first.

3 Scalability challenges with CPython

As a system software, ClusterShell is relying on
CPython, the most-widely used implementation of the
Python programming language. It is also the default of
all Linux distributions used for clustering that we know
of. This sections addresses performance challenges we
faced in order to use CPython at scale.

3.1 Parallel programming

Because of its Global Interpreter Lock (or GIL), the
standard CPython interpreter is unable to achieve ac-
tual concurrency with multithreaded programming [3].
Nevertheless, modules from the Python standard library
can be leveraged to bypass this limitation and write high
performance parallel code.

ClusterShell uses a combination of non-blocking I/O
management and multiprocessing. The event-based I/O
notification infrastructure is described in section 4.1.
For CPU-intensive operations such as SSH connec-
tions, ClusterShell spawns external processes via the
fastsuprocess module (see section 3.3). It therefore
delegates scheduling operations to the OS, removing
GIL-based contention constraints.

3.2 RangeSet performance

RangeSet is the Python class that manages a set of
ranges as seen in section 2.1. In its first implementa-
tion6 used in-memory slice objects representing the set
of indices specified by a range, plus an optional step
value (≥ 1). We first thought that direct access to ranges
and operations done on these objects for 10k nodes (eg.,
on a range like 1-10000) would be optimal with limited

6up to ClusterShell 1.5

https://github.com/cea-hpc/clustershell/wiki

2012 Linux Symposium • 81

memory footprint. But performance issues were quickly
encountered when running on thousand node HPC clus-
ters. The complexity of most related algorithms being
in O(R) with a number of discontinuous ranges of R,
the bottleneck was then the high number of discontinu-
ous ranges seen on these clusters. These sparse nodesets
are commonly seen on large clusters (the way nodes are
replying, in a random fashion, can create such "holes").

We then developed an intermediate implementation in
Python using a bintrees-based AVL tree [13] to op-
erate on ranges in O(log(n)). While it significantly
outperformed the first implementation, we still did not
achieve the performance we aimed for in all cases, prob-
ably because of the CPython overhead when creating a
large number of objects. As a comparison, bintrees
benchmarks using the pypy interpreter7 show a 10 to 40
times speedup over CPython8.

In the current implementation, the RangeSet class fi-
nally uses a Python set. Ranges are expanded as nu-
meric indices in the set and a folding algorithm is used
in case it needs to display a rangeset. It probably looks
less elegant than using a balanced tree of ranges, but it
is significantly faster than the AVL-tree implementation,
mainly because sorting and set-like operations are very
efficient in CPython.

3.3 fastsubprocess

Early versions of ClusterShell used the subprocess
Python module to spawn new processes and connect to
their input, output or error pipes. When using a large
fanout value (> 128), that is, the number of child pro-
cesses allowed to run at a time, we noticed a signif-
icant overhead localized in subprocess.Popen, even
on medium size clusters. We found out that the parent
Python process spends its time in a blocking read(2)
operation, waiting for its children, leading to a serializa-
tion of all forked processes. Indeed, a pipe allows ex-
ceptions raised in the child process before the new pro-
gram has started to execute, to be re-raised in the parent
for convenience. This problem has been discussed on
Python issue #113149 and the choice of feature vs. per-
formance has been kept for now.

7http://pypy.org/
8http://pypi.python.org/pypi/bintrees/
9http://bugs.python.org/issue11314

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of nodes

clush 1.4 (subprocess)
clush 1.5 (fastsubprocess)
pdsh 2.18

Figure 8: Performance comparison between
ClusterShell engines based on subprocess and
fastsubprocess and with C-based pdsh using a
fanout value of 128

To work around this issue, we decided to adapt the
subprocess module to make a faster, performance ori-
ented version of the module for ClusterShell, that we
named fastsubprocess. We removed the pipe used
to transfer potential execution failures from the child to
its parent, thus avoiding the blocking read(2) call. A
child process returns a status code of 255 on execv(3)
failure, which is handled by Popen.wait() in the
ClusterShell library on proper event. We now also return
file descriptors instead of file objects to avoid calling
fdopen(). The only drawback of fastsubprocess is
that it is not able to distinguish between an explicit re-
turn code of 255 from the child and an execv(3) fail-
ure, which we considered being an acceptable shortcom-
ing considering the performance gain presented below.

Experiment: We evaluated the performance of the
fastsubprocess module on Tera-100, CEA largest
HPC Linux cluster, composed of a four-socket eight-
core Intel R© Xeon Nehalem EX (X7560) head node10

running at 2.27 GHz with 64 GB of RAM, and
more than 3000 compute nodes11 each also four-
socket X7560 nodes with 64 GB of RAM. Cluster-
Shell version 1.4 was implemented using the regular
Python subprocess module. Figure 8 clearly illus-
trates the scalability problem of this module when used
intensively. As of version 1.5, we switched to our
own fastsubprocess optimized module. Pdsh and
ClusterShell 1.5 produced very similar results. How-

10S6030 bullx node
11S6010 bullx nodes

http://pypy.org/
http://pypi.python.org/pypi/bintrees/
http://bugs.python.org/issue11314

82 • ClusterShell, a scalable execution framework for parallel tasks

ever, ClusterShell execution times were slightly lower.

4 Scalable execution framework

In order to make ClusterShell production-ready on 10k-
nodes clusters, we focused on both vertical and horizon-
tal scalability aspects.

Numerous optimizations spread over the whole code-
base brought scale-up improvements. Low memory and
CPU footprint, as well as high performance I/O man-
agement have been achieved by leveraging efficient I/O
notification facilities provided by the operating system.

Starting with ClusterShell version 1.6, the library is
shipped with a major horizontal scalability improve-
ment, allowing commands to be propagated to the tar-
gets through a tree of gateways (or proxies).

4.1 Vertical scalability

Dealing with the I/O streams from the multiple SSH
instances that ClusterShell spawns can be a perfor-
mance bottleneck. ClusterShell addresses this issue
with a specific I/O management layer. Basically, mas-
sively parallel applications such as ClusterShell face the
same problems as heavily loaded servers handling thou-
sands of clients. In this regard, ClusterShell uses non-
blocking I/Os and the most efficient I/O management
paradigms [12].

Within a library instance, I/O management is done by
a backend module, referred to as the engine. Sev-
eral Engines are implemented. Each one relies on an
non-blocking I/O demultiplexing system call (such as
select(2) or epoll(7)) and exports a well defined
interface to the upper layers of the library. This is en-
tirely transparent and the other layers are fully engine-
agnostic.

An engine provides primitives for registering and unreg-
istering read, write or exception events on file descrip-
tors, as well as an event loop entry point.

Each SSH process gets its standard input, output and
error pipes registered to the library engine when starting.
The engine processes the events from each I/O stream,
and the potential timers, in a single-threaded loop.

The best available backend is selected at runtime, given
that some OS-specific system calls might be unavailable

on the running platform. This strategy allows Cluster-
Shell to leverage the most efficient I/O notification sub-
system [8] amongst the ones available.

Three backends are currently implemented:

• High performance, Linux-specific epoll(7)-
based engine.

• Intermediate poll(2)-based engine

• Fallback select(2)-based engine

The most efficient backends being system-specific, this
redundancy allows ClusterShell to achieve high perfor-
mance while staying significantly portable. ClusterShell
is available on a large number of systems, and pack-
aged into several GNU/Linux distributions, including
Red Hat R© Enterprise Linux (RHEL) through the Fedora
Extra Packages for Enterprise Linux (EPEL) repository,
Fedora12, Debian13 and Arch linux14.

Because of the system load generated by starting numer-
ous concurrent SSH processes, the performance differ-
ences between the epoll(7) and poll(2)-based en-
gines is hardly measurable. Therefore, further perfor-
mance and scalability improvements have been done on
the horizontal aspects.

4.2 Horizontal scalability

Even though the most efficient engines can handle thou-
sands of I/O streams, the number of concurrent SSH
processes is a blocking limitation [9] due to the CPU and
memory load generated on the root node (from which
commands are issued).

That is why we designed and implemented a new dis-
tributed propagation mode within the project. Com-
mands are delivered through a network of gateways and
results are sent back to the root node upward the created
propagation tree.

The load gets shared between gateways, and the O(λN)
propagation time we observe with a flat-tree mode (λ
being the unit execution time) becomes O(λKlogk(N)),
with an arity of K [17] (K being the number of branches
a gateway connects to). Figure 9 shows a schematic il-
lustrating this principle.

12https://admin.fedoraproject.org/pkgdb/acls/name/
clustershell

13http://packages.debian.org/fr/sid/clustershell
14http://aur.archlinux.org/packages.php?ID=53476

https://admin.fedoraproject.org/pkgdb/acls/name/clustershell
https://admin.fedoraproject.org/pkgdb/acls/name/clustershell
http://packages.debian.org/fr/sid/clustershell
http://aur.archlinux.org/packages.php?ID=53476

2012 Linux Symposium • 83

target[0-15]

GW1 GW2 GW3 GW4

ADMIN

Command execution

Active SSH session

Figure 9: Hierarchical command propagation scheme

We also implemented a grooming mode that allows gate-
ways to aggregate responses received within a certain
timeframe before transmitting them back to the root
node in a batch fashion. This contributes to reducing
the load on the root node by delegating the first steps of
this CPU intensive task to the gateways.

ClusterShell uses the same command sending tech-
niques it uses in “normal” mode to control the gateways.
As a result, the only requirement to setup a propagation
tree is to have ClusterShell installed on the nodes that
are susceptible to act as gateways, along with running a
SSH server. SSH was chosen as a transport channel as
it allows the propagation tree subsystem to use already
in-place ClusterShell mechanisms, and also because of
its reliability and security mechanisms. Nevertheless,
the ClusterShell connector manager was designed with
modularity in mind to ease support of additional pro-
tocols (such as RSH, PDSH or a ClusterShell-specific
communication protocol).

A lightweight communication protocol ensures proper
exchanges within the tree, using serialized Python ob-
jects embedded in a XML stream. As Python has a built-
in incremental SAX parser (which is event-based), XML
was a natural choice to represent the data and to guide
the execution flow of the parser when they are received.

4.2.1 Communication within the tree

Gateways are implemented as ClusterShell-based state
machines. Once instantiated from the remote Cluster-
Shell process, gateways receive the topology to use, the
targets to reach and the command to execute. Gateways
recursively contact the next hop machines, deploying
the propagation tree until final targets are reached.

Allow connections from admin nodes
to gateways
admin[0-2]: gateways[0-20]

Allow connections from gateways to
compute nodes
gateways[0-20]: compute[0-5000]

Figure 10: Topology syntax

The communication channel between the root node and
a gateway (as well as between two gateways) is a single
SSH connection that remains open until all results have
been collected and sent back to the root node, which is
also responsible for closing the channel at the transport
layer.

4.2.2 Adaptive propagation

Topology is expressed through a configuration file on
the root node as a list of possible connections between
source and destination nodesets.

Mechanisms are implemented within ClusterShell to
mark a gateway as unreachable and exclude it from
the topology. Additionally, a work-stealing mechanism
could be interesting, to let gateways adjust the load
in real time between each other. The work made by
C. Martin in that domain for the TakTuk project [17]
stresses how valuable those mechanisms are when deal-
ing with heterogeneous clusters and grids.

4.3 Experiments

In this section, we evaluate the performance of the scal-
able ClusterShell execution model, as introduced on
section 4.2. To perform this experiment, we used Curie,
a 2 Petaflop HPC Linux cluster operated by CEA. More
precisely, we used the Thin Nodes partition of Curie,
which consists of 5040 dual-socket nodes15 each con-
taining two eight-core Intel R© Sandy Bridge EP (E5-
2680) processors running at 2.7 GHz and 64 GB of
RAM. Curie’s operating system is Bullx Linux Ad-
vanced Edition, based on Red Hat R© Enterprise Linux
6.1. The experiments have been done during a sched-
uled maintenance so no job was running. We avoided
any external perturbation (such as the one that could be

15B510 bullx nodes

84 • ClusterShell, a scalable execution framework for parallel tasks

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of nodes

clush gw=0
clush gw=2
clush gw=4
clush gw=8

pdsh

Figure 11: Performance comparison between clush
v1.6 in basic mode (sliding window), in distributed
mode (1 level of n gateways) and pdsh v2.18 on Curie
(using ssh, fanout=128, command="echo ok")

induced by NFS, LDAP, etc.) by using a properly con-
figured root superuser.

To measure the command propagation time, we re-
motely execute a command with the help of the clush
command-line tool which is part of the ClusterShell
framework. A command option allows an easy setup of
the topology configuration file as seen in section 4.2.2.

For the experiment, we chose the command echo ok
which has a negligible execution time and still enables
some parsing code to be covered with a lightweight pay-
load. Figure 11 presents the execution time of this com-
mand on up to 4828 remote nodes, with different exe-
cution models: basic model with a fixed fanout value
(sliding window), tree-based propagation model with a
varying number of gateways. pdsh v2.18 was used as a
reference (using a fanout of 128, which we found to be
the optimal value).

In basic execution mode (gw=0), clush’s curve looks
smoother than pdsh’s one. Also, execution time is
slightly lower, which is probably due to the event-based
epoll(7)-based engine.

In distributed mode, with a single level of gateways,
clush induces a constant overhead of about 300 ms,
which is slightly noticeable on this figure at the left-
most part of the graph. This overhead is rapidly hid-
den by the gain of using a distributed command propa-
gation (at about 250 nodes). The performance gain of
the tree-based propagation is significant when increas-
ing the number of gateways.

5 Related works

Several solutions exist to distribute administration tasks
on parallel systems.

In terms of integration, these approaches can be clas-
sified in two categories: those providing a library API,
like func16 or fabric17, and standalone applications
like pdsh [16] or gexec18. ClusterShell combines both
approaches by providing a library and tools built on top
of it. Also, unlike other tools like gexec, ClusterShell
does not require installation of an additional daemon on
remote nodes.

In terms of scalability, existing solutions can also be
classified in two categories, those that streamline direct
commands, like capistrano19, and the ones that prop-
agate commands through a scalable (eg. hierarchical)
scheme like taktuk [17].

Developed to facilitate production on large-scale sys-
tems, ClusterShell leverages the best of both ap-
proaches. Indeed, ClusterShell provides a convenient
and scalable Python library along with efficient admin-
istration tools, especially designed for HPC clusters.

6 Conclusion

In this paper, we have presented ClusterShell, a
lightweight Python framework used daily in produc-
tion on the largest CEA HPC Linux clusters. Sys-
tem administrators and developers at CEA are work-
ing very closely, and this cooperation allowed us to im-
prove the ClusterShell library to address the wide area
of needs that administrators express for compute clus-
ters as well as storage, post-processing clusters and even
server farms.

From a Python performance perspective, limitations we
faced were not the ones we initially expected. Also, by
using original and creative techniques, we managed to
circumvent common pitfalls.

Today, ClusterShell is used as a building block for
other HPC software projects, such as Shine [4], an
open source solution designed to setup and manage the

16https://fedorahosted.org/func/
17http://fabfile.org/
18http://www.theether.org/gexec/
19https://github.com/capistrano/capistrano

https://fedorahosted.org/func/
http://fabfile.org/
http://www.theether.org/gexec/
https://github.com/capistrano/capistrano

2012 Linux Symposium • 85

LustreTM file system on a cluster, or Sequencer [21], an
open source tool to efficiently control hardware and soft-
ware components in HPC clusters.

We also presented the scalable execution engine of
ClusterShell and the performance experiments we con-
ducted, reflecting the success of our approach on large
homogeneous clusters.

References

[1] Top 500 supercomputer sites.
http://www.top500.org/, 2012.

[2] Oracle and/or its affiliates. LustreTM 2.0
Operations Manual, 2011.

[3] David Beazley. Inside the Python GIL, 2009.

[4] CEA. Shine, Open Source Lustre management
tool.
http://lustre-shine.sourceforge.net/.

[5] CEA, CNRS and INRIA. CeCILL and Free
Software.
http://www.cecill.info/index.en.html.

[6] Brooks Davis, Michael AuYeung, Matt Clark,
Craig Lee, Mark Thomas, James Palko, and
Robert Varney. Lessons learned building a
general purpose cluster. In Proceedings of the 2nd
IEEE International Conference on Space Mission
Challenges for Information Technology, SMC-IT
’06, pages 226–234, Washington, DC, USA,
2006. IEEE Computer Society.

[7] Allan R. Hoffman et. al National Academies.
Supercomputers: Directions in Technology and
Applications. The National Academies Press,
1989.

[8] L. Gammo, T. Brecht, A. Shukla, and D. Pariag.
Comparing and evaluating epoll, select, and poll
event mechanisms. In Proceedings of the 6th
Annual Ottawa Linux Symposium, volume 19,
2004.

[9] Guillaume Huard. Kanif, a TakTuk wrapper for
cluster management and administration.
http://taktuk.gforge.inria.fr/kanif/,
2007.

[10] Red Hat Inc. et al. Red Hat Enterprise Linux 6
cluster administration, configuring and managing
the high availability add-on, 2011.

[11] Morris A. Jette, Andy B. Yoo, and Mark
Grondona. Slurm: Simple linux utility for
resource management. In Lecture Notes in
Computer Science: Proceedings of Job
Scheduling Strategies for Parallel Processing
(JSSPP) 2003, pages 44–60. Springer-Verlag,
2002.

[12] Dan Kegel. The C10K problem.
http://www.kegel.com/c10k.html, 2003.

[13] Donald Knuth. The Art of Computer
Programming, Volume 3: Sorting and Searching,
Third Edition. Addison-Wesley, 1997.

[14] D. Libes. Choosing a name for your computer.
RFC 1178 (Informational), August 1990.

[15] LLNL. Genders. https://computing.llnl.
gov/linux/genders.html, 2007.

[16] LLNL. Pdsh. https:
//computing.llnl.gov/linux/pdsh.html,
2007.

[17] Cyrille Martin. Déploiement et contrôle
d’applications parallèles sur grappes de grandes
tailles. PhD thesis, Institut National
Polytechnique de Grenoble, France, 2004.

[18] Hiroyuki Mishima and Jun Ni. Rocks Cluster
Installation Memo. Technical report, Medical
Imaging HPC & Informatics Lab, 2008.

[19] Konstantin Shvachko, Hairong Kuang, Sanjay
Radia, and Robert Chansler. The hadoop
distributed file system. In Proceedings of the
2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10,
pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[20] Simon Fraser University. ClusterAdmin - HPC
wiki. https:
//wiki.cs.sfu.ca/HPC/ClusterAdmin, 2010.

[21] Pierre Vignéras. Sequencer: smart control of
hardware and software components in clusters
(and beyond). In Proceedings of the 25th
international conference on Large Installation

http://www.top500.org/
http://lustre-shine.sourceforge.net/
http://www.cecill.info/index.en.html
http://taktuk.gforge.inria.fr/kanif/
http://www.kegel.com/c10k.html
https://computing.llnl.gov/linux/genders.html
https://computing.llnl.gov/linux/genders.html
https://computing.llnl.gov/linux/pdsh.html
https://computing.llnl.gov/linux/pdsh.html
https://wiki.cs.sfu.ca/HPC/ClusterAdmin
https://wiki.cs.sfu.ca/HPC/ClusterAdmin

86 • ClusterShell, a scalable execution framework for parallel tasks

System Administration, LISA’11, pages 4–4,
Berkeley, CA, USA, 2011. USENIX Association.

	ClusterShell, a scalable execution framework for parallel tasks
	S. Thiell & A. Degrémont & H. Doreau & A. Cedeyn
	Introduction
	Cluster naming scheme
	The nodeset notation
	Node groups
	Working with nodesets
	nodeset folding
	Node groups regrouping

	Scalability challenges with CPython
	Parallel programming
	RangeSet performance
	fastsubprocess

	Scalable execution framework
	Vertical scalability
	Horizontal scalability
	Communication within the tree
	Adaptive propagation

	Experiments

	Related works
	Conclusion

