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Abstract

Linux MD software RAID1 is used ubiquitously by end
users, corporations and as a core technology compo-
nent of other software products and solutions, such as
the VMware vSphere®Storage Appliance  (vSA). MD
RAID1 mode provides data persistence and availability
in face of hard drive failures by maintaining two or more
copies (mirrors) of the same data. vSA makes data avail-
able even in the event of a failure of other hardware and
software components, e.g. storage adapter, network, or
the entire vSphere®server. For recovery from a failure,
MD has a mechanism for change tracking and mirror
synchronization.

However, data synchronization can consume a signifi-
cant amount of time and resources. In the worst case
scenario, when one of the mirrors has to be replaced
with a new one, it may take up to a few days to syn-
chronize the data on a large multi-terabyte disk volume.
During this time, the MD RAID1 volume and contained
user data are vulnerable to failures and MD operates be-
low optimal performance. Because disk sizes continue
to grow at a much faster pace compared to disk speeds,
this problem is only going to become worse in the near
future.

This paper presents a solution for improving the syn-
chronization of MD RAID1 volumes by leveraging in-
formation already tracked by file systems about disk uti-
lization. We describe and compare three different im-
plementations that tap into the file system and assist the
MD RAID1 synchronization algorithm to avoid copying
unused data. With real-life average disk utilization of
43% [3], we expect that our method will halve the full
synchronization time of a typical MD RAIDI1 volume
compared to the existing synchronization mechanism.
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1 Introduction

RAID arrays have gained a wide popularity over the last
decade. By maintaining data redundancy, they provide a
cheap solution for data availability, fault tolerance, and
scalability in the event of hardware and software fail-
ures [2]. Some of the popular RAID implementations
include RAID1, which maintains two or more identical
copies of the data over physically separate storage de-
vices, and RAID10 which augments RAID1 with data
striping. RAID arrays can be implemented at hard-
ware level, e.g., RAID hardware adapters, as a software
product, e.g., Linux MD RAID driver, or as a part of
more robust and complex applications, e.g., VMware
vSphere®Storage ApplianceTM (vSA).

In RAIDI, the loss of one copy of the data due to a
component failure (e.g., hard drive) is typically followed
by an administrative operation, that replaces the failed
component with a new one. As part of this, all data
needs to be copied (synchronized) to the newly added
component. This restores the data redundancy and fault
tolerance characteristics. However, storage size has
grown exponentially over the recent years, while data
access latency and bandwidth improvement rate is sig-
nificantly smaller. For large arrays, this results in hours
during which the array functions below its optimal per-
formance and reliability. Before the synchronization
is complete, additional failures may result in data loss
and/or unavailability. Therefore, it is very important to
minimize synchronization time. In our work, we advo-
cate a new, easy to implement method that reduces the
amount of data that needs to be synchronized and con-
sequently decreases the synchronization time.

We implemented our method in the Linux MD soft-
ware RAID1 driver and integrated it with the VMware
vSA product. The key observation behind our method
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Figure 1: vSA architecture overview.

is that, since the synchronization is in the block device
layer, the MD RAID1 mirroring driver needlessly syn-
chronizes unallocated file system blocks, in addition to
blocks containing useful data. We investigated three
different approaches of transferring the unused block
list from the file system to the synchronization algo-
rithm. All three approaches populate the unused block
list and change synchronization logic to take a list of
unallocated blocks into account. They require minimal
changes to the existing MD RAIDI1 control flow.

The approaches differ in how the unused data blocks are
obtained. The first approach leverages user space file
system utilities (specifically, e2fsprogs in an EXT4
file system) to obtain a list of unused file system blocks.
A user space helper application uses the list to construct
a bitmap representing the blocks that are currently in use
by the file system. It then passes the bitmap to the MD
RAIDI1 kernel driver, where it is used to skip copying
the disk blocks that are not in use by the file system.
The second approach continuously tracks the blocks not
in use by the file system by intercepting discard requests
to the block device (called REQ_DISCARD in the Linux
kernel). The final, hybrid approach, avoids the overhead
of maintaining in-memory unused block state of the pre-
vious approach, while also taking advantage of a user
space helper, albeit in a way which is much simpler and
independent of file-system implementation. It utilizes

the Linux kernel FITRIM ioctl to force the file system
to send REQ_DISCARD requests for unused blocks.

2 vSphereStorage Appliance

Linux MD RAID is not only widely used by the end
users, it is also an important building block for larger
and more complex software products. One such ex-
ample is the vSphere®Storage Appliance’" (vSA) devel-
oped by VMware and released as a commercial product
last year [1]. This software provides shared storage ben-
efits such as reliability, availability, and shared access
without needing to buy complex and expensive special-
ized shared storage hardware. The high level architec-
ture of the vSA storage stack is presented at Figure 1.
vSA consists of two or more hardware nodes with ESX
server installed, running a virtual machine with Linux
and vSA software.

The vSA software exports data to clients through the
NFSv3 protocol. EXT4 file system is used to store the
user data. In order to provide reliability and availabil-
ity, the Linux MD RAID driver is utilized to duplicate
data between the hardware nodes. Access to the remote
node storage is done through the iSCSI protocol over the
network. Data synchronization speed between nodes is
often limited by the 1Gbit network link. Because vSA



targets the small and medium business (SMB) market,
cost savings is an important criteria. Therefore, an up-
grade to a 10Gbit network is often undesirable due to the
high cost involved in replacing not only network cards
but routers, switches, and other infrastructure compo-
nents.

In this environment, optimization of data transfers is
very important. Without our mechanism, it takes ap-
proximately 5 hours to synchronize a typical 2TiB vSA
data volume after one of the nodes was replaced. During
this time, the vSA functions in degraded mode with de-
creased performance and without fault tolerance. With
our mechanism in place and an average storage utiliza-
tion of 43% [3], this critical time is reduced to slightly
more than 2 hours. We believe that not only vSA, but
other projects and products involving storage replication
would benefit from our mechanism.

3 Control flow

Our method introduces changes to the MD RAID1 ar-
ray algorithm only during array synchronization. There-
fore, there is no additional run-time overhead for any ar-
ray functions in regular or degraded modes compared to
vanilla Linux MD driver. Our mechanism comes into
play whenever RAID synchronization is triggered auto-
matically or upon user request.

Upon receiving such request, depending on whether
a full or incremental synchronization is required, the
vanilla Linux MD driver copies either all blocks to the
new block device, or only those blocks marked in the in-
ternal write-intent MD bitmap as changed since the time
the array was healthy and fully synchronized. If a write
request arrives while synchronization is in progress, the
MD RAID driver pauses the synchronization process
until the write operation is complete on all disks. This
prevents race conditions between synchronization and
regular writes.

In all of our approaches, any IO error encountered by the
RAID block devices used by MD is reported to a user
mode helper program. In case of the vSA, this is a Java-
based application referred to as the vSA business logic
software. This helper application is responsible for han-
dling detected IO errors, detecting that a previous hard-
ware failure has been rectified and re-introducing pre-
viously failed block devices back into a degraded MD
RAID volume. Thereby, this helper program controls
the point at which MD synchronization process starts.
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In our mechanism, upon receiving a synchronization re-
quest, the MD driver starts synchronizing blocks marked
in the write-intent bitmap to all degraded devices just
as described above, but it queries an additional in-
use/unused block list. Depending on the actual imple-
mentation, this list might come from a user-space helper
program or from handling an FITRIM ioctl issued to
the file system layered on top of the RAID volume. With
the list of unused blocks, the MD driver can proceed to
synchronize only blocks that are both marked as in-use
and marked in the write-intent bitmap.

While synchronization is in progress, previously unused
blocks may become allocated again, but this is equiva-
lent to the concurrent writes and synchronization case
above. In this case, before any attempt to read such
a block, a write must be issued to initialize the block
data. This write will always be propagated to all devices
during synchronization, as previously described. If no
write was issued to a previously unused block before
reading, an application cannot depend on the read con-
tents of such a block, thus there should be no need to
synchronize it.

There is one important difference in the behavior of the
vanilla Linux MD driver and our modified MD driver.
If a block has been reported as unused to our synchro-
nization mechanism, is subsequently allocated and read
from several times without being written to, the vanilla
Linux MD driver would return the same data on every
read. With our mechanism in place, different reads to
uninitialized data might return different data depend-
ing on the device the read operation was dispatched to.
However, all POSIX-compliant file system returns ze-
roes for reads to unwritten parts of a file. We can not
think of any correctly written code that depends on such
behavior, but if such software exist, it should not be used
with our mechanism.

4 Metadata snapshot

The first approach introduces no run-time overhead to
the I/O and data synchronization paths of the RAID
driver, and is only involved after a hardware failure is
detected and rectified. The approach involves the fol-
lowing steps,

e Obtaining list of unused blocks from the file sys-
tem.
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e Representing the data in an in-use bitmap.

e Injecting the in-use bitmap to MD using a new
ioctl call.

The list of unused blocks is obtained out-of-band by ex-
amining on-disk file system structures. For vSA, this
involves examining the EXT4 file system on the MD
RAID device. dumpe2£fs, a common system utility from
the e2fsprogs package, is used to query file system
metadata and statistics for the EXT2, EXT3 and EXT4
file systems. The vSA business logic software, which
controls disk creation, failure detection and other man-
agement operations, parses dumpe2fs output to gener-
ate a list of unused blocks from the vSA file system.
The list contains ranges of blocks in units of file system
block size. The information is presented for each file
system block group as a comma separated list of unused
block ranges.

The control flow for performing MD re-synchronization
is presented at Figure 2.

The data obtained is used to populate a bitmap repre-
senting blocks that are currently used by the file system.
Instead of extending the existing in-memory write in-
tent state, a separate bitmap was used. The write-intent
bitmap divides the disk into chunks, and keeps track of
which disk chunks have modifications that need to be
synchronized to disks that are currently unavailable. A
separate bitmap enables us to pick a different granularity
for tracking used blocks, with the intent of investigating
optimum granularity for tracking such information. This
flexibility is potentially worth the additional complexity
and memory overhead of maintaining a new bitmap.

The in-use bitmap divides the MD device into equal
sized chunks. A chunk is always larger than the size
of a file system block, and would ideally match the
granularity of an individual synchronization I/O. The
bitmap comprises a series of pages, each covering 32768
chunks. With the additional in-use bitmap, the modified
MD RAID1 synchronization algorithm determines if the
synchronization I/O being performed can be skipped.
The actual changes to the main routine involved are min-
imal.

The in-use bitmap is injected into the MD RAID1 driver
using a new ioctl mechanism. The MD RAID1 driver
is modified to accept a bitmap solely while synchroniza-
tion operation is ongoing. Once the synchronization op-
eration is complete, the bitmap is automatically cleared.

1. Start MD sync

2. Get fs used block list

3. Set MD in-use -
bitmap

‘ Control Application ‘

kernel
‘ File system Ff
| MD RAID1 <
———
. Disk1  Disk2 |

Figure 2: Control flow for MD resync with the metadata
snapshot approach.

This avoids any data consistency issues resulting from
possible malicious use of the interface, and follows good
security practices. Since the VSA business logic soft-
ware completely controls when an MD synchronization
operation occurs, it would not be possible for an out-of-
date bitmap to be applied, avoiding possible data cor-
ruption issues.

S5 Discard request tracking

The second approach of exposing file system unused
block information to the MD driver relies on an already
existing set of functionality present in the Linux kernel.
The Linux block I/O subsystem provides a way to no-
tify hardware that a range of blocks is not in use any-
more by upper layers. A file system might thus send
REQ_DISCARD requests when a file is deleted. The orig-
inal aim of this functionality was to enable more in-
telligent wear-leveling mechanisms for solid-state stor-
age, yet it is used in implementing thin-provisioned
SCSI LUNs and provides the data we need to avoid
synchronizing unused blocks. The method by which
unused block ranges are sent into the block layer is a
REQ_DISCARD I/O request. Just like any other I/O op-
eration, it consists of a start block and the number of
blocks affected, and arrives at the same MD I/O dis-
patch routine handling regular accesses. This implies
that the MD driver has to keep track of blocks being
marked as used and unused. A block is marked as be-
ing unused when a REQ_DISCARD request for it arrives,
and is marked as being in use on a write request. In



practice, there are real-life restrictions that limit the use-
fulness of an approach based purely on live tracking of
REQ_DISCARD requests, as we shall see.

The first idea that comes to mind is to track the in-
use/unused state in the same memory and disk struc-
tures already used to keep track of write intent state.
Using the same memory structures has the implication
of no extra memory overhead!, and the bit twiddling
is done at the same code location and under the same
locks, meaning that the run-time overhead is the least
of other possible approaches. The new state is per-
sisted across reboots by extending the on-disk write in-
tent bitmap with an in-use/unused bit. Of course, the
RAID1 I/O dispatch routine also needs to be changed to
handle REQ_DISCARD block I/O by marking the affected
blocks as unused and finishing the 1/0O.

Unfortunately, in a real life setting, where each bitmap
chunk is significantly larger than the typical 1/O size?,
this approach gives poor results. A typical discard I/O
request acts on a range of kibibytes, usually with a gran-
ularity of 4KiB or so, and such requests are basically
lost without keeping track of discard requests at a finer
granularity than the bitmap chunk. We could maintain a
separate bitmap, say at 4KiB granularity, but the mem-
ory overhead of such a bitmap are enormous at typi-
cal capacities>. The disk persistence is an additional
problem. Extending the write-intent bitmap carries the
same granularity issues present with reusing the in-
memory state, while maintaining a separate more gran-
ular bitmap would result in additional disk 1/Os, lower-
ing the write performance. Additionally, the change in
internal RAID metadata brings upgradeability implica-
tions where the existing structures need to be replaced
by larger ones.

Support of upgrade from an earlier version of MD meta-
data to a newer one aware of the in-use/unused blocks,
means we need to have some method of registering
blocks not in use by the file system with MD. Fortu-
nately, there is no need for a new interface to achieve
this. The FITRIM file system ioctl causes the file
system to send REQ_DISCARD I/O requests for all un-
used blocks. At the current moment, file systems do not

IWe end up stealing a bit from the per bitmap-chunk field to
describe the new in-use/unused state, which has has the largely ir-
relevant implication of reducing the number of concurrent I/O per
block chunk from 16383 to 8191.

2For a 100MiB disk, the default bitmap chunk is 4KiB, while for
a 10TiB disk, the bitmap chunk size is usually 64MiB.

3 A 10TiB disk would need a 320MiB bitmap.
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persist in-use/unused knowledge across remounts, thus
FITRINM is a sufficient method to initialize our MD in-
use/unused state. Given the issues with on-disk persis-
tence, we might as well rely on FITRIN to initialize our
in-memory state after mounting the file system.

To address the issues surrounding tracking REQ_
DISCARD requests, we can switch from a bitmap to a
data structure that makes it more convenient to store un-
used block ranges. Such a structure is a special interval
tree that coalesces overlapping and sequential ranges,
implemented using a red-black tree. The time complex-
ity is O(logn), especially if you assume the total num-
ber of intervals to be pretty low. The changes to MD to
enable the use of discard ranges as an optimization are
minimal, and the synchronization overhead can be mit-
igated by employing a relativistic red-black tree algo-
rithm [4] instead of the default Linux rb-tree implemen-
tation. The Achilles heel of this approach, however, is
the worst-case memory overhead. An access pattern of
small discards, such as interleaved 4KiB accesses, will
result in an overhead 32 times worse than the equiva-
lent overhead of using a bitmap with 4KiB granularity.
Some of this can be mitigated by enforcing a minimum
granularity and pruning the range tree based on mem-
ory pressure, but all of this added complexity basically
nullifies the original advantages of storing ranges.

6 Hybrid Approach

The previous approach to tracking REQ_DISCARD re-
quests relies on the assumption that it is typical to expect
discard requests over the normal lifetime of an on-line
RAID array with a mounted file system. However, that
is not the case. While a file system like EXT4 certainly
could be mounted in a way that will generate discard
requests for every file erase, that was generally avoided
in older kernels due to discard requests being processed
synchronously and acting as barriers, impacting I/O per-
formance. If we consider that we always issue FITRIM
during RAID synchronization, then we just have to han-
dle REQ_DISCARD requests during synchronization time.
At synchronization time we can employ simple logic to
track consecutive discards, marking the affected chunks
in the separate bitmap as not in use. This is effectively
the combination of the first approach with first idea con-
sidered in the previous section, without the on-disk per-
sistence changes and with a more intelligent and restric-
tive algorithm for marking chunks as being not in use.
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Figure 3: Control flow for MD resync with the hybrid
approach.

It is better than the previous approach to tracking dis-
cards because it covers the case of out-of-order small
discards that ultimately add up to a larger unused
block—we let the file system handle coalescing and or-
dering these at FITRIM time. Using a separate bitmap,
with a granularity smaller than the write intent bitmap,
improves the case where the write intent chunk size is
too large to effectively use this algorithm.

The control flow for performing MD re-synchronization
is presented at Figure 3.

7 Discussion

Each of the above approaches to obtain the list of unused
blocks has its own advantages and disadvantages. The
main advantage of using a file system metadata is its in-
dependence on the Linux kernel version deployed on the
system. Certain distributions, such as all versions of Red
Hat Enterprise Linux or SUSE Enterprise Linux, except
the latest SLES11SP2, do not support REQ_DISCARD or
FITRIM functionality. This makes usage of a user space
helper the only way to get the list of unused blocks,
given that back porting changes to the kernel block I/O
subsystem and file systems is no trivial matter. This ap-
proach does not depend on kernel version, which makes
it applicable to most of currently deployed systems. An-
other advantage is that more functionality remains in
user space, which makes the code more reliable and eas-
ier to debug. The disadvantage of this approach is its
dependence on user mode utilities which are not stan-
dardized, which are file system-dependent, and which
may change their output format in future versions.

The advantage of discard request tracking is in the trans-
parency of the approach. There is no need for any-
thing special to occur to make use of this functionality
to improve synchronization, other than ensuring that the
file system generates discard requests for erased files.
The disadvantage of live tracking is in its memory con-
sumption. The bitmap based approach, with a suffi-
ciently small granularity to achieve effectiveness, would
consume an additional 300MiB of kernel memory. A
range-based approach would scale the memory usage,
but become effectively unbounded with severe file sys-
tem fragmentation. Therefore, we would prefer the hy-
brid approach.

The advantage of obtaining the list of unused blocks
through FITRIM ioctl command is in the use of a stan-
dard interface, recommended for use by all general pur-
pose file systems. In current kernels, the FITRIM in-
terface supported by EXT3, EXT4, btrfs, xfs, ocfs, and
others. We would, however, like to see better defined
documentation on FITRIM behavior. For example, to
the best of our knowledge, the ordering of blocks to
be discarded is not described, nor are any guarantees
regarding the blocks reported for file systems that per-
sist discarded block information. This allows some file
system implementations to report unused blocks out-of-
order, or to only report changes since the last FITRIM
even across remounts, both of which will negatively af-
fect the hybrid approach.

8 Conclusion

In this paper, we proposed a new method for RAID array
synchronization. This method requires minimal changes
to the existing Linux kernel code. It reduces synchro-
nization time by a factor of two in the common case,
thus improving reliability and performance of the RAID
array.

We investigated and compared different implementation
methods and highlighted their strong and weak points.
The optimal granularity of the unused block bitmap
needs to be further investigated, and we are planning
to extend the synchronization improvements to other
RAID levels provided by the MD driver. Furthermore,
the FITRIM kernel interface needs to be better defined
to address the ordering and persistence concerns noted
in the discussion section above.
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