
DEXT3: Block Level Inline Deduplication for EXT3 File System

Amar More
M.A.E. Alandi, Pune, India
ahmore@comp.maepune.ac.in

Zishan Shaikh
M.A.E. Alandi, Pune, India
zishan366shaikh@gmail.com

Vishal Salve
M.A.E. Alandi, Pune, India
vishaluttamsalve@gmail.com

Abstract

Deduplication is basically an intelligent storage and
compression technique that avoids saving redundant
data onto the disk. Solid State Disk (SSD) media have
gained popularity these days owing to their low power
demands, resistance to natural shocks and vibrations and
a high quality random access performance. However,
these media come with limitations such as high cost,
small capacity and a limited erase-write cycle lifespan.
Inline deduplication helps alleviate these problems by
avoiding redundant writes to the disk and making effi-
cient use of disk space. In this paper, a block level in-
line deduplication layer for EXT3 file system named the
DEXT3 layer is proposed. This layer identifies the pos-
sibility of writing redundant data to the disk by main-
taining an in-core metadata structure of the previously
written data. The metadata structure is made persistent
to the disk, ensuring that the deduplication process does
not crumble owing to a system shutdown or reboot. The
DEXT3 layer also takes care of the modification and the
deletion a file whose blocks have been referred by other
files, which otherwise would have created data loss is-
sues for the referred files.

1 Introduction

While data redundancy was once an acceptable part of
the operational backup process, the rapid growth of dig-
ital content storage has made organizations approach
this issue with a new thought process and look for other
ways to optimize storage utilization. Data deduplication
would make disk more affordable by avoiding backing
up redundant data.

Data deduplication is basically a single-instance storage
method which helps in reducing the storage needs by
eliminating redundant data. Only one instance of the
data is actually stored and the redundant data, which
will not exist physically, is just a pointer to the unique

data. For example consider an example of an email sys-
tem which may contain 100 instances of a 10 MB at-
tachment. If the entire system was to be backed up, all
100 instances would be saved requiring 1000 MB of disk
space. With deduplication in place, only 10 MB of one
instance would actually exist and the other redundant
instances would just be a pointer to this unique instance
saving precious disk space.

Data deduplication generally works at the file or block
level. The latter outperforms the former because file
level deduplication would work for files that are same as
a whole; whereas block level deduplication would work
for blocks (a constituting part of the file) as a whole.
Each chunk or block of data, that is about to be writ-
ten to the disk, is subjected to hash algorithm such as
MD5. This process generates a unique hash value for
each block, which is stored in a database for further
referral. If a file is updated, then only the added or
changed data is stored, and disk storage is allocated only
for these parts. In our work, we present an implemen-
tation of an inline block level deduplication layer added
to the EXT3 file system, named as the DEXT3 layer.

2 Related Work

2.1 Types of Deduplication

Deduplication has various implementation approaches
which can be significantly classified by their resiliency
level (file vs. block) or by when they perform dedu-
plication (inline vs. post-process) or by their method
of duplicate data detection (hash vs. byte wise com-
parison). As stated earlier, inline deduplication is a
strategy in which the duplicate data is identified be-
fore it hits the disk. Post-process deduplication is a
strategy in which the data is first written to the disk
and then de-duplication processing occurs in the back-
ground. In hash-based strategies, the process uses cryp-
tographic hashes to identify duplicate data whereas byte
wise strategies compare the data itself directly.

• 87 •



88 • DEXT3: Block Level Inline Deduplication for EXT3 File System

2.2 Deduplication Targets

Venti [1] and Foundation [2] both perform deduplication
with respect to a fixed block size. Venti is basically an
archival system. Foundation is a system that stores snap-
shots of various virtual machines and also uses Bloom
filters to detect potential duplicates on the system.

The NetApp deduplication function [3] for file servers
is used in integration with WAFL and FlexVol [4] and
makes use of hashes to find duplicate data blocks. In
this system, hash collisions are resolved through byte by
byte comparison. This process runs in the background,
therefore making it a post-process deduplication system.

The LBFS [5], Data Domain [6], HYDRAstor [7],
REBL [8] and TAPER [9] identify and detect potential
duplicates using content-defined chunks.

2.3 Deduplication Performance and Resources

The Data Domain [6] is a deduplication system that
makes use of the spatial locality of data in a given
backup stream to improve the performance of searching
for hash metadata of the same data stream.

Sparse indexing [10] is a technique of deduplication
that reduces the size of the data information kept in the
RAM. It achieves this by sampling data hashes of data
chunks.

These processes work fine with large data sets in a pro-
vided locality; however, we have to assume that the ac-
cess patterns have small or no locality in a primary stor-
age system.

2.4 Performance With Solid State Disks (SSD)

It is generally efficient to use fast devices like Solid State
Disks for frequently used data. Chunkstash [12] and
dedupv1 [11] make use of solid state disks for metadata.
SSD and metadata is a good combination, mainly be-
cause I/O operations for metadata are always small and
random.

3 DEXT3 design

The proposed design works on the following two prin-
ciples:

1. Provide a working file system which tries to save
space and avoid redundant disk writes.

2. Organize the in-core data structure efficiently and
make it persistent to the disk.

In order to find the potential duplicates, the write sys-
tem call invoked by the kernel is intercepted in the VFS
itself. The data that is about to be written to the disk
is available in a buffer in the write system call. This
buffer is then broken into chunks of 4 kB each, owing
to the 4 kB block size design of the kernel. These 4 kB
blocks are compared with the data that has been previ-
ously written. If the new data block matches any previ-
ously written block, then instead of writing out the new
block, the file’s metadata is updated to point to the ex-
isting block on disk.

In order to identify potential duplicate blocks efficiently,
an in-memory mapping of data hashes and the corre-
sponding block numbers of the data is maintained. This
mapping is created whenever there is a successful write
to the disk. When control stays within the VFS, the hash
value of block data is inserted into the data structure,
and when the file system allocates a block to this data,
its block number is stored in the data structure. In or-
der maintain correct file system behaviour, another field
is added in the data structure which maintains the ref-
erence count of the block, which indicates how many
times a particular block has been used. This count is
used whenever the kernel is about to release a block.

Deduplication could be implemented in a block layer
device driver, which sits in between the file system layer
and the actual underlying block device. This approach
has the advantage that it is general and can be used for
any file system. However, this extra layer of indirection
incurs a performance penalty. The proposed implemen-
tation simply uses the existing block pointers in file sys-
tem metadata, regardless of whether the pointer points
to a regular block or a deduplicated block.

The system may be shut down or rebooted at any time.
Being held in memory, the entire data structure would be
lost, and after the system restarts again, the kernel would
be unaware of the deduplicated blocks. Deleting a file
whose blocks have been deduplicated would cause data
loss issues to the referring files. The user might modify
the file whose blocks have been referred by other files.
This will still cause issues to the files which point to the
blocks contained by the file being modified. All these
issues would be handled in the proposed design.



2012 Linux Symposium • 89

Next Pointer (8 Bytes)

Usage Count (2 Bytes)

Block Number (4 Bytes)

MD5 Hash Value (16 Bytes)

Figure 1: Node Structure of Dedupe Database

4 Implementation Details

DEXT3, a version of the EXT3 filesystem is imple-
mented for Linux to provide on-the-fly inline block-
level deduplication. DEXT3 is written for the Linux ker-
nel version 2.6.35. The occurrence of duplicate data is
detected in the write system call itself and then controls
block allocation when the control of the kernel flows
to the file system. The block de-allocation process of
the file system is also modified in order to avoid freeing
deduplicated blocks. The coming sections explain the
design in detail.

4.1 Dedupe Database and Working of Deduplica-
tion Mechanism

The dedupe database is basically a data structure that
maintains metadata with respect to the chunk of data
that was previously written to the disk. The data struc-
ture that has been implemented is hash table with linear
chaining. The size of the table is static, but the size of
the chain is dynamic and grows as entries are added to
the structure.

Figure 1 shows the structure of a node in this chain. The
node occupies a total 30 bytes in size. The size of this
node is fixed. The fields of this node describe the data
chunk written to the disk in detail, that is, its hash value,
the block number allocated by the kernel and the usage
count which shows how many times the block with this
block number has been referred by files. This field is
useful in handling block de-allocation.

Following two hash functions are used by DEXT3:

MD5 Message Digest 5

FNV Fowler Nollvo hash

MD5 is used to generate hash value of the 4 kB data
chunk which is intercepted in the write system call. This

Calculate Hash
Fingerprint

Incoming Data

Dedupe
Data

Structure

Create New 
Inode

Create New Inode
But Point To Already
Existing Data Blocks 

Write Data To
New Disk Blocks

Write Hash Value
To Data Structure

Is Hash 
Present?

Yes

No

Figure 2: Working of the DEXT3 layer

hash value is then used for checking redundant and du-
plicate data in the write system call.

The FNV hash is used to build the data structure itself.
This function returns an integer hash value of 32-bits.
This value is further truncated to 21-bits to keep the
memory requirements optimal. So with a 21-bit FNV
hash, a total 2097152 indices could be used to build the
table. At every index one linear chain is maintained.
The structure of a node in this chain is as stated in Fig-
ure 1.

First the 16-byte hash value of the 4 kB data chunk is ob-
tained. Then the same chunk is subjected to FNV hash
to obtain an index in the linear chain. The MD5 hash
is inserted in this chain, and at a later stage when the
kernel allocates a block to this data chunk, the newly al-
located block number is stored in the same node and the
usage count of this node is initialized to 1.

Before inserting the hash value in the chain, the chain
lookup is performed. If the lookup fails, then the data
is new and therefore not redundant, and the kernel is al-
lowed to follow its normal allocation routines. However
if the lookup succeeds, then the data is redundant. The
usage count of the matching node is incremented, and
the kernel does not allocate a new block for this data.
This entire process is carried out before the data chunk
is actually allocated a block on to the disk. Figure 2
explains the above stated design.

4.2 Main File Deletion and Modification

The deletion of a file whose blocks are referred by other
files would cause data loss issues. To prevent this un-
likely event, another data structure called the character



90 • DEXT3: Block Level Inline Deduplication for EXT3 File System

bitmap is introduced. This bitmap is a character array
that maintains the deduplicated status of all the blocks
available in the file system. The bitmap status of a block
is set to deduplicated (i.e. 1), whenever we end up per-
forming a successful lookup in the linear chain for that
block number. It would imply that the block has now
been referred by more than one files. The status of a
block remains 0 in the bitmap if it has never been dedu-
plicated. The bitmap is efficient in terms of both mem-
ory and lookup. Each byte in the array can hold the
status of eight blocks at once. Looking up the status of
a block involves a single logical AND operation.

Before the kernel goes deeper into file deletion, the
DEXT3 layer first decrements the usage count of all the
blocks held by the target file. If the usage count of a
block reaches zero, it means that the file about to be
deleted is the last file to ever refer this block. So the
layer:

1. Deletes its node from the chain

2. Updates its bitmap status to zero

If the usage count does not reach to zero, the DEXT3
layer simply allows the kernel to proceed to the next
step.

The next step in file deletion is releasing the blocks held
by the file. When the kernel is about to de-allocate and
release a specific block, the DEXT3 layer first checks
the deduplicated status of that block in the bitmap. If
the status returned is 1, it means that there are files in
the file system those still refer to this data block and re-
leasing this block would be problematic. In this case the
DEXT3 layer does not allow the kernel to release this
block. Owing to this strategy, even if the main file in-
ode has been deleted, if it holds any deduplicated block,
then those blocks would still be available for use by the
deduplicated files. Figure 3 and 4 explain this design.

The next challenge is to handle the modification of a file
whose blocks have been deduplicated. Once again, this
would cause data loss issues to the deduplicated blocks.
Whenever a file is modified, such as via an editor, the
kernel is asked to do the following things:

1. De-allocate the current inode

2. Allocate a new inode

File Deletion
Initiated

No

Decrement Usage
Count of All Blocks
Belonging to File

Is Usage
Count = 0?

Return
Delete Entry From

DS, Update
Bitmap and Return

Yes

Figure 3: File Deletion Phase - I

Blocks About to
be Released

No

Check Dedupe State
of Each Block in

Bitmap

Is Status
= 1?

Release the 
Block

Do Not Release
the Block

Yes

Figure 4: File Deletion Phase - II

When the kernel deletes the current inode, it de-allocates
the blocks that are currently held by the file. When a
block is about to be allocated, the control is as shown in
Figures 3 and 4.

When the kernel allocates a new inode to the file, the
control flows through the write system call again. As the
DEXT3 layer exists in the write system call, the control
flow is as shown in Figure 2.

4.3 Permanent Data Structure

The entire DEXT3 database resides in the memory and
is therefore volatile. Whenever the system is shutdown
or rebooted, this highly precious information is lost.
After the system boots again, the kernel is unaware of
which block has been deduplicated. If it were about to
release a block, then it would have directly released that
block, even it was deduplicated earlier. To prevent this
catastrophic event, the data structure is made persistent
to the disk. When the system boots and the deduplica-
tion process starts again, data structure is rebuilt from
this saved information. The bitmap is not flushed to the
disk. Instead when the data structure is rebuilt, at the



2012 Linux Symposium • 91

% of Partition Saved Disk
Deduplication Capacity (GB) Space (GB)

0 136 0
10 150 14
20 164 28
30 177 41
40 190 54
50 204 68

100 272 136

Table 1: Statistics with respect to the data structure

same time the bitmap is updated. This strategy keeps the
kernel informed about the deduplicated status of each
block even if the system is booted any number of times.
This also helps to maintain and start the deduplication
process from the point where it had stopped due to sys-
tem shutdown.

5 Statistics for Disk Space Saving using
DEXT3

5.1 Statistics With Respect to the Data Structure

Considering the number of nodes in a linear chain to be
17, we calculate the following statistics: With 17 nodes
present at each of the 2097152 indices in the table, the
size of the data structure goes up to nearly 1 GB. With
this 1 GB of metadata, the layer manages 136 GB of data
stored on to the disk, without any possibility of dedupli-
cation.

In the entire structure, if 10% of blocks have been dedu-
plicated, then the partition capacity rises virtually to
150 GB saving nearly 14 GB of disk space. With 100%
deduplication, partition capacity doubles to 272 GB,
saving complete 136 GB disk space.

5.2 Statistics With Respect to File Size

Considering the size of a file to be 4 GB, the total num-
ber of blocks that would be allocated to this file would
be 1049612.

6 Conclusion

The statistics and results were encouraging and indicate
how DEXT3 is able to save significant amount of disk

% of Dedup- Total Blocks Saved Disk
licated Blocks Saved (GB) Space (MB)

10 104961 410
20 209922 820
30 314884 1230
40 419845 1640
50 524806 2050
100 104961 4100

Table 2: Statistics with respect to the File Size

space and reduce the number of disk writes. The mem-
ory requirements remain optimal. Including deduplica-
tion in the kernel introduces a little overhead in the sys-
tem performance. Though on one hand we introduce
this overhead, on the other hand DEXT3 provides sig-
nificant cost, space and energy savings. We view this
as acceptable since performance gain is not the primary
goal, rather our goal is to avoid writes and achieve space
savings. The DEXT3 layer does not modify any other
filesystem metadata other than the inode. The inode is
updated at run time itself, so there is no need to update
the file system metadata explicitly. The persistent data
structure strategy makes it possible to rebuild the data
structure after system boot. Almost all the applications
that use solid state disks for primary storage make use
of the existing and standard file systems. Providing a
simple DEXT3 layer is crucial in order to promote real
world use. The original FFS in UNIX added disk aware-
ness to an otherwise hardware oblivious filesystem. We
find block level inline deduplication i.e. DEXT3 as a
crucial and important layer of SSD limitations. More
importantly, as the industry transitions away from the
spinning disks towards solid state devices, this kind of
approach, as we see, will become increasingly critical.

References

[1] S. Quinlan and S. Dorward, Venti: a new approach
to archival storage. The First USENIX conference
on File and Storage Technologies (Fast ’02), Jan-
uary 2002.

[2] S. Rhea, R. Cox and A. Pesterev, Fast, inex-
pensive content-addressed storage in Foundation.
The 2008 USENIX Annual Technical Conference,
June 2008.

[3] C. Alvarez, NetApp deduplication for FAS and
V-Series deployment and implementation guide.
Technical ReportTR-3505, January 2010.



92 • DEXT3: Block Level Inline Deduplication for EXT3 File System

[4] S. Rhea, R. Cox and A. Pesterev, Fast, inex-
pensive content-addressed storage in Foundation.
The 2008 USENIX Annual Technical Conference,
June 2008.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres,
A low-bandwidth network file system. The 18th
ACM Symposium on Operating Systems Princi-
ples (SOSP), Banff, Alberta, Canada, October
2001.

[6] B. Zhu, K.Li, and H. Patterson, Avoiding the disk
bottleneck in the Data Domain deduplication file
system. The 6th USENIX Conference on File and
Storage Technologies (FAST ’08), February 2008.

[7] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski, C. Un-
gureanu, and M. Welnicki, HYDRAstor: a scal-
able secondary storage. The 7th USENIX Con-
ference on File and Storage Technologies (FAST
’09), February 2009.

[8] P. Kulkarni, F. Douglis, J. Lavoie, and J. M.
Tracey, Redundancy elimination within large col-
lections of files. The 2004 Usenix Annual Techni-
cal Conference, June-July 2004.

[9] N. Jain, M. Dahlin, and R. Tewari, TAPER: tiered
approach for eliminating redundancy in replica
synchronization. The 4th USENIX Conference on
File and Storage Technologies (FAST ’05), De-
cember 2005

[10] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise and P. Camble, Sparse indexing:
large scale, inline deduplication using sampling
and locality. The 7th USENIX Conference on File
and Storage Technologies (FAST ’09), February
2009.

[11] D. Meister and A. Brinkmann, dedupv1: im-
proving deduplication throughput using solid state
drives (SSD). IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), May
2010.

[12] B. Debnath, S. Sengupta and J. Li, ChunkStash:
speeding up inline storage deduplication using
flash memory. The 2010 USENIX Annual Tech-
nical Conference, June 2010.

[13] Keren Jin, Ethan L. Miller, The Effectiveness of
Deduplication on Virtual Machine Disk Images.
SYSTOR 2009 May 2009, Haifa, Israel.


	DEXT3: Block Level Inline Deduplication for EXT3 File System
	A. More, Z. Shaikh, V. Salve
	Introduction
	Related Work
	Types of Deduplication
	Deduplication Targets
	Deduplication Performance and Resources
	Performance With Solid State Disks (SSD)

	DEXT3 design
	Implementation Details
	Dedupe Database and Working of Deduplication Mechanism
	Main File Deletion and Modification
	Permanent Data Structure

	Statistics for Disk Space Saving using DEXT3
	Statistics With Respect to the Data Structure
	Statistics With Respect to File Size

	Conclusion



