
Experiences with Power Management Enabling on the Intel Medfield
Phone

R. Muralidhar, H. Seshadri, V. Bhimarao, V. Rudramuni, I. Mansoor,
S. Thomas, B. K. Veera, Y. Singh, S. Ramachandra

Intel Corporation

Abstract

Medfield is Intel’s first smartphone SOC platform built
on a 32 nm process and the platform implements sev-
eral key innovations in hardware and software to ac-
complish aggressive power management. It has mul-
tiple logical and physical power partitions that enable
software/firmware to selectively control power to func-
tional components, and to the entire platform as well,
with very low latencies.

This paper describes the architecture, implementation
and key experiences from enabling power management
on the Intel Medfield phone platform. We describe how
the standard Linux and Android power management ar-
chitectures integrate with the capabilities provided by
the platform to provide aggressive power management
capabilities. We also present some of the key learning
from our power management experiences that we be-
lieve will be useful to other Linux/Android-based plat-
forms.

1 Introduction

Medfield is Intel’s first smartphone SOC built on a
32 nm process. The platform implements several key
innovations in hardware and software to accomplish ag-
gressive power management. It has multiple logical and
physical power partitions that enable software/firmware
to selectively control power to functional components
and to the entire platform as well, with very low laten-
cies.

Android OS (Gingerbread/Ice Cream Sandwich) sup-
ports Suspend-to-RAM (a.k.a S3) state by building upon
the traditional Linux power management infrastructure
and uses concepts of wake locks (application hints about
platform resource usage) to achieve S3. The power man-
agement infrastructure in Android requires that appli-
cations and services request CPU resources with wake

locks through the Android application framework and
native Linux libraries. If there are no active wake locks,
Android will suspend the system to S3.

While the S3 implementation in Android helps reduce
overall platform power when the device is not actively
in use, S3 state does not satisfy applications that require
always connected behavior (Instant messengers, VoIP,
etc., need to send “keep alive” messages to maintain
their active sessions). Entering S3 will result in freez-
ing these applications and connections timing out so the
sessions will have to be re-established on resume. The
Medfield platform allows such applications to be active
and yet achieve good power numbers through S0ix, or
Connected Standby states. The main idea behind S0ix
is that during an idle window, the platform is in the low-
est power state as much as possible. In this state, all
platform components are transitioned to an appropriate
lower power state (CPU in Cx state, Memory in Self Re-
fresh, components clock or power gated, etc.). As soon
a timer or wake event occurs, the platform moves into an
“Active state”, only the components that are needed are
turned on, keeping everything else in low power state.
S0ix states are completely transparent to user space ap-
plications.

Figure 1 illustrates how S0ix states impact platform
power states and how this compares with traditional
ACPI-based power management.

This paper is organized as follows. Section 1 is this
introduction. Section 2 presents a background of the
Linux and Android Power Management architecture.
Section 3 describes the key Intel specific power man-
agement components on Medfield platform to achieve
S3 and S0ix. In Section 3, we will describe our experi-
ences with enabling overall Power management, chal-
lenges/issues with handling wake interrupts, handling
suspend/resume/runtime PM in different device drivers,
and some optimizations that we had to implement on

• 35 •

36 • Experiences with Power Management Enabling on the Intel Medfield Phone

Android OSPM -EnabledS3

S3

S0

S0i3 S0i3

S3 - Apps
are

frozen

A
v
e
r
a
g

e
 P

o
w

e
r

Time

User Activity,
Incoming

Call.

Apps acqure
wake locks

to prevent S3

OSPM enables

S0i3

opportunistically

When no

wake locks

are taken,

Android PM

pushes

platform to

S3

Figure 1: Platform Power States with S0ix and S3

the platform. We believe that some of these learning
will be applicable to other Linux/Android-based SOC
platforms as well.

2 Medfield Platform Power Management Ar-
chitecture

Medfield (or Atom Z2460) is Intel’s first 32 nm smart-
phone SOC; the Atom Saltwell core runs at up to 1.6
GHz with 512KB of L2 cache, a PowerVR SGX 540
GPU at 400 MHz, a dual channel LPDDR2 memory
interface (PoP LPDDR2 (2 x 32 bit support)), and ISP
from Silicon Hive, additional I/O, and an external Power
Management delivery unit. Figure 2 shows the high
level architecture of the Medfield SOC platform.

The Saltwell CPU is a dual-issue, in-order architecture
with Hyper Threading support. The integer pipeline
is sixteen stages long—the longer pipeline was intro-
duced to help reduce power consumption by lengthen-
ing some of the decode stages and increasing cache la-
tency to avoid burning through the core’s power bud-
get. There are no dedicated integer multiply or divide
units, they are all shared with the floating point hard-
ware. The CPU supports several different operating fre-
quencies and power modes. At the lowest power level is
its C6 state. Here the core and L2 cache are both power
gated with their state saved in a lower power on-die

SRAM. Total power consumption in C6 of the processor
island is effectively zero. In addition to the 512KB L2
cache there is a separate 256KB SRAM which is lower
power and on its own voltage plane. When Saltwell goes
into its deepest sleep state, the CPU state and some L2
cache data gets parked here, allowing the CPU voltage
to be lowered even more than the SRAM voltage. As
expected, with hyperthreading the OS sees two logical
cores to execute tasks on.

2.1 Core Linux Changes for x86 Smartphones

The Medfield platform is not PC-compatible in several
aspects—no BIOS, no ACPI, no legacy devices, no PCI
enumeration in South complex, no real IOAPIC, etc.
Most of these changes are available in the upstream ker-
nel now. Refer to [2], which discusses more details of
the core kernel changes done for x86-based Intel plat-
forms. This section briefly summarizes the key changes.

The following key changes were made to the underlying
kernel in order to minimize changes from existing IA
operating systems, and also provide software program-
ming compatibility for key components of the platform
(such as, PCI enumeration, IOAPIC interrupt controller,
etc.):

1. Simple Firmware Interface (SFI) to replace ACPI

2012 Linux Symposium • 37

Figure 2: Medfield Platform Architecture

in order to report standard capabilities like CPU P-
states, GPIOs, etc.

2. PCI Enumeration for South complex devices

3. IOAPIC Emulation

2.1.1 Simple Firmware Interface

Simple Firmware Interface (SFI) is a method for plat-
form firmware to export static tables to the operating
system. Platform firmware prepares SFI tables upon
system initialization for the benefit of the OS (CPU P-
states, GPIOs, for example). The OS consults the SFI ta-
bles to augment platform knowledge that it gets from na-
tive hardware interfaces, such as CPUID and PCI. More
details on SFI can be found in [3].

2.1.2 PCI Enumeration

Penwell north complex devices are true PCI devices
(Graphics, Display, Video encode/decode, ISP), but the
South complex devices are fake PCI devices. All these
south complex devices are enumerated as PCI devices
through a PCI shim (Fake PCI MMCFG space written
by firmware into main memory during platform boot)

in the kernel. The PCI config space contains both true
and fake PCI devices. MMCFG location is stored in
SFI. Although this mechanism leverages existing device
enumeration mechanism and reuses generic PCI drivers,
this approach has its shortcomings in that it cannot de-
tect device presence automatically. Also, PCI shim is
read only, therefore, cannot handle writes to PCI config
space.

2.1.3 Interrupt Routing and IOAPIC Emulation

Platform specific interrupt routing information is ob-
tained from system firmware via PCI MMCFG space
and SFI tables. Also, the south complex System con-
troller Unit (SCU) maintains IOAPIC redirection tables
that establish mapping between IRQ line and interrupt
vectors.

3 Background: Linux and Android Power
Management

Traditional ACPI-defined low power states for the plat-
form are Hibernate to disk (S4) and Suspend to Ram
(S3). A detailed treatment of the Linux power man-
agement architecture can be found in [5]. The kernel
includes platform drivers responsible for carrying out

38 • Experiences with Power Management Enabling on the Intel Medfield Phone

low-level suspend and resume operations required by
particular platforms. The platform drivers are used by
the PM Core, which is itself generic; it runs on a variety
of platforms for which appropriate platform drivers are
available, including ACPI-compatible personal comput-
ers (PCs) and ARM platforms. Additionally, Linux ker-
nel 2.6.33 and beyond mandate that all device drivers
implement Linux Runtime Power Management, which
is a framework through which device drivers can imple-
ment autonomous power management when idle. This
is aggressively used in Medfield platform. On Medfield
Android, we only support S3 and subsequent references
to standby mean only S3.

3.1 Linux Suspend Resume Flow

When the system goes into the S3 state, the phases are:
prepare, suspend, suspend_noirq. This is illus-
trated in Figure 3 and described in detail in the Linux
kernel documentation.

• prepare - This may prepare the device or driver in
some way for the upcoming system power transi-
tion (for example, by allocating additional memory
required for this purpose) but it should not put the
device into a low-power state.

• The suspend methods should quiesce the device,
save the device registers and put it into the ap-
propriate low-power state. It may enable wakeup
events.

• The suspend_noirq phase occurs after IRQ han-
dlers have been disabled, which means that the
driver’s interrupt handler will not be called while
the callback method is running. This method
should save the values of the device’s registers that
weren’t saved previously and will finally put the
device into the appropriate low-power state. Most
device drivers need not implement this callback.
However, bus types allowing devices to share in-
terrupt vectors, like PCI, generally need it.

When resuming from standby or memory sleep, the
phases are: resume_noirq, resume, complete.

• The resume_noirq callback methods should per-
form actions needed before the driver’s interrupt
handler is invoked.

• The resume method should bring the device back
to its operating state so that it can perform normal
I/O.

• The complete method should undo the actions of
the prepare phase.

3.2 Android Power Management Architecture

Android Power Management infrastructure is split
across the User space and Kernel layer. Wake Locks
form a critical part of the framework. A Wake Lock can
be defined as a request by the applications and services
for some of the platform resources (CPU, display, etc.).
The Android Framework exposes power management
to services and applications through the PowerManager
class. All calls from applications to acquire/release
wake locks into Power Management should go through
the Android runtime PowerManager API.

Kernel drivers can register with the Android Power
Manager driver so that they are notified immediately
prior to power down or after power up—drivers must
register early_suspend() and late_resume() han-
dlers, which are called when display power state
changes. Please refer to [1] and [4] for more details.

4 Power Management Architecture in Med-
field

Medfield platform provides fine-tuned knobs for plat-
form level power management and expects the Operat-
ing System Power Manager (OSPM) to direct most of
these power transitions of the subsystem. OS Power
managers like ACPI, APM, etc. traditionally directs
the platform to various power states (S3/S4, for exam-
ple) depending on different power policy set by the user.
In Medfield, the OS Power Manager guides the power
states that the subsystems and CPU need depending on
the Power policy set by the user. The HW then makes
the policy decision. This is done by dedicated Power
Management Units (PMU) that reside on the Platform.
This gives the flexibility of making finer power state
transitions which are normally not possible through tra-
ditional OS power management methods.

4.0.1 Power Management Capabilities

As is well known, the major sources of power dissipa-
tion in CMOS devices, as described in [8] and [9] are:

2012 Linux Symposium • 39

Time

Suspenddevices
Suspendno_ irq

Global IA
IRQ

disable

Suspend
SysDev

Resume
SysDev

Global IA
IRQ

enable

Resumeno_irq Resumedevices

Figure 3: Linux Suspend Resume Flow

Switching power or dynamic power and Leakage power.

Switching or dynamic power represents the power re-
quired to charge and discharge circuit nodes. Broadly
speaking, dynamic power depends on supply voltage
(actually the square of supply voltage, V 2 f), clock fre-
quency (f), node capacitance C (which in turn, depends
on wire lengths), and switching activity factor (how fre-
quently wires transition from 0 to 1, or from 1 to 0).
Techniques such as clock gating are used to save en-
ergy by reducing activity factors during a hardware units
idle periods. The clock frequency f, in addition to in-
fluencing power dissipation, also influences the supply
voltage. Typically, higher clock frequencies will mean
maintaining a higher supply voltage. Thus, the com-
bined V 2 f portion of the dynamic power equation has
a cubic impact on power dissipation. Strategies such as
dynamic voltage and frequency scaling (DVFS) try to
exploit this relationship to reduce (V, f) accordingly.

Leakage power results due to current dissipation even
when devices are not switching. The main reason
behind this leakage is that transistors do not have
ideal switching characteristics, and thereby leak a non-
zero amount of current even for voltages lower than
the threshold voltage. Hence power gating the en-
tire logic (if possible) can ideally reduce the leakage
power; this comes with additional responsibilities of
saving/restoring the state, firewalling, etc.

The power management architecture in Medfield is built
around these ideas aggressively that we can turn off sub-
systems without affecting the end user functionality and

usability of the system. This is enabled by several plat-
form hardware and software changes:

1. On die clock and power gating of subsystems

2. Subsystem active idle states that are OS transparent
as well as driver managed

3. Platform idle states - extending idleness to the en-
tire platform when all devices are idle

Device Power Management Capabilities - D0ix

All components, including the CPU, can be clock or
power gated (individually, or as a combination). The
CPU itself has its usual power states; C0 implies full
power, full performance, and C6 is a deep sleep state
where power is shut off to the entire CPU and state is
saved in a small amount of active SRAM. The different
power states supported by the Saltwell CPU are shown
in Table 1.

Traditionally (according to ACPI, for example), sub-
systems/devices can be in active power state (D0)
or in low power state (D1/D2/D3). Most subsys-
tems/platforms implement D0 and D3, however, not
many platforms/systems implement really active idle
states, where the platform is active, but subsystems,
even though are idle are in lower power state. In Med-
field, devices can be in one of the following power
states, traditionally called D-states:

40 • Experiences with Power Management Enabling on the Intel Medfield Phone

Android

Power (/lib/hardware/power.c)

/kernel/power/

main.c

If no application wake locks

held, issue echo “mem” > /sys/

power/state

/kernel/power/

wakelock.c

/kernel/power/

userwakelock.c

/kernel/power/

earlysuspend.c

store_state ()

Based on application request,

issue commands to Wake lock,

Wake unlock through sysfs

entries

request_suspend_state ()

- queue_work

(suspend_work_queue,

&early_suspend_work)

Work queue to call

early_suspend handlers

registered by device

drivers

Call all registered early_suspend handlers

If (state ==

SUSPEND_REQUESTED_AND_SUSPENDED)

wake_unlock (main_wake_lock);

wake_unlock_store ()

wake_unlock ()

- if (lock_count = 0)

queue_work

(suspend_work_queue,

&suspend_work);

Work queue to call

early_suspend handlers

registered by device

drivers

pm_suspend (requested_state)

Normal Linux kernel flow to suspend all

devices

Figure 4: Android Suspend Resume Flow

Feature C0 HFM C0 LFM C1-C2 C4 C6
Core Voltage ON ON ON ON OFF
Core Clock ON ON OFF OFF OFF
L1 Cache ON ON Flushed Flushed OFF
L2 Cache ON ON ON Partial Flushed OFF

Wakeup time Active Active Least More Highest

Table 1: Summary of Saltwell CPU Power States

1. D0 - Normal operational state

2. D0i1 - OS-transparent clock gated state

3. D0i3 - Driver directed management of the subsys-
tem with no OS control of the subsystem. The de-
vice driver coordinates and manages the subsystem
state (and saves/restores state as needed) for power
transitions.

4. D3 - OS directed management of the subsystem.
The device driver is involved in the management of
the subsystem and it must perform state retention
and restoration in the driver. OSPM will manage
transitioning of power state of the device and the
device driver must be involved in the power state

transition.

All devices will be managed through the runtime
Linux power management infrastructure. Device drivers
must implement D0i3 (driver managed autonomous
power management) through the Linux Runtime power
management framework, and aggressively (and intelli-
gently) manage the power of their corresponding sub-
systems. Additionally, device drivers must also sup-
port standard Linux suspend/resume callbacks for im-
plementing D3.

2012 Linux Symposium • 41

4.1 Power Management Architecture

The key components of power management architecture
on Medfield are:

1. Standard cpuidle- and cpufreq-based CPU power
and performance management components (native
drivers and governors).

2. Platform-specific S0ix extensions to the cpuidle
driver (intel_idle-based) for Medfield’s Saltwell
CPU

3. Power Manager Unit (PMU) driver - This driver
interfaces with both North and South Complex
Power Management Units (PMUs). It also pro-
vides platform-specific implementation of deep
idle states to the intel_idle-based processor drive
and coordinates with the rest of the platform using
standard kernel Power Management interfaces like
PM_QOS, Linux Runtime PM, etc.

4. PMU Firmware that coordinates power manage-
ment between the Platform PMUs: P-UNIT for
north complex (CPU, Gfx blocks, ISP), and SCU
for south complex (everything else: IO devices,
storage, comms, etc.)

CPUIDLE driver performs idle state power manage-
ment. It plugs into existing CPU Idle infrastructure and
extends current intel_idle processor driver for the Med-
field CPU (code-named Saltwell). It also exposes new
platform idle states deeper than traditional C6—these
actually correspond to deep idle states for the entire plat-
form, when there is sufficient idleness on the platform.
More details about cpuidle can be found in [6].

CPU frequency is managed by the cpufreq driver. The
Medfield cpufreq-based P-state driver uses the existing
cpufreq infrastructure and exposes the CPU frequency
states to the governors. The most common/generic
cpufreq governor is the ondemand governor. onde-
mand is a dynamic in-kernel cpufreq governor that can
change CPU frequency depending on CPU utilization.
It was first introduced in the linux-2.6.9 kernel. It has
a simplistic policy that provides significant benefits to
the platform by making use of fast frequency-switching
features of the processors to effectively manage their
frequencies depending on the CPU load. For a good
overview of how DVFS support is provided by these
generic Linux modules, please refer to [7].

The PMU driver communicates with the CPU idle
driver, platform device drivers, and the PMU firmware
to coordinate platform power state transitions. Based on
the guidance/hint from idle prediction, the PMU driver
opportunistically extends CPU idleness to rest of the
platform. In order to do this most efficiently, all de-
vice drivers must also be implementing and autonomous
power management through Linux Runtime power man-
agement. The PMU driver provides a platform-specific
callback to the CPU idle framework so that long peri-
ods of idleness can be extended to the entire platform.
Once CPU and devices are all idle, this driver programs
the north and south complex PMUs to implement the re-
quired power transitions. The state we enter is called a
S0ix state.

Android S3 states are directly mapped to S0i3, the only
difference being that timers are disabled in S3 state (as
compared to S0ix where OS timers can wake up the plat-
form). This is illustrated in Table 2.

PMU driver performs the following actions to emulate
S3 over S0i3 :

1. Program Wake configuration: PMU driver disables
timers as wake source, therefore only events like
USB or Comms events will cause a platform wake

2. Prepare for S3: Here PMU driver triggers CPU
state to be offloaded to a separate SRAM and is-
sues a command to the SCU to enter S0i3.

3. Enter C6 on both CPU threads with MWAIT in-
struction. This will guide the CPU to a package-
level C6, thereby allowing the PMUs to proceed
with S0ix entry sequence in firmware.

With the above actions, the platform enters S3 (S0i3
with timers disabled). It is to be noted that the CPU
state that was saved includes everything until the point
of MWAIT instruction execution so that on resume, the
CPU will start executing from the next instruction af-
ter MWAIT. In some cases entering package-level C6
might still fail (break interrupt for example). In that
case, SCU will wait for a timeout period before aborting
the S0ix/S3 entry.

On exit from S3 the PMU driver gets an interrupt with
status register specifying the wake source. This is fol-
lowed by the actual device wake interrupt. During the
resume flow, PMU driver thread will resume devices and
trigger thaw_processes() and resume all the devices.

42 • Experiences with Power Management Enabling on the Intel Medfield Phone

Generic cpuidle
infrastructure

intel_idle
processor driver

Generic cpufreq
infrastructure

pci_pm

Device driver
Device driver

Device driver

PMUDriver

North Complex
PMU interface

S0ix handler
South

Complex PMU
interface

Native P-state
driver (cpufreq)

South Complex
PMU (SCU)

North Complex
PMU (PUNIT)

NO PROPRIETARY DRIVER I/F

(1) Standard PM_QOS from
drivers to restrict platform Cx/Sx
states
(2) Standard Linux
Runtime PM to check for device
idle
(3) Standard PCI PM calls to
change device power state

S0ix handler – platform specific callback
for entering deep idle state for SOC –
this is picked by the governor when there
are long idle windows. S0ix appears as
an extended C-state to the cpuidle
governor(s)

Memory
mapped
registers

pmu_s0ix handler Runtime pm

PM_QOS

Android Power Manager

Android Power Manager kernel

Linux PM Wake locks Early suspend
Late resume

kernel

user

Figure 5: Medfield Platform Architecture

App A App B App C

Android Power Manager Service

Android PM kernel

Linux PM Suspend
Framework

Application

Framework

Kernel

User

PMU driver

Emulated S3 over S0i3 (disable timer)

S0i3

S3 or S0i3?

S0i3

Kernel timers active

Apps are not frozen

Partial Wake Locks

AOAC in this state

S3

Freezes Apps

Suspends Drivers

Disable timer as wakesource

Intel

Linux

Android

Idle path – S0ix, triggered

by idle detection by CPU

IDLE governor

Suspend path, triggered

by no-wakelock condition – S3

Standard pm_suspend

handler in PMU driver

invoked during S3

Figure 6: Implementing Android Power Management in Medfield

2012 Linux Symposium • 43

Islands S0:C0-C6 S0i1 S0i3 S3
CPU C-state dependent OFF OFF OFF

C6 SRAM, Wake logic ON ON OFF OFF
DDR ON/Self-refresh (SR) SR SR SR

Power Manager ON ON OFF OFF
Graphics ON/power gated (PG) PG OFF OFF

Video Decode ON/power gated (PG) PG OFF OFF
Video Encode ON/power gated (PG) PG OFF OFF

Display Controller ON/power gated (PG) PG OFF OFF
Display ON OFF OFF OFF

Device drivers ON/D0ix D0i3 D0i3 D3
Applications Active Active Active Frozen

Table 2: What is on in S0, S0ix, S3?

5 Experiences with Enabling Power Manage-
ment

This section summarizes some of the most important
learning we had enabling power management on the
Medfield platform. Some of this learning are relevant
to other Linux/Android-based SOCs as well.

5.1 Runtime Power Management Implementation
in Device Drivers

All Medfield device drivers implement the Linux Run-
time PM framework, whereby drivers autonomously de-
tect their idleness, and guide their corresponding de-
vices to a low power state. Since runtime PM was rel-
atively a new subject in the Linux, we had to spend a
significant amount of time in making sure that we have
the right implementation in all the drivers. This was one
of the key elements for getting the standby functionality
stable and robust.

1. Idle Detection: Due to the absence of a general
rule to detect idleness, we had to establish a pro-
cess to detect idleness specific to a driver/device.
As an example, I2C driver implemented runtime
PM based on a rule that if the I2C bus is not being
used by devices for a certain idle time, it would put
itself into a low power state. As soon as platform
sensors were enabled (which were hanging off the
I2C bus), none of the sensors allowed to enter a
deep sleep state as they were constantly accessing
the bus. We had to fine tune the idle detection value
to something more optimal that would allow the

platform to enter extended idle periods.
Recommendation: Idle detection would be
more effective if done through a combination
of hardware capability (OS-visible, device spe-
cific idle/activity counters in HW) and software
(guidance from OS/drivers) that will allow tun-
ing/optimizations.

2. Runtime PM callbacks: All the PCI drivers had
implemented legacy suspend and resume handlers
and had also implemented runtime PM—these two
cannot co-exist (if not implemented correctly)—
this led to conflict between the device state as
maintained by Runtime PM core and Standard
Linux kernel PM Core (resulting in kernel panics
during suspend/resume phase). This was subse-
quently fixed manually in all such offending device
drivers.
Recommendation: All drivers must implement
power management correctly as mandated by the
Linux kernel recommendations, and must also take
into account the new features being added to the
kernel as the power management support therein
evolves and matures.

5.2 Interrupt handling

1. Accessing hardware devices after resuming
from D0ix/S0ix: Device drivers must ensure that
corresponding hardware is powered up before ac-
cessing device registers. For example, when an in-
terrupt lands on the USB driver it would first try
to check if the interrupt was for itself by accessing
registers in the USB host controller. The device

44 • Experiences with Power Management Enabling on the Intel Medfield Phone

driver must ensure that the hardware is powered up
before accessing any registers. Specifically, device
drivers were modified to move their hardware ac-
cess code outside the IRQ handler into a kernel bot-
tom half handler and ensuring that the hardware is
powered up by doing a pm_runtime_get_sync()
function.
Recommendation: Wakes and interrupt delivery
logic must be foolproof and the device drivers must
also be intelligent to handle such cases.

2. Implementing Correct PM Functions: Some de-
vices can have multiple ways in which interrupts
are triggered—in-band and out-of-band through a
GPIO. One such device was HSI. We observed
that HSI was causing hangs during entry path—
when the driver’s suspend function was invoked,
the driver had suspended its device. But when a
sideband wake occurred just a little later in the
S3 entry phase, it had already suspended and lost
its state, thereby causing a kernel panic. This
was fixed by having the HSI driver implement
suspend_noirq() handler which would ensure
that no interrupts would land unexpectedly.
Recommendation: Device drivers must follow the
Linux kernel power management recommendations
and implement all the relevant callbacks for sus-
pend/resume and runtime PM.

3. Enabling Wake Interrupts: We faced issues
with wakes happening from power button, WLAN
wakes, etc, from an OS perspective, the interrupt
seemed to be lost when the driver had resumed
from S3. What was happening was this: when
platform resumes from S3, all resume handlers
get called (in some sequence). If the default ker-
nel IRQ handler does not see any registered IRQ
handler for a specific interrupt (which would have
happened during suspend phase where driver de-
registers its IRQ handler), it handles it by default
and sends an EOI down to the IOAPIC. Thus, such
interrupts were handled by default by the kernel
since the drivers had not resumed yet. The Linux
kernel has support for such conditions—device
drivers can indicate using the IRQF_NO_SUSPEND
flag that its IRQ handler should not be completely
removed in S3. If a driver sets this flag, the ker-
nel will invoke the corresponding IRQ handler on
high priority, even before the resume handlers are
called.

Recommendation: Drivers with wake capability
must use IRQF_NO_SUSPEND flag and implement
suspend_noirq() handlers if there can be mul-
tiple (in-band, out-of-band) wake sources.

5.3 Optimizing for power and performance

A lot of work went into optimizing the platform for
Power and Performance (PnP) for all the important use
cases on the phone. This section summarizes some of
the key experiences and learning.

1. Optimizing platform wakes: A bulk of optimiza-
tions around platform power and performance
came from optimizing the number of wakes that
bring the platform out of standby states. These op-
timizations spanned firmware, device driver, mid-
dleware and applications.

2. S0ix Latency Optimizations: Optimizing standby
(S0ix as well as S3) latencies is a critical com-
ponent of ensuring that the penalty for enter-
ing/exiting standby is amortized by the benefits of
the low power achieved in those states.

3. Performance optimizations: A lot of optimizations
were done across applications and middleware for
fine tuning different aspects of performance. For
example, we fine tuned the ondemand frequency
governor, to get the most optimum thresholds for
the platform. The threshold ratios (80/20, for ex-
ample) correspond to how fast the platform can go
to higher frequencies and the increments of coming
down. We fine tuned the thresholds for the platform
based on different characteristics. While we even-
tually achieved an optimal setting for the platform,
clearly this seems to be in the domain of heuris-
tics and is more empirical rather than really know-
ing what thresholds are best. Currently there are
a lot of ongoing discussions to optimize and over-
haul the cpufreq and ondemand governor infras-
tructure. For future platforms, we believe this is a
good area to invest and optimize.

5.4 Tools

All of the above fixes and optimizations would not have
been possible without proper hardware and software
tools.

2012 Linux Symposium • 45

1. Voltage rail level analysis: A setup with a detailed
data acquisition system (DAQ) to acquire rail level
power consumption is a MUST when we are deal-
ing with power optimization of handheld devices.
Many of the above analysis and optimization was
done with such a setup.

2. Tools like ftrace and powertop: Ftrace and
Powertop are tools which are already in use within
the Linux community. The former helps us with
profiling the code which causes CPU activity and
the latter helps us in analyzing the wake sources
(both software and hardware).

There were also internal tools that helped for de-
bugging, analyzing device D0ix residencies, mem-
ory bandwidth/utilization, etc.

6 Summary

This paper described the architecture, implementation
and key learning from enabling aggressive power man-
agement on Medfield. The paper explained the standard
Linux and Android Power Management architecture and
the key architectural enablers for aggressive power man-
agement on Medfield—standard Android PM (S3) as
well as S0ix, Intel’s innovation in HW/SW that enables
aggressive low power idle states. Finally we presented
some of the key learning from platform-wide power
management enabling and optimizations that we believe
are important to other SOCs.

7 Acknowledgments

Many teams in Intel have been instrumental in en-
abling Power Management on Medfield in various
phases of architecture, design, pre- and post-silicon
validation, software integration and optimization, etc.
The authors would like to acknowledge the follow-
ing individuals/teams (in no particular order): Bruce
Fleming, Belli Kuttanna, Ajaya Durg, Ticky Thakkar,
Randy Hall, Kalyan Muthukumar, Padma Apparao,
Richard Quinzio, the entire Power management and
power/performance team, Robert Karas, Jon Brauer,
Sreedhara DS, Abhijit Kulkarni, Srividya Karumuri,
Pramod HG, Rupal Parikh, Ryan Pinto, Mark Gross,
Yanmin Zhang, Nicolas Roux, Pierre Tardy, Christophe
Fiat and many others who have helped out in different
phases/aspects of Power Management debug/enabling.

References

[1] Android Developer Reference,
http://developer.android.com

[2] Jacob Pan, Porting the Linux kernel to x86 MID
Platforms, Embedded Linux Conference 2010.

[3] Simple Firmware Interface,
http://www.simplefirmware.org

[4] R. Wysocki, Technical background of the
Android Suspend Blockers Controversy,
http://www.lwn.net/images/pdf/suspend_blockers.pdf.

[5] L. Brown, R. Wysocki, Suspend to RAM in
Linux, In Proceedings of the Ottawa Linux
Symposium 2008.

[6] V. Pallipadi, A. Belay, S, cpuidle: do nothing,
efficiently, In Proceedings of the Ottawa Linux
Symposium 2007.

[7] V. Pallipadi, A. Starikovskiy, The ondemand
governor: past, present and future, In
Proceedings of Linux Symposium, 2006.

[8] A. Chandrakasan, S. Sheng, and R. Brodersen,
Low-power CMOS digital design, 1992.

[9] A. Ghosh, S. Devadas, K. Keutzer, and J.
White, Estimation of average switching activity
in combinational and sequential circuits. In
Proceedings of the 29th ACM/IEEE conference
on Design automation, Pages 253âĂŞ259.
IEEE Computer Society Press, 1992.

[10] Android PowerManagement, http:
//developer.android.com/reference/
android/os/PowerManager.html

http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html

46 • Experiences with Power Management Enabling on the Intel Medfield Phone

	Experiences with Power Management Enabling on the Intel Medfield Phone
	 R. Muralidhar, H. Seshadri, V. Bhimarao, V. Rudramuni, I. Mansoor, S. Thomas, B. K. Veera, Y. Singh, S. Ramachandra
	Introduction
	Medfield Platform Power Management Architecture
	Core Linux Changes for x86 Smartphones
	Simple Firmware Interface
	PCI Enumeration
	Interrupt Routing and IOAPIC Emulation

	Background: Linux and Android Power Management
	Linux Suspend Resume Flow
	Android Power Management Architecture

	Power Management Architecture in Medfield
	Power Management Capabilities
	Power Management Architecture

	Experiences with Enabling Power Management
	Runtime Power Management Implementation in Device Drivers
	Interrupt handling
	Optimizing for power and performance
	Tools

	Summary
	Acknowledgments

