
Sockets and Beyond: Assessing the Source Code of Network
Applications

Miika Komu
Aalto University, Department of Computer Science and Engineering

miika@iki.fi

Samu Varjonen, Andrei Gurtov, Sasu Tarkoma
University of Helsinki and Helsinki Institute for Information Technology

firstname.lastname@hiit.fi

Abstract

Network applications are typically developed with
frameworks that hide the details of low-level network-
ing. The motivation is to allow developers to focus
on application-specific logic rather than low-level me-
chanics of networking, such as name resolution, relia-
bility, asynchronous processing and quality of service.
In this article, we characterize statistically how open-
source applications use the Sockets API and identify a
number of requirements for network applications based
on our analysis. The analysis considers five fundamental
questions: naming with end-host identifiers, name res-
olution, multiple end-host identifiers, multiple transport
protocols and security. We discuss the significance of
these findings for network application frameworks and
their development. As two of our key contributions, we
present generic solutions for a problem with OpenSSL
initialization in C-based applications and a multihoming
issue with UDP in all of the analyzed four frameworks.

1 Introduction

The Sockets API is the basis for all internet applica-
tions. While the number of applications using it directly
is large, some applications use it indirectly through in-
termediate libraries or frameworks to hide the intrica-
cies of the low-level Sockets API. Nevertheless, the in-
termediaries still have to interface with the Sockets API.
Thus, the Sockets API is important for all network appli-
cations either directly or indirectly but has been studied
little. To fill in this gap, we have statistically analyzed
the usage of Sockets API to characterize how contem-
porary network applications behave in Ubuntu Linux.
In addition to merely characterizing the trends, we have

also investigated certain programming pitfalls pertain-
ing the Sockets API.

As a result, we report ten main findings and how they
impact a number of relatively new sockets API exten-
sions. To mention few examples, the poor adoption of
a new DNS look up function slows down the migration
path for the extensions dependent on it, such as the APIs
for IPv6 source address selection and HIP. OpenSSL
library is initialized incorrectly in many applications,
causing potential security vulnerabilities. The manage-
ment of the dual use of TCP/UDP transports and the
dual use of the two IP address families creates redun-
dant complexity in applications.

To escape the unnecessary complexity of the Sock-
ets API, some applications utilize network application
frameworks. However, the frameworks are themselves
based on the Sockets API and, therefore, subject to the
same scrutiny as applications using the Sockets API. For
this reason, it is natural to extend the analysis for frame-
works.

We chose four example frameworks based on the Sock-
ets API and analyzed them manually in the light of the
Sockets API findings. Since frameworks can offer high-
level abstractions that do not have to mimic the Sockets
API layout, we organized the analysis of the frameworks
in a top-down fashion and along generalized dimensions
of end-host naming, multiplicity of names and trans-
ports, name look up and security. As a highlight of the
framework analysis, we discovered a persistent problem
with multiplicity of names in all of the four frameworks.
To be more precise, the problem was related to multi-
homing with UDP.

In this article, we describe how to solve some of the dis-

• 7 •



8 • Sockets and Beyond: Assessing the Source Code of Network Applications

covered issues in applications and frameworks using the
Sockets API. We also characterize some of the inherent
limitations of the Sockets API, for instance, related to
complexity.

2 Background

In this section, we first introduce the parts of the Berke-
ley Sockets and the POSIX APIs that are required to un-
derstand the results described in this article. Then, we
briefly introduce four network application frameworks
built on top of the two APIs.

2.1 The Sockets API

The Sockets API is the de-facto API for network pro-
gramming due to its availability for various operating
systems and languages. As the API is rather low level
and does not support object-oriented languages well,
many networking libraries and frameworks offer addi-
tional higher-level abstractions to hide the details of the
Sockets API.

Unix-based systems typically provide an abstraction of
all network, storage and other devices to the applica-
tions. The abstraction is realized with descriptors which
are also sometimes called handles. The descriptors are
either file or socket descriptors. Both of them have
different, specialized accessor functions even though
socket descriptors can be operated with some of the file-
oriented functions.

When a socket descriptor is created with the socket()
function, the transport protocol has to be fixed for the
socket. In practice, SOCK_STREAM constant fixes the
transport protocol to TCP and SOCK_DGRAM constant to
UDP. For IPv4-based communications, an application
uses a constant called AF_INET, or its alias PF_INET, to
create an IPv4-based socket. For IPv6, the application
uses correspondingly AF_INET6 or PF_INET6.

2.1.1 Name Resolution

An application can look up names from DNS by calling
gethostbyname() or gethostbyaddr() functions. The
former looks up the host information from the DNS by
its symbolic name (forward look up) and the latter by its
numeric name, i.e., IP address (reverse look up). While

both of these functions support IPv6, they are obsolete
and their modern replacements are the getnameinfo()
and getaddrinfo() functions.

2.1.2 Delivery of Application Data

A client-side application can start sending data immedi-
ately after creation of the socket; however, the applica-
tion typically calls the connect() function to associate
the socket with a certain destination address and port.
The connect() call also triggers the TCP handshake
for sockets of SOCK_STREAM type. Then, the networking
stack automatically associates a source address and port
with the socket if the application did not choose them
explicitly with the bind() function. Finally, a close()
call terminates the socket gracefully and, when the type
of the socket is SOCK_STREAM, the call also initiates the
shutdown procedure for TCP.

Before a server-oriented application can receive incom-
ing datagrams, it has to call a few functions. Minimally
with UDP, the application has to define the port number
and IP address to listen to by using bind(). Typically,
TCP-based services supporting multiple simultaneous
clients prepare the socket with a call to the listen()
function for the following accept() call. By default, the
accept() call blocks the application until a TCP con-
nection arrives. The function then “peels off” a new
socket descriptor from existing one that separates the
particular connection with the client from others.

A constant INADDR_ANY is used with bind() to listen for
incoming datagrams on all network interfaces and ad-
dresses of the local host. This wildcard address is typi-
cally employed in server-side applications.

An application can deliver and retrieve data from the
transport layer in multiple alternative ways. For in-
stance, the write() and read() functions are file-
oriented functions but can also be used with socket de-
scriptors to send and receive data. For these two file-
oriented functions, the Sockets API defines its own spe-
cialized functions.

For datagram-oriented networking with UDP, the
sendto() and the recvfrom() functions can be
used. Complementary functions sendmsg() and
recvmsg() offer more advanced interfaces for applica-
tions [19]. They operate on scatter arrays (multiple non-
consecutive I/O buffers instead of just one) and also sup-



2012 Linux Symposium • 9

port so-called ancillary data that refers to meta-data and
information related to network packet headers.

In addition to providing the rudimentary service of send-
ing and receiving application data, the socket calls also
implement access control. The bind() and connect()
limit ingress (but not egress) network access to the
socket by setting the allowed local and remote desti-
nation end point. Similarly, the accept() call effec-
tively constrains remote access to the newly created
socket by allowing communications only with the par-
ticular client. Functions send() and recv() are typi-
cally used for connection-oriented networking, but can
also be used with UDP to limit remote access.

2.1.3 Customizing Networking Stack

The Sockets API provides certain default settings for ap-
plications to interact with the transport layer. The set-
tings can be altered in multiple different ways.

With “raw” sockets, a process can basically create its
own transport-layer protocol or modify the network-
level headers. A privileged process creates a raw socket
with constant SOCK_RAW.

A more constrained way to alter the default behav-
ior of the networking stack is to set socket options
with setsockopt(). As an example of the options, the
SO_REUSEADDR socket option can be used to disable the
default “grace period” of a locally reserved transport-
layer port. By default, consecutive calls to bind() with
the same port fail until the grace period has passed. Es-
pecially during the development of a networking ser-
vice, this grace period is usually disabled for conve-
nience because the developed service may have to be
restarted quite often for testing purposes.

2.2 Sockets API Extensions

Basic Socket Interface Extensions for IPv6 [5] de-
fine additional data structures and constants, including
AF_INET and sockaddr_in6. The extensions also de-
fine new DNS resolver functions, getnameinfo() and
getaddrinfo(), as the old ones, gethostbyname() and
gethostbyaddr(), are now obsoleted. The older ones
are not thread safe and offer too little control over the
resolved addresses. The specification also defines IPv6-
mapped IPv4 addresses to improve IPv6 interoperabil-
ity.

An IPv6 application can typically face a choice of mul-
tiple source and destination IPv6 pairs to choose from.
Picking a pair may not be a simple task because some of
the pairs may not even result in a working connectivity.
IPv6 Socket API for Source Address Selection [13] de-
fines extensions that restrict the local or remote address
to a certain type, for instance, public or temporary IPv6
addresses. The extensions include new socket options to
restrict the selection local addresses when, e.g., a client
application connects without specifying the source ad-
dress. For remote address selection, new flags for the
getaddrinfo() resolver are proposed. The extensions
mainly affect client-side connectivity but can affect also
at the server side when UDP is being used.

The Datagram Congestion Control Protocol (DCCP) is
similar to TCP but does not guarantee in-order delivery.
An application can use it - with minor changes - by using
SOCK_DCCP constant when a socket is created.

Multihoming is becoming interesting because most of
the modern handhelds are equipped with, e.g., 3G and
WLAN interfaces. In the scope of this work, we as-
sociate “multihoming” to hosts with multiple IP ad-
dresses typically introduced by multiple network inter-
faces. Multihoming could be further be further char-
acterized whether it occurs in the initial phases of the
connectivity or during established communications. All
of the statistics in this article refer to the former case be-
cause the latter requires typically some extra logic in the
application or additional support from the lower layers.

When written correctly, UDP-based applications can
support multihoming for initial connectivity and the suc-
cess of this capability is investigated in detail in this ar-
ticle. However, supporting multihoming in TCP-based
applications is more difficult to achieve and requires ad-
ditional extensions. A solution at the application layer
is to recreate connections when they are rendered bro-
ken. At the transport layer, Multipath TCP [4] is a TCP-
specific solution to support multihoming in a way that is
compatible with legacy applications with optional APIs
for native applications [16].

The Stream Control Transmission Protocol (SCTP, [21])
implements an entirely new transport protocol with
full multihoming capabilities. In a nutshell, SCTP of-
fers a reliable, congestion-aware, message-oriented, in-
sequence transport protocol. The minimum requirement
to enable SCTP in an existing application is to change
the protocol type in socket() call to SCTP. However,



10 • Sockets and Beyond: Assessing the Source Code of Network Applications

the application can only fully harness the benefits of the
protocol by utilizing the sendmsg() and recvmsg() in-
terface. Also, the protocol supports sharing of a single
socket descriptor for multiple simultaneous communi-
cation partners; this requires some additional logic in
the application.

Transport-independent solutions operating at the lower
layers include Host Identity Protocol [11] and Site Mul-
tihoming by IPv6 Intermediation (SHIM6) [12]. In
brief, HIP offers support for end-host mobility, mul-
tihoming and NAT traversal. By contrast, SHIM6 is
mainly a multihoming solution. From the API perspec-
tive, SHIM6 offers backwards compatible identifiers for
IPv6—in the sense that they are routable at the network
layer—whereas the identifiers in HIP are non-routable.
HIP has its own optional APIs for HIP-aware applica-
tions [9] but both protocols share the same optional mul-
tihoming APIs [8].

Name-based Sockets are a work-in-progress at the IETF
standardization forum. While the details of the spec-
ification [23] are rather immature and the specification
still lacks official consent of the IETF, the main idea is to
provide extensions to the Sockets API that replace IP ad-
dresses with DNS-based names. In this way, the respon-
sibility for the management of IP addresses is pushed
down in the stack, away from the application layer.

2.3 NAT Traversal

Private address realms [18] were essentially introduced
by NATs, but Virtual Private Networks (VPNs) and
other tunneling solutions can also make use of private
addresses. Originally, the concept of virtual address
spaces was created to alleviate the depletion of the IPv4
address space, perhaps, because it appeared that most
client hosts did not need publicly-reachable addresses.
Consequently, NATs also offer some security as a side
effect to the client side because they discard new incom-
ing data flows by default.

To work around NATs, Teredo [7] offers NAT traver-
sal solution based on a transparent tunnel to the applica-
tions. The protocol tries to penetrate through NAT boxes
to establish a direct end-to-end tunnel but can resort to
triangular routing through a proxy in the case of an un-
successful penetration.

2.4 Transport Layer Security

Transport Layer Security (TLS) [22] is a cryptographic
protocol that can be used to protect communications
above the transport layer. TLS, and its predecessor Se-
cure Socket Layer (SSL), are the most common way to
protect TCP-based communications over the Internet.

In order to use SSL or TLS, a C/C++ application is usu-
ally linked to a library implementation such as OpenSSL
or GNU TLS. The application then calls the APIs of
the TLS/SSL-library instead of using the APIs of the
Sockets API. The functions of the library are wrappers
around the Sockets API, and are responsible for secur-
ing the data inside the TCP stream.

2.5 Network Frameworks

The Sockets API could be characterized as somewhat
complicated and error-prone to be programmed directly.
It is also “flat” by its nature because it was not designed
to accommodate object-oriented languages. For these
reasons, a number of libraries and frameworks have
been built to hide the details of the Sockets API and
to introduce object-oriented interfaces. The Adaptive
Communication (ACE) [17] is one such framework.

ACE simplifies the development of networking applica-
tions because it offers abstracted APIs based on net-
work software patterns observed in well-written soft-
ware. Among other things, ACE includes network
patterns related to connection establishment and ser-
vice initialization in addition to facilitating concurrent
software and distributed communication services. It
supports asynchronous communications by inversion of
control, i.e., the framework takes over the control of the
program flow and it invokes registered functions of the
application when needed.

Boost::Asio is another open source C++ library that of-
fers high-level networking APIs to simplify develop-
ment of networking applications. Boost::Asio aims to
be portable, scalable, and efficient but, most of all, it
provides a starting point for implementing further ab-
straction. Several Boost C++ libraries have already been
included in the C++ Technical Report 1 and in C++11.
In 2006 a networking proposal based on Asio was sub-
mitted to request inclusion in the upcoming Technical
Report 2.



2012 Linux Symposium • 11

Java provides an object-oriented framework for the cre-
ation and use of sockets. Java.net package (called
Java.net from here on) supports TCP (Socket class) and
UDP (Datagram class). These classes implement com-
munication over an IP network.

Twisted is a modular, high-level networking framework
for python. Similarly to ACE, Twisted is also based
on inversion of control and asynchronous messaging.
Twisted has built-in support for multiple application-
layer protocols, including IRC, SSH and HTTP. What
distinguishes Twisted from the other frameworks is
the focus on service-level functionality based adapt-
able functionality that can be run on top of several
application-layer protocols.

3 Materials and Methods

We collected information related to the use of Sockets
API usage in open-source applications. In this article,
we refer to this information as indicators. An indi-
cator refers to a constant, structure or function of the
C language. We analyzed the source code for indica-
tors in a static way (based on keywords) rather than dy-
namically.1 The collected set of indicators was limited
to networking-related keywords obtained from the key-
word indexes of two books [20, 15].

We gathered the material for our analysis from all of the
released Long-Term Support (LTS) releases of Ubuntu:
Dapper Drake 6.06, Hardy Heron 8.04, Lucid Lynx
10.04. Table 1 summarizes the number of software
packages gathered per release. In the table, “patched”
row expresses how many applications were patched by
Ubuntu.

We used sections “main”, “multiverse”, “universe” and
“security” from Ubuntu. The material was gathered on
Monday 7th of March 2011 and was constrained to soft-
ware written using the C language. Since our study was
confined to networking applications, we selected only
software in the categories of “net”, “news”, “comm”,
“mail”, and “web” (in Lucid, the last category was re-
named “httpd”).

We did not limit or favor the set of applications, e.g.,
based on any popularity metrics. We believed that an

1Authors believe that a more dynamic or structural analysis
would not have revealed any important information on the issues
investigated

Dapper Hardy Lucid
Total 1,355 1,472 1,147
Patched 1,222 1,360 979
C 721 756 710
C++ 57 77 88
Python 126 148 98
Ruby 19 27 13
Java 9 10 8
Other 423 454 232

Table 1: Number of packages per release version.

application was of at least of some interest if the ap-
plication was being maintained by someone in Ubuntu.
To be more useful for the community, we analyzed
all network applications and did not discriminate some
“unpopular” minorities. This way, we did not have
to choose between different definitions of popularity—
perhaps Ubuntu popularity contest would have served as
a decent metric for popularity. We did perform an outlier
analysis in which we compared the whole set of appli-
cations to the most popular applications (100 or more
installations). We discovered that the statistical “foot-
print” of the popular applications is different from the
whole. However, the details are omitted because this
contradicted with our goals.

In our study, we concentrated on the POSIX networking
APIs and Berkeley Sockets API because they form the
de-facto, low-level API for all networking applications.
However, we extended the API analysis to OpenSSL to
study the use of security as well. All of these three APIs
have bindings for high-level languages, such as Java and
Python, and can be indirectly used from network appli-
cation frameworks and libraries. As the API bindings
used in other languages differs from those used in C lan-
guage, we excluded other languages from this study.

From the data gathered,2 we calculated sums and means
of the occurrences of each indicator. Then we also cal-
culated a separate “reference” number. This latter was
formed by introducing a binary value to denote whether
a software package used a particular indicator (1) or not
(0), independent of the number of occurrences. The
reference number for a specific indicator was collected
from all software packages, and these reference num-
bers were then summed and divided by the number of
packages to obtain a reference ratio. In other words, the
reference ratio describes the extent of an API indicator

2http://www.cs.helsinki.fi/u/sklvarjo/LS12/

http://www.cs.helsinki.fi/u/sklvarjo/LS12/


12 • Sockets and Beyond: Assessing the Source Code of Network Applications

with one normalized score.

We admit that the reference number is a very coarse
grained metric; it indicates capability rather than 100%
guarantee that the application will use a specific indica-
tor for all its runs. However, its binary (or “flattened”)
nature has one particular benefit that cancels out an un-
wanted side effect of the static code analysis, but this
is perhaps easiest to describe by example. Let us con-
sider an application where memory allocations and de-
allocations can be implemented in various ways. The
application can call malloc() a hundred times but then
calls free() only once. Merely looking at the volumes
of calls would give a wrong impression about mem-
ory leaks because the application could have a wrapper
function for free() that is called a hundred times. In
contrast, a reference number of 1 for malloc() and 0
for free() indicates that the application has definitely
one or more memory leak. Correspondingly, the refer-
ence ratio describes this for the entire population of the
applications.

In our results, we show also reference ratios of com-
bined indicators that were calculated by taking an union
or intersection of indicators, depending on the use case.
With combined indicators, we used tightly coupled in-
dicators that make sense in the context of each other.

4 Results and Analysis

In this section, we show the most relevant statistical re-
sults. We focus on the findings where there is room for
improvement or that are relevant to the presented Sock-
ets API extensions. Then, we highlight the most signif-
icant patterns or key improvements for the networking
applications. Finally, we derive a set of more generic
requirements from the key improvements and see how
they are met in four different network application frame-
works.

4.1 Core Sockets API

In this section, we characterize how applications use
the “core” Sockets API. Similarly as in the background,
the topics are organized into sections on IPv6, DNS,
transport protocols and customization of the networking
stack. In the last section, we describe a multihoming
issue related to UDP.

In the results, the reference ratios of indicators are usu-
ally shown inside brackets. All numeric values are from
Ubuntu Lucid unless otherwise mentioned. Figure 1 il-
lustrates some of the most frequent function indicators
by their reference ratio and the following sections ana-
lyze the most interesting cases in more detail.

4.1.1 IPv6

According to the usage of AF and PF constants, 39.3%
were IPv4-only applications, 0.3% IPv6-only, 26.9%
hybrid and 33.5% did not reference either of the con-
stants. To recap, while the absolute use of IPv6 was not
high, the relative proportion of hybrid applications sup-
porting both protocols was quite high.

4.1.2 Name Resolution

The obsolete DNS name-look-up functions were refer-
enced more than their modern replacements. The ob-
solete forward look-up function gethostbyname() was
referenced roughly twice as often as its modern replace-
ment getaddrinfo(). Two possible explanations for
this are that either that the developers have, for some
reason, preferred the obsolete functions, or have ne-
glected to modernize their software.

4.1.3 Packet Transport

Connection and datagram-oriented APIs were roughly
as popular. Based on the usage of SOCK_STREAM and
SOCK_DGRAM constants, we accounted for 25.1% TCP-
only and 11.0% UDP-only applications. Hybrid appli-
cations supporting both protocols accounted for 26.3%,
leaving 37.6% of the applications that used neither of
the constants. By combining the hybrids with TCP-only
applications, the proportion of applications supporting
TCP is 51.4% and, correspondingly, 37.3% for UDP. It
should not be forgotten that typically all network appli-
cations implicitly access DNS over UDP by default.

4.1.4 Customizing Networking Stack

While the Sockets API provides transport-layer abstrac-
tions with certain system-level defaults, many applica-
tions preferred to customize the networking stack or to



2012 Linux Symposium • 13

re
ad so

ck
et

w
rit

e ht
on

s

sig
na

l fo
rk

se
le
ct

co
nn

ec
t

nt
oh

s bin
d

ge
th

os
tb
yn

am
e ht

on
l

io
ct

l

se
ts

oc
ko

pt

ge
tti
m

eo
fd

ay

in
et

_n
to

a

fc
nt

l
ac

ce
pt

nt
oh

l

op
en

lo
g

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

Figure 1: The most frequent functions in Ubuntu Lucid

override some of the parameters. The combined ref-
erence ratio of SOCK_RAW, setsockopt(), pcap_pkthdr
and ipq_create_handle() indicators was 51.4%. In
other words, the default abstraction or settings of the
Sockets API are not sufficient for the majority of the ap-
plications.

It is worth mentioning that we conducted a brute-force
search to find frequently occurring socket options sets.
As a result, we did not find any recurring sets but merely
individual socket options that were popular.

4.1.5 Multihoming and UDP

In this section, we discuss a practical issue related
to UDP-based multihoming, but one which could be
fixed in most applications by the correct use of SO_
BINDTODEVICE (2.3%) socket option. The issue affects
UDP-based applications accepting incoming connec-
tions from multiple interfaces or addresses.

On Linux, we have reason to believe that many UDP-
based applications may not handle multihoming prop-
erly for initial connections. The multihoming problem
for UDP manifests itself only when a client-side appli-
cation uses a server address that does not match with the
default route at the server. The root of the problem lies
in egress datagram processing at the server side.

The UDP problem occurs when the client sends a “re-
quest” message to the server and the server does not
send a “response” using the exact same address pair that
was used for the request. Instead, the sloppy server im-
plementation responds to the client without specifying
the source address, and the networking stack invariably
chooses always the wrong source address - meaning that

the client drops the response as it appears to be arriving
from a previously unknown IP address.

A straightforward fix is to modify the server-side pro-
cessing of the software to respect the original IP address,
and thus to prevent the network stack from routing the
packet incorrectly. In other words, when the server-side
application receives a request, it should remember the
local address of the received datagram and use it explic-
itly for sending the response.

Explicit source addressing can be realized by using
the modern sendmsg() interface. However, a poorly
documented alternative to be used especially with the
sendto() function is the socket option called SO_
BINDTODEVICE. The socket option is necessary because
bind() can only be used to specify the local address for
the ingress direction (and not the egress).

We discovered the UDP problem by accident with iperf,
nc and nc6 software. We have offered fixes to main-
tainers of these three pieces of software. Nevertheless,
the impact of the problem may be larger as a third of
the software in our statistics supports UDP explicitly.
To be more precise, the lack of SO_BINDTODEVICE us-
age affects 45.7% (as an upper bound) of the UDP-
capable software, which accounts for a total of 121
applications. This figure was calculated by finding
the intersection of all applications not using sendmsg()
and SO_BINDTODEVICE, albeit still using sendto() and
SOCK_DGRAM. We then divided this by the number of ap-
plications using SOCK_DGRAM.

4.2 Sockets API Extensions

In this section, we show and analyze statistics on SSL
and the adoption of a number of Sockets API extensions.



14 • Sockets and Beyond: Assessing the Source Code of Network Applications

4.2.1 Security: SSL/TLS Extensions

Roughly 10.9% of the software in the data set used
OpenSSL and 2.1% GNU TLS. In this section, we limit
the analysis on OpenSSL because it is more popular.
Unless separately mentioned, we will, for convenience,
use the term SSL to refer both TLS and SSL protocols.
We only present reference ratios relative to the applica-
tions using OpenSSL because this is more meaningful
from the viewpoint of the analysis. In other words, the
percentages account only the 77 OpenSSL-capable ap-
plications and not the whole set of applications.

The applications using OpenSSL consisted of both
client and server software. The majority of the appli-
cations using OpenSSL (54%) consisted of email, news
and messaging software. The minority included net-
work security and diagnostic, proxy, gateway, http and
ftp server, web browsing, printing and database soft-
ware.

The reference ratios of SSL options remained roughly
the same throughout the various Ubuntu releases. The
use of SSL options in Ubuntu Lucid is illustrated in Fig-
ure 2.

The use of SSL_get_verify_result() function
(37.7%) indicates that a substantial proportion
of SSL-capable software has interest in obtain-
ing the results of the certificate verification. The
SSL_get_peer_certificate() function (64.9%) is
used to obtain the certificate sent by the peer.

The use of the SSL_CTX_use_privatekey_file() func-
tion (62.3%) implies that a majority of the software is
capable of using private keys stored in files. A third
(27.3%) of the applications use the SSL_get_current_
cipher() function to request information about the ci-
pher used for the current session.

The SSL_accept() function (41.6%) is the SSL equiv-
alent for accept(). The reference ratio of SSL_
connect() function (76.6%), an SSL equivalent for
connect(), is higher than for ssl_accept() (41.6%).
This implies that the data set includes more client-based
applications than server-based. Furthermore, we ob-
served that SSL_shutdown() (63.6%) is referenced in
only about half of the software that also references
SSL_connect(), indicating that clients leave dangling
connections with servers (possibly due to sloppy coding
practices).

We noticed that only 71.4% of the SSL-capable soft-
ware initialized the OpenSSL library correctly. The cor-
rect procedure for a typical SSL application is that it
should initialize the library with SSL_library_init()
function (71.4%) and provide readable error strings
with SSL_load_error_strings() function (89.6%) be-
fore any SSL action takes place. However, 10.4% of
the SSL-capable software fails to provide adequate er-
ror handling.

Only 58.4% of the SSL-capable applications seed the
Pseudo Random Number Generator (PRNG) with RAND_
load_file() (24.7%), RAND_add() (6.5%) or RAND_
seed() (37.7%). This is surprising because incorrect
seeding of the PRNG is considered a common security
pitfall.

Roughly half of the SSL-capable software set the
context options for SSL with SSL_CTX_set_options
(53.3%); this modifies the default behavior of the SSL
implementation. The option SSL_OP_ALL (37.7%) en-
ables all bug fixes.

SSL_OP_NO_SSLV2 option (31.2%) turns off SSLv2 and
respectively SSL_OP_NO_SSLV3 (13.0%) turns off the
support for SSLv3. The two options were usually com-
bined so that the application would just use TLSv1.

SSL_OP_SINGLE_DH_USE (7.8%) forces the implementa-
tion to re-compute the private part of the Diffie-Hellman
key exchange for each new connection. With the ex-
ception of low-performance CPUs, it is usually recom-
mended that this option to be turned on since it improves
security.

The option SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS

(6.5%) disables protection against an attack on the
block-chaining ciphers. The countermeasure is disabled
because some of the SSLv3 and TLSv1 implementa-
tions are unable to handle it properly.

37.7% of the SSL-capable software prefers to use only
TLSv1 (TLSv1_client_method()) and 20.1% of the
SSL-capable software prefers to fall back from TLSv1
to SSLv3 when the server does not support TLSv1.
However, the use of SSL_OP_NO_TLSV1 option indicates
that 7% of the software is able to turn off TLSv1 sup-
port completely. SSL_OP_CIPHER_SERVER_PREFERENCE
is used to indicate that the server’s preference in the
choosing of the cipher takes precedence. SSL_OP_

NO_SESSION_RESUMPTION_RENEGOTIATION indicates the



2012 Linux Symposium • 15

Bug workarounds

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS

SSL_OP_CIPHER_SERVER_PREFERENCE

SSL_OP_SINGLE_DH_USE

SSL_OP_NO_TLSv1

SSL_OP_NO_SSLv3

SSL_OP_NO_SSLv2

SSL_OP_ALL

0 5 10 15 20 25 30

Figure 2: The number of occurrences of the most common SSL options

need for increased security as session resumption is dis-
allowed and a full handshake is always required. The
remaining options are workarounds for various bugs.

As a summary of the SSL results, it appears that SSL-
capable applications are interested of the details of the
security configuration. However, some applications ini-
tialize OpenSSL incorrectly and also trade security for
backwards compatibility.

4.2.2 IPv6-Related Extensions

During the long transition to IPv6, we believe that the
simultaneous co-existence of IPv4 and IPv6 still repre-
sents problems for application developers. For example,
IPv6 connectivity is still not guaranteed to work every-
where. At the client side, this first appears as a prob-
lem with DNS look-ups if they are operating on top of
IPv6. Therefore, some applications may try to look up
simultaneously over IPv4 and IPv6 [25]. After this, the
application may even try to call connect() simultane-
ously over IPv4 and IPv6. While these approaches can
decrease the initial latency, they also generate some ad-
ditional traffic to the Internet and certainly complicate
networking logic in the application.

At the server side, the applications also have to main-
tain two sockets: one for IPv4 and another for IPv6. We
believe this unnecessarily complicates the network pro-
cessing logic of applications and can be abstracted away
by utilizing network-application frameworks.

An immediate solution to the concerns regarding ad-
dress duplication is proposed in RFC4291 [6], which
describes IPv6-mapped IPv4 addresses. The idea is to
embed IPv4 addresses in IPv6 address structures and
thus to provide a unified data structure format for storing
addresses in the application.

Mapped addresses can be employed either manually or
by the use of AI_V4MAPPED flag for the getaddrinfo()
resolver. However, the application first has to explicitly
enable the IPV6_V6ONLY socket option (0.1%) before the
networking stack will allow the IPv6-based socket to be
used for IPv4 networking. By default, IPv4 connectivity
with IPv6 sockets is disallowed in Linux because they
introduce security risks [10]. As a bad omen, of the total
six applications referencing the AI_V4MAPPED flag, only
one of them set the socket option as safe guard.

The constants introduced by the IPv6 Socket API for
Source Address Selection [13] are available in Ubuntu
Lucid even though the support is incomplete. The flags
to extend the getaddrinfo() resolver and the proposed
auxiliary functions remain unavailable and only source
address selection through socket options is available.
Nevertheless, we calculated the proportion of IPv6-
capable client-side applications that explicitly choose a
source address. As an upper bound, 66.9% percent ap-
plications choose source addresses explicitly based the
dual use of connect() and bind(). This means that a
majority of IPv6 applications might be potentially inter-
ested of the extensions for IPv6 Socket API for Source
Address Selection.



16 • Sockets and Beyond: Assessing the Source Code of Network Applications

4.2.3 Other Protocol Extensions

The use of SCTP was very minimal in our set of ap-
plications and only three applications used SCTP. Net-
perf is a software used for benchmarking the network
performance of various protocols. Openser is a flexi-
ble SIP proxy server. Linux Kernel SCTP tools (lksctp-
tools) can be used for testing SCTP functionality in the
userspace.

As with SCTP, DCCP was also very unpopular. It was
referenced only from a single software package, despite
it being easier to embed in an application by merely us-
ing the SOCK_DCCP constant in the socket creation.

As described earlier, multipath TCP, HIP and SHIM6
have optional native APIs. The protocols can be used
transparently by legacy applications. This might boost
their deployment when compared with the mandatory
changes in applications for SCTP and DCCP.

The APIs for HIP-aware applications [9] may also face
a similar slow adoption path because the APIs require
a new domain type for sockets in the Linux kernel.
While getaddrinfo() function can conveniently look
up “wildcard” domain types, the success of this new
DNS resolver (23.5%) is still challenged by the depre-
cated gethostbyname() (43.3%). SHIM6 does not face
the same problem as it works without any changes to
the resolver and connections can be transparently “up-
graded” to SHIM6 during the communications.

The shared multihoming API for HIP- and SHIM6-
aware applications [8] may have a smoother migration
path. The API relies heavily on socket options and little
on ancillary options. This strikes a good balance be-
cause setsockopt() is familiar to application develop-
ers (42.8%) and sendmsg() / recvmsg() with its ancil-
lary option is not embraced by many (7%). The same
applies to the API for Multipath TCP [16] that consists
solely of socket options.

4.2.4 A Summary of the Sockets API Findings and
Their Implications

Table 2 highlights ten of the most important findings in
the Sockets APIs. Next, we go through each of them and
argue their implications to the development of network
applications.

Core Sockets API
1 IPv4-IPv6 hybrids 26.9%
2 TCP-UDP hybrids 26.3%
3 Obsolete DNS resolver 43.3%
4 UDP-based apps with multihoming issue 45.7%
5 Customize networking stack 51.4%
OpenSSL-based applications
6 Fails to initialize correctly 28.6%
7 Modifies default behavior 53.3%
8 OpenSSL-capable applications in total 10.9%
Estimations on IPv6-related extensions
9 Potential misuse with mapped addresses 83.3%
10 Explicit IPv6 Source address selection 66.9%

Table 2: Highlighted indicator sets and their reference
ratios

Finding 1. The number of hybrid applications support-
ing both IPv4 and IPv6 was fairly large. While this is a
good sign for the deployment of IPv6, the dual address-
ing scheme doubles the complexity of address manage-
ment in applications. At the client side, the application
has to choose whether to handle DNS resolution over
IPv4 or IPv6, and then create the actual connection with
either family. As IPv6 does not even work everywhere
yet, the client may initiate communications in parallel
with IPv4 and IPv6 to minimize latency. Respectively,
server-side applications have to listen for incoming data
flows on both families.

Finding 2. Hybrid applications using both TCP and
UDP occur as frequently as TCP-only applications. Ap-
plication developers seem to write many application
protocols to be run with both transports. While it is pos-
sible to write almost identical code for the two trans-
ports, the Sockets API favors different functions for
the two. This unnecessarily complicates the application
code.

Finding 3. The obsolete DNS resolver was referenced
twice as frequently as the new one. This has negative
implications on the adoption of new Sockets API exten-
sions that are dependent on the new resolver. As con-
crete examples, native APIs for HIP and source address
selection for IPv6 may experience a slow adoption path.

Finding 4. We discovered a UDP multihoming problem
at the server side based on our experiments with three
software included in the data set. As an upper bound,
we estimated that the same problem affects 45.7% of
the UDP-based applications.



2012 Linux Symposium • 17

Finding 5. Roughly half of the networking software is
not satisfied with the default configuration of network-
ing stack and alters it with socket options, raw sockets or
other low-level hooking. However, we did not discover
any patterns (besides few popular, individually recurring
socket options) to propose as new compound socket op-
tion profiles for applications.

Findings 6, 7 and 8. Roughly every tenth application
was using OpenSSL but surprisingly many failed to ini-
tialize it appropriately, thus creating potential security
vulnerabilities. Half of the OpenSSL-capable applica-
tions were modifying the default configuration in some
way. Many of these tweaks improved backwards com-
patibility at the expense of security. This opens a ques-
tion why backwards compatibility is not well built into
OpenSSL and why so many “knobs” are even offered to
the developer.3

Finding 9. IPv6-mapped IPv4 addresses should not be
leaked to the wire for security reasons. As a solution,
the socket option IPV6_V6ONLY would prevent this leak-
age. However, only one out of total six applications
using mapped addresses were actually using the socket
option. Despite the number of total applications using
mapped address in general was statistically small, this
is an alarming sign because the number can grow when
the number of IPv6 applications increases.

Finding 10. IPv6 source address selection lets an appli-
cation to choose the type of an IPv6 source address in-
stead of explicitly choosing one particular address. The
extensions are not adopted yet, but we estimated the
need for them in our set of applications. Our coarse-
grained estimate is that two out of three IPv6 applica-
tions might utilize the extensions.

We have now characterized current trends with C-based
applications using Sockets API directly and highlighted
ten important findings. Of these, we believe findings 3,
4, 6 and 9 can be directly used to improved the exist-
ing applications in our data set. We believe that most of
the remaining ones are difficult to improve without in-
troducing changes to the Sockets API (findings 1, 2, 5)
or without breaking interoperability (finding 7). Also,
many of the applications appear not to need security at
all (finding 8) and the adoption of extensions (finding
10) may just take some time.

3Some of the implementations of SSL/TLS are considered “bro-
ken”; they do not implement at all or fix incorrectly some of the bugs
and/or functionalities in SSL/TLS.

As some of the findings are difficult to adapt to the appli-
cations using Sockets API directly, perhaps indirect ap-
proaches as offered by network application frameworks
may offer easier migration path. For example, the first
two findings are related to management of complexity
in the Sockets API and frameworks can be used to hide
such complexity from the applications.

4.3 Network Application Frameworks

In this section, we investigate four network application
frameworks based the Sockets and POSIX API. In a
way, these frameworks are just other “applications” us-
ing the Sockets API and, thus, similarly susceptible to
the same analysis as the applications in the previous
sections. However, the benefits of improving a sin-
gle framework transcend to numerous applications as
frameworks are utilized by several applications. The
Sockets API may be difficult to change, but can be eas-
ier to change the details how a framework implements
the complex management of the Sockets API behind its
high-level APIs.

4.3.1 Generic Requirements for Modern Frame-
works

Instead of applying the highlighted findings described
in Section 4.2.4 directly, some modifications were made
due to the different nature of network application frame-
works.

Firstly, we reorganize the analysis “top down” and split
the topics into end-host naming, look up, multiplicity of
names and transport protocols and security. We also be-
lieve that the reorganization may be useful for extending
the analysis in the future.

Secondly, we arrange the highlighted findings according
to their topic. A high-level framework does not have
to follow the IP address oriented layout of the Sockets
API and, thus, we investigate the use of symbolic host
names as well. The reconfiguration of the stack (finding
5) was popular but we could not suggest any significant
improvements on it, so it is omitted. Finally, we split
initiating of parallel connectivity with IPv4 and IPv6 as
their own requirements for both transport connections
and DNS look ups.



18 • Sockets and Beyond: Assessing the Source Code of Network Applications

Consequently, the following list reflects the Sockets API
findings as modified requirements for network applica-
tion frameworks:

R1: End-host naming

R1.1 Does the API of the framework support sym-
bolic host names in its APIs, i.e., does the
framework hide the details of hostname-to-
address resolution from the application? If
this is true, the framework conforms to a sim-
ilar API as proposed by Name Based Sockets
as described in section 2.2. A benefit of this
approach is that implementing requirements
R1.2, R2.2, R3.1 and 3.3 becomes substan-
tially easier.

R1.2 Are the details of IPv6 abstracted away from
the application? In general, this requirement
facilitates adoption of IPv6. It could also be
used for supporting Teredo based NAT traver-
sal transparently in the framework.

R1.3 IPv6-mapped addresses should not be present
on the wire for security reasons. Thus, the
framework should manually convert mapped
addressed to regular IPv4 addresses before
passing to any Sockets API calls. Alter-
natively, the frameworks can use the AI_
V4MAPPED option as a safe guard to prevent
such leakage.

R2: Look up of end-host names

R2.1 Does the framework implement DNS look
ups with getaddrinfo()? This is important
for IPv6 source address selection and native
HIP API extensions because they are depen-
dent on this particular function.

R2.2 Does the framework support parallel DNS
look ups over IPv4 and IPv6 to optimize la-
tency?

R3: Multiplicity of end-host names

R3.1 IPv6 source address selection is not widely
adopted yet but is the framework modular
enough to support it especially at the client
side? As a concrete example, the framework
should support inclusion of new parameters

to its counterpart of connect() call to sup-
port application preferences for source ad-
dress types.

R3.2 Does the server-side multihoming for UDP
work properly? As described earlier, the
framework should use SO_BINDTODEVICE op-
tion or sendmsg()/recvmsg() interfaces in a
proper way.

R3.3 Does the framework support parallel
connect() over IPv4 and IPv6 to minimize
the latency for connection set-up?

R4: Multiplicity of transport protocols

R4.1 Are TCP and UDP easily interchangeable?
“Easy” here means that the developer merely
changes one class or parameter but the APIs
are the same for TCP and UDP. It should be
noted that this has also implications on the
adoption of SCTP and DCCP.

R5: Security

R5.1 Does the framework support SSL/TLS?
R5.2 Does the SSL/TLS interface provide reason-

able defaults and abstraction so that the de-
veloper does not have to configure the details
of the security?

R5.3 Does the framework initialize the SSL/TLS
implementation automatically?

4.3.2 ACE

ACE version 6.0.0 denotes one end of a transport-layer
session with ACE_INET_Addr class that can be initiated
both based on a symbolic host name and a numeric
IP address. Thus, the support for IPv6 is transparent
if the developer relies solely on host names and uses
AF_UNSPEC to instantiate the class. ACE also supports
storing of IPv4 addresses in the IPv6-mapped format in-
ternally but translates them to the normal IPv4 format
before returning them to the requesting application or
using on the wire.

In ACE, IP addresses can be specified using strings.
This provides a more unified format to name hosts.

ACE supports getaddrinfo() function and resorts to
getnameinfo() only when the OS (e.g. Windows) does
not support getaddrinfo().



2012 Linux Symposium • 19

With UDP, ACE supports both connected (class
ACE_SOCK_CODgram) and disconnected communications
(class ACE_SOCK_Dgram). We verified the UDP mul-
tihoming problem with test software included in the
ACE software bundle. More specifically, we managed
to repeat the problem with connected sockets which
means that the ACE library shares the same bug as
iperf, nc and nc6 software as described earlier. Discon-
nected UDP communications did not suffer from this
problem because ACE does not fix the remote com-
munication end-point for such communications with
connect(). It should be also noted that a separate class,
ACE_Multihomed_INET_Addr, supports multiaddressing
natively.

A client can connect to a server using TCP with class
ACE_SOCK_Connector in ACE. The instantiation of the
class supports flags which could be used for extending
ACE to support IPv6 source address selection in a back-
wards compatible manner. While the instantiation of
connected UDP communications does not have a similar
flag, it still includes few integer variables used as binary
arguments that could be overloaded with the required
functionality. Alternatively, new instantiation functions
with different method signature could be defined using
C++. As such, ACE seems modular enough to adopt
IPv6 source address selection with minor changes.

For basic classes, ACE does not support accepting of
communications simultaneously with both IPv4 and
IPv6 at the server side. Class ACE_Multihomed_INET_
Addr has to be used to support such behaviour more
seamlessly but it can be used both at the client and server
side.

Changing of the transport protocol in ACE is straight-
forward. Abstract class ACE_Sock_IO defines the basic
interfaces for sending and transmitting data. The class
is implemented by two classes: an application instanti-
ates ACE_Sock_Stream class to use TCP or ACE_SOCK_
Dgram to use UDP. While both TCP and UDP-specific
classes supply some additional transport-specific meth-
ods, switching from one transport to another occurs
merely by renaming the type of the class at the in-
stantiation, assuming the application does not need the
transport-specific methods.

ACE supports SSL albeit it is not as interchangeable
as TCP with UDP. ACE has wrappers around accept()
and connect() calls in its Acceptor-Connector pattern.
This hides the intricacies of SSL but all of the low-level

details are still configurable when needed. SSL is ini-
tialized automatically and correctly.

4.3.3 Boost::Asio

Boost::Asio version 1.47.0 provides a class for denot-
ing one end of a transport-layer session called endpoint
that can be initiated through resolving a host name or a
numeric IP. By default, the resolver returns a set of end-
points that may contain both IPv4 and IPv6 addresses.4

These endpoints can be given directly to the connect()
wrapper in the library that connects sequentially to the
addresses found in the endpoint set until it succeeds.
Thus, the support for IPv6 is transparent if the devel-
oper has chosen to rely on host names. Boost::Asio
can store IPv4 addresses in the IPv6-mapped form. By
default, the mapped format is used only when the de-
veloper explicitly sets the family of the address to be
queried to IPv6 and the query results contain no IPv6
addresses. The mapped format is only used internally
and converted to IPv4 before use on the wire.

Boost::Asio uses POSIX getaddrinfo() when the un-
derlying OS supports it. On systems such as Windows
(older than XP) and Cygwin, Boost::Asio emulates
getaddrinfo() function by calling gethostbyaddr()
and gethostbyname() functions. The resolver in
Boost::Asio includes flags that could be used for imple-
menting source address selection (and socket options are
supported as well).

Boost::Asio does not support parallel IPv4 and IPv6
queries, nor does it provide support for simultaneous
connection set up using both IPv4 and IPv6.

We verified the UDP multihoming problem with exam-
ple software provided with the Boost::Asio. We man-
aged to repeat the UDP multihoming problem with con-
nected sockets which means that the Boost::Asio library
shares the same bug as iperf, nc and nc6 as described
earlier.

Boost::Asio defines basic interfaces for sending and re-
ceiving data. An application instantiates ip::tcp::
socket to use TCP or ip::udp::socket to use UDP.
While both classes provide extra transport-specific
methods, switching from one transport to another oc-
curs merely by renaming the type of the class at the in-

4IPv6 addresses are queried only when IPv6 loopback is present



20 • Sockets and Beyond: Assessing the Source Code of Network Applications

stantiation assuming the application does not need the
transport-specific methods.

Boost::Asio supports SSL and TLS. The initializa-
tion is wrapped into the SSL context creation. In
Boost::Asio, the library initialization is actually done
twice as OpenSSL_add_ssl_algorithms() is a synonym
of SSL_library_init() and both are called sequen-
tially. PRNG is not automatically initialized with RAND_
load_file(), RAND_add() or RAND_seed(), although
Boost::Asio implements class random_device which
can be easily used in combination with RAND_seed() to
seed the PRNG.

4.3.4 Java.net

Java.net in OpenJDK Build b147 supports both auto-
mated connections and manually created ones. Within a
single method that inputs a host name, its API hides re-
solving a host name to an IP address from DNS, creation
of the socket and connecting the socket. Alternatively,
the application can manage all of the intermediate steps
by itself.

The API has a data structure to contain multiple ad-
dresses from DNS resolution. The default is to try a
connection only with a single address upon request, al-
beit this is configurable. The internal presentation of a
single address, InetAddress, can hold an IPv4 or IPv6
address and, therefore, the address family is transpar-
ent when the developer resorts solely on the host names.
The API supports v4_mappedaddress format as an inter-
nal presentation format but it is always converted to the
normal IPv4 address format before sending data to the
network.

Before using IPv6, Java.net checks the existence of the
constant AF_INET6 and that a socket can be associated
with a local IPv6 address. If java.net discovers support
for IPv6 in the local host, it uses the getaddrinfo() but
otherwise gethostbyname() function for name resolu-
tion. DNS queries simultaneously over IPv4 and IPv6
are not supported out-of-the-box. However, the SIP Par-
allelResolver package in SIP communicator5 could be
used to implement such functionality.

We verified the UDP multihoming problem with exam-
ple software provided with the java.net. We managed to

5net.java.sip.communicator.util.dns.ParallelResolver

repeat the UDP multihoming problem with connected
sockets. This means that the java.net library shares the
same bug as iperf, nc and nc6 as described earlier.

Java.net naming convention favors TCP because a
“socket” always refers to a TCP-based socket. If the de-
veloper needs a UDP socket, he or she has to instantiate
a DatagaramSocket class. Swapping between the two
protocols is not trivial because TCP-based communica-
tion uses streams, where as UDP-based communication
uses DatagramPacket objects for I/O.

IPv6 source address selection is implementable in
java.net. TCP and UDP-based sockets could include
a new type of constructor or method, and java has
socket options as well. The method for DNS look ups,
InetAddress.getByName(), is not extensive enough
and would need an overloaded method name for the pur-
pose.

Java.net supports both SSL and TLS. Their details are
hidden by abstraction, although it is possible to config-
ure them explicitly. All initialization procedures are au-
tomatic.

4.3.5 Twisted

With Twisted version 10.2, python-based applications
can directly use host names to create TCP-based con-
nections. However, the same does not apply to UDP;
the application has to manually resolve the host name
into an IP address before use.

With the exception of resolving of AAAA records from
the DNS, IPv6 support is essentially missing from
Twisted. Thus, mapped addresses and parallel connec-
tions over IPv4 and IPv6 remain unsupported due to lack
of proper IPv6 support. Some methods and classes in-
clude “4” suffix to hard code certain functions only to
IPv4 which can hinder IPv6 interoperability.

Introducing IPv6 source address selection to Twisted
would be relatively straightforward, assuming IPv6 sup-
port is eventually implemented. For example, Twisted
methods wrappers for connect() function input host
names. Therefore, the methods could be adapted to in-
clude a new optional argument to specify source address
preferences.

The twisted framework uses gethostbyname() but has
also its own implementation of DNS, both for the client



2012 Linux Symposium • 21

and server side. As IPv6 support is missing, the frame-
work cannot support parallel look ups.

The UDP multihoming issue is also present in Twisted.
We observed this by experimenting with a couple of
client and server UDP applications in the Twisted source
package.

TCP and UDP are quite interchangeable in Twisted
when the application uses the Endpoint class because
it provides abstracted read and write operations. How-
ever, two discrepancies exists. First, Creator class
is tainted by TCP-specific naming conventions in its
method connectTCP(). Second, applications cannot
read or write UDP datagrams directly using host names
but first have to resolve them into IP addresses.

Twisted supports TLS and SSL in separate classes.
TLS/SSL can be plugged into an application with rela-
tive ease due to modularity and high-level abstraction of
the framework. The details of SSL/TLS are configurable
and Twisted provides defaults for applications that do
not need special configurations. With the exception of
seeding the PRNG, the rest of the details of TLS/SSL
initialization are handled automatically.

4.3.6 A Summary of the Framework Results

We summarize how the requirements were met by each
of the four frameworks in Table 3. Some of the require-
ments were unmet in all of the frameworks. For exam-
ple, all frameworks failed to support UDP-based mul-
tihoming (R3.2) and parallel IPv4/IPv6 connection ini-
tialization for clients (R3.3). Also, SSL/TLS initializa-
tion (R5.3) was not implemented correctly in all frame-
works. In total, 56 % of our requirements were com-
pletely met in all of the frameworks.

5 Related and Future Work

At least three other software-based approaches to ana-
lyze applications exist in the literature. Camara et al. [3]
developed software and models to verify certain errors
in applications using the Sockets API. Ammons et al. [1]
have investigated machine learning to reverse engineer
protocol specifications from source code based on the
Sockets API. Palix et al. [14] have automatized finding
of faults in the Linux kernel and conducted a longitudi-
nal study.

Req. ACE Boost::Asio Java.net Twisted
R1.1 X X (X)
R1.2 X X X
R1.3 X X X N/A
R2.1 X X X
R2.2
R3.1 X X X X
R3.2
R3.3
R4.1 X X (X)
R5.1 X X X X
R5.2 X X X X
R5.3 X (X) X (X)

Table 3: Summary of how the frameworks meet the re-
quirements

We did not focus on the development of automatized
software tools but rather on the discovery of a number
of novel improvements to applications and frameworks
using the Sockets API. While our findings could be fur-
ther automatized with the tools utilized by Camara, Am-
mons and Palix et al., we believe such an investigation
would be in the scope of another article.

Similarly to our endeavors with multihoming, Multiple
Interfaces working group in the IETF tackles the same
problem but in broader sense [2, 24]. Our work supple-
ments their work, as we explained a very specific multi-
homing problem with UDP, the extent of the problem in
Ubuntu Linux and the technical details how the problem
can be addressed by developers.

6 Conclusions

In this article, we showed empirical results based on
a statistical analysis of open-source network software.
Our aim was to understand how the Sockets APIs and its
extensions are used by network applications and frame-
works. We highlighted ten problems with security, IPv6
and configuration. In addition to describing the generic
technical solution, we also reported the extent of the
problems. As the most important finding, we discov-
ered that 28.6% of the C-based network applications in
Ubuntu are vulnerable to attacks because they fail to ini-
tialize OpenSSL properly.

We applied the findings with C-based applications to
four example frameworks based on the Sockets API.
Contrary to the C-based applications, we analyzed the



22 • Sockets and Beyond: Assessing the Source Code of Network Applications

frameworks in a top-down fashion along generalized di-
mensions of end-host naming, multiplicity of names and
transports, name look up and security. Consequently, we
proposed 12 networking requirements that were com-
pletely met by a little over half of the frameworks in
total. For example, all four frameworks consistently
failed to support UDP-based multihoming and parallel
IPv4/IPv6 connection initialization for the clients. Also
the TLS/SSL initialization issue was present in some of
the frameworks. With the suggested technical solutions
for Linux, we argue that hand-held devices with multi-
access capabilities have improved support for UDP, the
end-user experience can be improved by reducing la-
tency in IPv6 environments and security is improved for
SSL/TLS in general.

7 Acknowledgments

We would like to thank Tao Wan for his initial work with
the topic. We appreciate the discussion with Dmitriy
Kuptsov, Antti Louko, Teemu Koponen, Antti Ylä-
Jääski, Jukka Nurminen, Andrey Lukyanenko, Boris
Nechaev, Zhonghong Ou, Cui Yong, Vern Paxon, Ste-
fan Götz and Suvi Koskinen around the topic. The au-
thors also express their gratitude to anonymous review-
ers for their comments. This work was supported by
grant numbers 139144 and 135230 from the Academy
of Finland.

References

[1] Glenn Ammons, Rastislav Bodík, and James R.
Larus. Mining specifications. In Proceedings of
the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’02,
pages 4–16, New York, NY, USA, 2002. ACM.

[2] M. Blanchet and P. Seite. Multiple Interfaces and
Provisioning Domains Problem Statement. RFC
6418 (Informational), November 2011.

[3] P. de la Cámara, M. M. Gallardo, P. Merino, and
D. Sanán. Model checking software with
well-defined apis: the socket case. In Proceedings
of the 10th international workshop on Formal
methods for industrial critical systems, FMICS
’05, pages 17–26, New York, NY, USA, 2005.
ACM.

[4] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J. Iyengar. Architectural Guidelines for Multipath
TCP Development. RFC 6182 (Informational),
March 2011.

[5] R. Gilligan, S. Thomson, J. Bound, J. McCann,
and W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC 3493 (Informational),
February 2003.

[6] R. Hinden and S. Deering. IP Version 6
Addressing Architecture. RFC 4291 (Draft
Standard), February 2006. Updated by RFCs
5952, 6052.

[7] C. Huitema. RFC 4380: Teredo: Tunneling IPv6
over UDP through Network Address Translations
(NATs), February 2006.

[8] M. Komu, M. Bagnulo, K. Slavov, and
S. Sugimoto. Sockets Application Program
Interface (API) for Multihoming Shim. RFC 6316
(Informational), July 2011.

[9] M. Komu and T. Henderson. Basic Socket
Interface Extensions for the Host Identity Protocol
(HIP). RFC 6317 (Experimental), July 2011.

[10] Craig Metz and Jun ichiro itojun Hagino.
IPv4-Mapped Addresses on the Wire Considered
Harmful, October 2003. Work in progress,
expired in Oct, 2003.

[11] Robert Moskowitz, Pekka Nikander, Petri Jokela,
and Thomas R. Henderson. RFC 5201: Host
Identity Protocol, April 2008.

[12] E. Nordmark and M. Bagnulo. Shim6: Level 3
Multihoming Shim Protocol for IPv6. RFC 5533
(Proposed Standard), June 2009.

[13] E. Nordmark, S. Chakrabarti, and J. Laganier.
IPv6 Socket API for Source Address Selection.
RFC 5014 (Informational), September 2007.

[14] Nicolas Palix, Gaël Thomas, Suman Saha,
Christophe Calvès, Julia L. Lawall, and Gilles
Muller. Faults in linux: ten years later. In Rajiv
Gupta and Todd C. Mowry, editors, ASPLOS,
pages 305–318. ACM, 2011.

[15] Eric Rescorla. SSL and TLS, Designing and
Building Secure Systems. Addison-Wesley, 2006.
Tenth printing.



2012 Linux Symposium • 23

[16] Michael Scharf and Alan Ford. MPTCP
Application Interface Considerations, November
2011. Work in progress, expires in June, 2012.

[17] Douglas C. Schmidt. The adaptive
communication environment: An object-oriented
network programming toolkit for developing
communication software. pages 214–225, 1993.

[18] P. Srisuresh and K. Egevang. Traditional IP
Network Address Translator (Traditional NAT).
RFC 3022 (Informational), January 2001.

[19] W. Stevens, M. Thomas, E. Nordmark, and
T. Jinmei. Advanced Sockets Application
Program Interface (API) for IPv6. RFC 3542
(Informational), May 2003.

[20] W. Richard Stevens, Bill Fenner, and Andrew M.
Rudoff. Unix Network Programming, Volume 1,
The Sockets Networking API. Addison-Wesley,
2004. Fourth printing.

[21] R. Stewart. RFC 4960: Stream Control
Transmission Protocol, September 2007.

[22] T.Dierks and E. Rescorla. RFC 5246: The
Transport Layer Security (TLS) Protocol Version
1.2, August 2008.

[23] Javier Ubillos, Mingwei Xu, Zhongxing Ming,
and Christian Vogt. Name Based Sockets,
September 2010. Work in progress, expires in
March 2011.

[24] M. Wasserman and P. Seite. Current Practices for
Multiple-Interface Hosts. RFC 6419
(Informational), November 2011.

[25] D. Wing and A. Yourtchenko. Happy Eyeballs:
Success with Dual-Stack Hosts. RFC 6555
(Proposed Standard), April 2012.



24 • Sockets and Beyond: Assessing the Source Code of Network Applications


	Sockets and Beyond: Assessing the Source Code of Network Applications
	M. Komu, S. Varjonen, A. Gurtov, S. Tarkoma
	Introduction
	Background
	The Sockets API
	Name Resolution
	Delivery of Application Data
	Customizing Networking Stack

	Sockets API Extensions
	NAT Traversal
	Transport Layer Security
	Network Frameworks

	Materials and Methods
	Results and Analysis
	Core Sockets API
	IPv6
	Name Resolution
	Packet Transport
	Customizing Networking Stack
	Multihoming and UDP

	Sockets API Extensions
	Security: SSL/TLS Extensions
	IPv6-Related Extensions
	Other Protocol Extensions
	A Summary of the Sockets API Findings and Their Implications

	Network Application Frameworks
	Generic Requirements for Modern Frameworks
	ACE
	Boost::Asio
	Java.net
	Twisted
	A Summary of the Framework Results


	Related and Future Work
	Conclusions
	Acknowledgments



