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Abstract

The rapid increase in the number of cores and nodes
in high performance computing (HPC) has made petas-
cale computing a reality with exascale on the horizon.
Harnessing such computational power presents a chal-
lenge as system reliability deteriorates with the increase
of building components of a given single-unit reliability.
Today’s high-end HPC installations require applications
to perform checkpointing if they want to run at scale
so that failures during runs over hours or days can be
dealt with by restarting from the last checkpoint. Yet,
such checkpointing results in high overheads due to of-
ten simultaneous writes of all nodes to the parallel file
system (PFS), which reduces the productivity of such
systems in terms of throughput computing. Recent work
on checkpoint/restart (C/R) has shown that incremental
C/R techniques can reduce the amount of data written
at checkpoints and thus the overall C/R overhead and
impact on the PFS.

The contributions of this work are twofold. First, it
presents the design and implementation of two memory
management schemes that enable incremental check-
pointing. We describe unique approaches to incremen-
tal checkpointing that do not require kernel patching in
one case and only require minimal kernel extensions in
the other case. The work is carried out within the latest
Berkeley Labs Checkpoint Restart (BLCR) as part of an
upcoming release. Second, we evaluate the two schemes
in terms of their system overhead for single-node mi-
crobenchmarks and multi-node cluster workloads. In
short, this work is the final showdown between page
write bit (WB) protection and dirty bit (DB) page track-
ing as a hardware means to support incremental check-
pointing. Our results show savings of the DB approach
over WB approach in almost all the tests. Further, DB
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has the potential of a significant reduction in kernel ac-
tivity, which is of utmost relevance for proactive fault
tolerance where an immanent fault can be circumvented
if DB-based live migrations moves a process away from
hardware about to fail.

1 Introduction

With the number of cores increasing manifold at a rapid
rate, high performance computing systems have scaled
up to thousands of nodes or processor cores. Also, with
the increase in the availability of off-the-shelf compo-
nents, parallel machines are no more a niche market.
Huge scientific applications and even non-scientific ap-
plications with highly parallel patterns exploit such ma-
chines, and hence provide faster time-to-solution. Even
with the high amount of processing power available,
such high-end applications experience execution times
in the order of hours or even days in some cases. Exam-
ples of such applications are general scientific applica-
tions, climate modeling, protein folding and 3D model-
ing. With the use of off-the-shelf components, the Mean
Time Between Failure (MTBF) has also been reduced
substantially [12], which indicates an increasing prob-
ability of hardware failure on such machines. After a
failure, the current process would need to be restarted
from the scratch. This approach would not only waste
CPU cycles and power in duplicated work but also delay
the results by a substantial amount of time. To address
these problems, fault tolerance is needed.

There have been many approaches to support fault
tolerance in HPC. One of the approaches is check-
point/restart (C/R). This approach involves checkpoint-
ing the application on each node at regular intervals of
time to non-local storage. Upon failure, the checkpoint
is simply shifted to a spare node and the checkpoint
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is restarted from the last checkpoint instead of restart-
ing the application from the scratch. Checkpointing in-
volves saving the state of the process at a point in time
and then using the same data at the time of restart. There
have been various frameworks for application as well as
system-level C/R.

The checkpoint restart framework which this paper re-
volves around is Berkeley Labs Checkpoint Restart
(BLCR) [6]. BLCR is a hybrid kernel/user implemen-
tation of C/R for Linux developed by the Future Tech-
nologies Group at Lawrence Berkeley National Labo-
ratory. It is a robust, production quality implementation
that checkpoints a wide range of applications without re-
quiring any changes made to the code. The checkpoint
process involves saving the process state including reg-
isters, virtual address space, open files, debug registers
etc., and using the data to restart the process. BLCR sup-
port has been tightly integrated into various MPI imple-
mentations like LAM/MPI, MVAPICH, OpenMPI and
others to enable checkpointing of parallel applications
that communicate through MPI.

Researchers at North Carolina State University (NCSU)
have been working on various extensions for BLCR.
One of the extensions for the BLCR was incremental
checkpointing. BLCR’s current naive approach check-
points the entire state of the process at every checkpoint
period. In most cases, in accordance with the 90/10 law,
the process might sit in a tight loop for the entire pe-
riod between two checkpoints and only modify a subset
of application state. In such cases, checkpointing the en-
tire process not only wastes memory but also time. With
large applications, write throughput to disk can rapidly
become the bottleneck for large checkpoints. Hence, re-
ducing write pressure on the time-critical path of exe-
cution through incremental checkpointing can become
quite important.

With the incremental checkpointing approach, the key
virtue is the detection of modified data. The most conve-
nient approach would be to detect modifications at page
granularity. However, there can be various methods to
detect modifications on a page. The previous approach
taken by researchers at NCSU was to propagate the dirty
bit in the page table entry to user level by using a kernel
patch [15].

Contributions:

This paper presents the design, implementation and

evaluation of two different approaches to incremental
checkpointing. Our contributions are as follows:

e We present an approach for the detection of mod-
ified data pages that does not require patching the
kernel as in previous work and can instead be used
on vanilla kernels.

e We compare and contrast the two approaches for
performance and establish the pros and cons of
each. This helps the users decide which approach
to select based on their constraints.

e We compare the performance of the two ap-
proaches against base checkpointing to assess the
benefits and limitations of each.

e We show that our lower overhead dirty-bit track-
ing has the potential of a significant reduction in
kernel activity. When utilized for proactive fault
tolerance, an immanent fault could more likely be
circumvented by dirty bit-based live migration than
by a write protection-based scheme due to these
overhead. As a result, a process could be migrated
from a node about to fail to healthy node with a
higher probability under dirty-but tracking than un-
der write protection.

2 Related Work

C/R techniques for MPI jobs frequently deployed
in HPC environments can be divided into two
categories:  coordinated checkpointing, such as
LAM/MPI+BLCR [13, 6] and CoCheck [14], and
uncoordinated checkpointing, such as MPICH-V [4, 5].
Coordinated techniques commonly rely on a combi-
nation of operating system support to checkpoint a
process image (e.g. via the BLCR Linux module [6]) or
user-level runtime library support. Collective commu-
nication among MPI tasks is used for the coordinated
checkpoint negotiation [13]. Uncoordinated C/R
techniques generally rely on logging messages and their
temporal ordering for asynchronous non-coordinated
checkpointing, e.g. by pessimistic message logging as
in MPICH-V [4, 5]. The framework of OpenMPI [3, 10]
is designed to allow both coordinated and uncoordi-
nated types of protocols. However, conventional C/R
techniques checkpoint the entire process image, leading
to high checkpoint overhead, heavy I/O bandwidth
requirements and considerable hard drive pressure,
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even though only a subset of the process image of all
MPI tasks changes between checkpoints. With our
incremental C/R mechanism, we mitigate the cost by
checkpointing only the modified pages.

Incremental Checkpointing: Recent studies focus on
incremental checkpointing [7, 9]. TICK (Transpar-
ent Incremental Checkpointer at Kernel Level) [7] is
a system-level checkpointer implemented as a kernel
thread. It supports incremental and full checkpoints.
However, it checkpoints only sequential applications
running on a single process that do not use inter-process
communication or dynamically loaded shared libraries.
In contrast, our solution transparently supports incre-
mental checkpoints for an entire MPI job with all its
processes. Pickpt [9] is a page-level incremental check-
pointing facility. It provides space-efficient techniques
for automatically removing useless checkpoints aiming
at minimizing the use of disk space. Yi et al. [17] de-
velop an adaptive page-level incremental checkpoint-
ing facility based on the dirty page count as a thresh-
old heuristic to determine whether to checkpoint now
or later, a feature complementary to our work that we
could adopt within our scheduler component. However,
Pickpt and Yis adaptive scheme are constrained to C/R
of a single process, just as TICK was, while we cover an
entire MPI job with all its processes and threads within
processes. Agarwal et al. [1] provide a different adap-
tive incremental checkpointing mechanism to reduce the
checkpoint file size by using a secure hash function to
uniquely identify changed blocks in memory. Their so-
lution not only appears to be specific to IBMs com-
pute node kernel on BG/L, it also requires hashes for
each memory page to be computed, which tends to be
more costly than OS-level dirty-bit support as caches
are thrashed when each memory location of a page has
to be read in their approach. A prerequisite of incre-
mental checkpointing is the availability of a mechanism
to track modified pages during each checkpoint. Two
fundamentally different approaches may be employed,
namely a page protection mechanism for the write bit
(WB) or a page table dirty bit (DB) approach. Different
implementation variants build on these schemes. One is
the bookkeeping and saving scheme that, based on the
DB scheme, copies pages into a buffer. Another solution
is to exploit page write protection, such as in Pickpt and
checkpointing for Grids under XtreemOS [11], to save
only modified pages as a new checkpoint. The page pro-
tection scheme has certain draw-backs. Some address
ranges, such as the stack, can only be write protected if

an alternate signal stack is employed, which adds calling
overhead and increases cache pressure.

We present two different approaches to incremental
checkpointing in this work. The first approach exploits
the write bit (WB) to detect modifications on a page
level. This approach does not require the kernel to be
patched (unlike Grid checkpointing under XtreemOS,
which required a patch [11]). This is different than the
prior work since it uses innovative approaches to han-
dle corner cases for detecting modifications on pages.
The second approach uses the dirty bit (DB) for track-
ing writes on page. This approach shadows the DB from
the kernel within the user level and captures the modifi-
cation status of the page. Both our approaches work for
entire MPI jobs.

3 Design

This section describes the design of incremental check-
pointing in BLCR. The main aim of the incremental
checkpointing facility is to integrate it seamlessly with
BLCR with minimal modifications to the original source
code. The enhanced code should also have a minimal
overhead while taking incremental checkpoints. When
incremental checkpointing is disabled, it should allow
BLCR to checkpoint without any additional complexity.
For this purpose, we have divided the checkpoints into
three categories.

o Default Checkpoint: checkpointing sans incremen-
tal code;

o Full Checkpoint: Fully checkpointing of the entire
process despite of any modifications;

e Incremental Checkpoint: Checkpointing of only
modified data pages of a process.

In the above list, Default and Full checkpoints would be
identical in their output but different in their initializa-
tion of various data structures, which is detailed later.

The main criteria of the design of incremental check-
pointing is to provide a modular approach. The most
critical task in incremental checkpointing is to detect the
modification of data pages in order to determine whether
it should be checkpointed (saved) or not. Currently, we
support two approaches. Based on previous work done
at NCSU, the first approach is called the dirty bit (DB)
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approach. The details of this approach are discussed be-
low. This approach requires users to patch their kernels
and recompile it. Another approach we designed avoids
the patching of the kernel. It instead uses the currently
existing mechanisms in the kernel to detect modifica-
tions to pages.

In addition to the above approaches, other solutions may
be designed in future depending on the features pro-
vided by the Linux kernel and the underlying hardware.
To efficiently support different algorithms with minimal
code modifications, we designed an interface object for
incremental checkpointing that unifies several of the es-
sential incremental methods. Algorithms simply "plug
in" their methods, which are subsequently called at ap-
propriate places. Hence, BLCR remains agnostic to the
underlying incremental implementation. This interface
needs to encompass all methods required for incremen-
tal checkpointing.

3.1 Incremental Interface

The incremental interface uses BLCR to call the incre-
mental checkpointing mechanism in a manner agnostic
to the underlying implementation. This enables various
incremental algorithms to be implemented without ma-
jor code changes in the main BLCR module. The inter-
face object is depicted in Figure 1.

int (*init) (cr_task_t *, void *);

int (*destroy)(cr_task_t *, void *);

int (*register_handlers)(cr_task_t *cr_task, struct vm_area_struct *map);

int (*page_modified) (struct mm_struct *mm, unsigned long addr, struct vm_area_struct *map);
int (*shvma_modified) (struct vm_area_struct *vma);

int (*clear_vma) (struct vm_area_struct *vma);

int (*clear_bits) (struct mm_struct *mm, unsigned long addr);

Figure 1: BLCR incremental object interface

With this object, existing BLCR code is converted to
function calls. If they are not defined, BLCR will be-
have as it would without any incremental checkpointing.
At the first checkpoint, this object would be created per
process and associated with a process request. The high
level design is depicted in Figure 2.

The initialization function allows a specific incremental
approach to set up the data structures (if any), initial-
ize pointers etc. Similarly, the destroy function lets the
specific module free up used memory and/or unregister
certain handlers. The detection of modified data pages
might utilize existing kernel handlers or hooks that need
to be registered. The register_handler function is used
for registering specific hooks. This function is utilized
here to register hooks for memory mapping and shared
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Figure 2: BLCR incremental design

writes. The mmap hooks keep track of mapping and un-
mapping of the memory pages to ensure that the newly
mapped pages are not skipped as described in one of the
cases. The page_modified function is the heart of this
interface object. It returns a boolean value indicating
whether the page has been modified or not. Similarly,
shvma_modified returns a boolean for whether a shared
page has been modified or not. After each incremen-
tal checkpoint, clear_vma and clear_bits can be used to
reset the bits for the next checkpoint

3.2 Write Bit Approach

The WB approach is inspired by work by Mehnert-
Spahn et al. [11] and tracks the modified data pages.
However, they implemented their mechanism on Ker-
righad Linux/SSI through source code modifications.
One of the main criteria behind the design of this ap-
proach was to ensure that no modifications of kernel
code were required. Therefore, in addition to the WB,
additional mechanisms were utilized for incremental
checkpointing.

In this approach, the WB is cleared at each checkpoint.
At the next checkpoint, we check whether the WB is
set or not. If the page whose WB is cleared is written
to, the Linux kernel generates a page fault. Since the
segment permission for writing would be granted, the
kernel will simply set the write bit of the associated page
table entry and return. The WB serves as an indicator
that, if set, implies that the page was modified between
checkpoints. If it is not set, the page was not modified
between the checkpoints. However, this approach does
not work for a number of corner cases. We shall look at
those cases and discuss how they can be handled in the
following.
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3.2.1 VM Area Changes

One of the major issues with the above WB approach
is its requirement to track changes in the virtual mem-
ory area. Many memory regions might be mapped or
unmapped between two successive checkpoints. Some
memory regions may be resized. We need to cover all
such cases in order to ensure correctness. We have as-
signed a data structure for each page that tracks the sta-
tus of the page. The structure and design of this track-
ing approach will be discussed in the next section. Map
tracking includes:

e A page is unmapped: If a page is unmapped be-
tween two successive checkpoints, then the corre-
sponding tracking structure for that page needs to
be invalidated or removed. To this end, we need to
be alerted when a page was unmapped while the
process runs. We used the close entry provided
in the vm_area structure, which is a hook called
when a virtual memory area is being “closed” or
unmapped. With that hook, we associate required
steps when a memory area is unmapped.

o New regions are mapped: This case describes the
instance in which new memory regions are added
between two checkpoints. For example, consider
an incremental checkpoint 1 written to disk. Be-
fore incremental checkpoint 2 is taken, page A is
mapped into the process address space. At the next
checkpoint, if page A was not modified, it will not
be checkpointed since the WB would not be set.
However, this would be incorrect. To handle this
case, we do not allocate the tracking structure for
newly mapped regions. Hence, at the next check-
point on detecting the missing tracking structure,
page A will be checkpointed regardless of the sta-
tus of the WB in its page table entry.

3.2.2 Corner Cases

One of the more serious cases is posed by the system
call mprotect. For a VM area protected against writes,
the kernel relies on the cleared write bit to raise page
faults and then checks the VM permissions. This case
can also give erroneous output. For example, assume
page A was modified by the user thus setting the WB.
Before the next incremental checkpoint, the user pro-
tects the page allowing only reads, effectively clearing

the WB. When the next checkpoint occurs, the check-
point mechanism fails to identify the modification on
the data page and, hence, discounts it as an unmodified
page. We have handled this case by using the DB. The
mprotect function, while setting permission bits, masks
the DB. Hence, if the page is modified then we can de-
tect it through the DB.

The other corner case is that of shared memory. In
BLCR only one of the processes will capture the shared
memory. However, we may miss the modification if the
process capturing the shared memory has not modified
the data page. To handle this, we reverse map the pro-
cesses through the cr_task structures and check for mod-
ifications in each process tracking structure for the page.
If even one of them is modified, then the shared page is
dirty and should be checkpointed.

3.2.3 Tracking Structure

The tracking structure for incremental checkpointing is
a virtual page table maintained by the BLCR module.
This is done for two purposes: (1) to track VM area
changes like unmapping, remapping, new mapping etc;
(2) to detect writes to shared memory. Only two bits
suffice to maintain the tracking state of the page. Ini-
tially, the design was to replicate a page table structure
in BLCR to maintain the state of each page. Since this
will have to be performed for the entire process, using
a long type variable would waste a significant amount
of memory. We have optimized this tracking structure
to use only 4 bits per page. This results in an almost
eight-fold reduction in memory usage as compared to
maintaining a properly mirrored page table.

3.3 Dirty Bit Approach

The second approach taken by previous work uses the
DB for detecting page modifications. It uses an exist-
ing Linux kernel patch to copy the PTE DB into user
level [15]. The problem with using the DB is that the
kernel uses the DB for its own purpose, which might in-
troduce an inconsistency if BLCR and the Linux kernel
were both using it simultaneously. The patch introduces
redundant bits by using free bits in the PTE and main-
taining a correct status of the dirty bit for a given page.
This approach requires the kernel to be patched. More
significantly, this approach prevents page faults from be-
ing raised at every write as in the WB approach but still
allows dirty page tracking.
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4 Framework

We conducted our performance evaluations on a local
cluster. This cluster has 18 compute nodes running Fe-
dora Core 12 Linux x86 64 (Linux kernel- 2.6.31.9-
174.£c12.x86_64) connected by a two Gigabit Ethernet
switches. Each node in the cluster is equipped with four
1.76GHz processing cores (2-way SMP with dual-core
AMD Opteron 265 processors) and 2 GB memory. A
large RAIDS array provides shared file service through
NEFS over one Gigabit switch. Apart from the modifica-
tions for incremental checkpointing in BLCR, we also
instrumented the code for the BLCR library to mea-
sure the time across checkpoints. OpenMPI was used
as the MPI platform since BLCR is tightly integrated in
its fault tolerance module.

S Experiments

We designed a set of experiments to assess the over-
heads and analyze the behavior of two different ap-
proaches of incremental checkpointing, namely (i) the
WB approach and (ii) the DB approach. The experi-
ments are aimed at analyzing the performance of vari-
ous test benchmarks for these two approaches in isola-
tion and measuring their impact on the performance of
application benchmarks.

Various NAS Parallel Benchmarks [2] (NPB) as well
as a microbenchmark have been used to evaluate the
performance of above two approaches. From the NPB
suite, we chose SP, CG, and LU as their runtimes are
long enough for checkpoints. In addition, we devised a
microbenchmark that scales from low to high memory
consumption in order to evaluate the performance of the
incremental approaches under varying memory utiliza-
tion.

5.1 Instrumentation Techniques

For getting precise measurement of time, the method of
instrumentation is quite important. The BLCR frame-
work has been modified to record timings of two levels.
Figure 3 depicts the block diagram of an application.
In the context of the NPB suite, this would be an MPI
program with cross-node communication via message
passing [8]. We can issue an ompi-checkpoint com-
mand so that the OpenMPI framework will engage in

a coordinated checkpoint [10]. To assess the perfor-
mance, we could simply measure the time across the
ompi-checkpointing call. However, this would required
modifications to OpenMPI. It would also include the
timing for the coordination of MPI processes due to an
implicit barrier, which would skew our results. Instead,
we modified the BLCR library. We measure the timing
across the do_checkpoint call in each of the processes.
The processes then output their time to a common file
(see Figure 3).

liber

-
Application —— start _timer
CR_OP_HAND_
< CHKPT __ |  cnd simer
. Timer
User Space checkpoint file
Kernel Space

BLCR kernel
module

Figure 3: BLCR library timer design

There is one small caveat with the above approach. Our
initial tests showed very low variations between the two
incremental approaches. After studying timings for var-
ious phases, it was found that most of the checkpoint
time was dominated by writes to the context file on the
file system. This overhead was dominating any other
time like, including the time to detect page modifica-
tions. Our approach thus was aimed at excluding the
write time from the total time. We wanted to only mea-
sure the time to detect page modifications. To this end,
we enhanced the BLCR kernel module to measure only
the modification commands. The design is as depicted
in Figure 4. We accrue the timing measurements for
modification detection across each page chunk. As a
post processing step, we calculate the maximum, mini-
mum and average of all checkpoint timings.

Automated checkpoint scripts enable regular check-
pointing of various MPI and non-MPI processes.

5.2 Memory Test

We have split the test suite into two parts. The first part,
the memory test, measures the difference between two
checkpointing approaches on a single machine. The sec-
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Figure 4: BLCR kernel module timer design

ond part of experiments measures the impact of perfor-
mance on multi-node MPI benchmarks as the number of
nodes and the memory consumption scales. We discuss
the first set of experiments in this section. We have de-
vised a microbenchmark for measuring the performance
difference between the two approaches of WB and DB.
This benchmark allocates a specified number of mem-
ory pages and, depending on the configuration specified,
alters a certain number of pages per checkpoint. This
allows a comparison of the performance under varying
memory utilization.

The experiment is conducted on a large data set. We
create a map of 200,000 memory pages within a sin-
gle process. We constrain the number of checkpoints
at 20 with a ratio of incremental to full checkpoints at
4:1. This means a full checkpoint is always followed by
four incremental checkpoints as such a hybrid scheme
was shown to be superior to only incremental check-
pointing [16]. We vary the number of modified pages
by large increments. The data points for this graph are
at 500, 5k, 25k, 50k, and 100k modified pages. The re-
sults are depicted in Figure 5.

Figure 5 indicates that the difference between the per-
formance of DB and WB is low when the set of mod-
ified pages is low. As the number of modified pages
increases, the difference also increases. When the mod-
ified data set reaches 100,000 pages, the difference is
almost twice that of WB. We can conclude from this
experiment that using the DB approach has significant
potential to improve performance.

To understand this result, let us explain the mechanism
first. BLCR iterates through every page and checks
for modified pages. For each page, the WB and DB

9
g m WB approach
W DB approach
7
Q6
<
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Figure 5: Micro benchmark Test

approach will use their own mechanisms for checking
modified pages. In the WB approach, BLCR has to
check its own data structure for mappings of the page
(mapped or not). It then fetches the PTE from the ad-
dress passed to it. After detecting whether a page has
been modified or not, the clear bit function clears the
WB in the PTE for the next round. For this, the WB
approach has to map the PTE again to access it. In
DB, on the other hand, the testing for modification and
clearing the bit on the PTE happens in a single sweep
within the test-and-clear function. In addition to it, the
DB approach does not have to manipulate any internal
data structures to keep track of mappings. These factors
make DB a much faster approach then WB in the above
experiment.

We devised a second case using alternate pages to pro-
vide insight into the performance difference of incre-
mental vs. default full checkpointing. In this case, al-
ternate pages from the process address space are mod-
ified and the performance is assessed. We provided a
fixed-size data set of 100k pages here. By writing to
ever other page, 50k pages will be modified between
checkpoints. We observed that incremental checkpoint-
ing takes significantly longer than full default check-
pointing. It seems counter intuitive that saving a smaller
data set for incremental checkpointing takes more time
than saving the full checkpoint data, yet the explana-
tion to this anomaly lies in the way BLCR saves a pro-
cess’ memory space. BLCR iterates through each vir-
tual memory area (VMA) structure to gather contiguous
chunks of pages before committing them to stable stor-
age. Upon a full checkpoint, the entire mapped space
becomes one chunk written to disk through a single
system call. When we modify alternate pages, we en-
counter an unmodified page after each modified page,
where the former is discarded by BLCR as it is unmod-
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ified. Since the chunk breaks there, BLCR will have
to issue a write to disk for each single modified page.
Therefore, we issue significantly more write calls in in-
cremental checkpointing than in full checkpointing. No-
tice that this deficiency is being addressed by aggregat-
ing non-contiguous chunks before committing them to
stable storage, but such an approach comes at the cost
of additional meta-data to describe the internal check
structure.

5.3 NAS Benchmarks

In this section, we analyze the performance of multi-
node MPI benchmarks for the WB and DB approaches.
We selected the MPI version of the NPB benchmark
site [2]. We constrained the selection of benchmarks
from the NPB set to those with sufficiently long run-
times to take a suitable number of checkpoints.

We devised a set of experiment using strong scaling
by increasing the number of processors. With such
increase in computing resources, we decrease the per-
node and overall runtime. However, this renders some
benchmarks unusable for our experiments as the run-
time was not sufficient to issue a checkpoint, particu-
larly for smaller input sizes (classes A and B) of the
NPB suite. Yet, using large input sizes (class D) under
NPB on fewer processors (1 to 4) is not practical either
due to excessively long checkpointing times. Hence, we
settled for input sizes of class C for the experiments.

Considering all benchmarks and assessing their run-
times, we selected three suitable benchmarks for our
tests: SP, CG and LU. We present the following experi-
ments and results for the same.

We assessed the performance for the SP benchmark on
4,9, 16 and 36 processor. Notice that SP requires the
number of processors to be a perfect square. The exper-
iments were performed on class C inputs with a check-
point interval of 60 seconds over a varying number of
nodes. Figure 6 depicts the runtime spent inside the
Linux kernel portion of BLCR. We observe that the DB
approach incurs less overhead in the kernel than the WB
approach in all of the cases. We see a downwards slope
and a decrease in the difference between DB and WB
from 4 processors to 9 processors to 16 processors. The
reason for the decrease in time spent in the kernel is
that as we increase resources the application is more dis-
tributed among nodes. This implies less data per node to

checkpoint and, hence, less time spent on checkpointing
in the kernel.

In the case of 36 processors, we see a sudden spike in
kernel runtime. This anomaly is attributed to the fact we
only have 16 physical nodes but deploy the application
across 36 processes. Thus, multiple processes are vy-
ing for resources on the some nodes. The processes are
contending for cache, networking and disk. Hence, the
36-processor case (and any oversubscription case stud-
ied in the following) should only be considered by itself
and not in comparison to lower number of processes.
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Figure 7: SP benchmark (Application time)

Figure 7 depicts the overall application time for the SP
benchmark for different numbers of nodes. We see that
the DB approach slightly outperforms the WB approach
in all cases. As the number of processes (and proces-
sors) increases from 4 over 9 to 16, we see a decrease
in total application time. Recall that the work gets dis-
tributed between various nodes as the number of pro-
cessors increases while the application time decreases.
This happens under both the configurations, WB and
DB. For 36 processes, the application time goes. Again,
we are oversubscribing with 36 processes on 16 physi-



cal nodes. This causes contention for memory, network-
ing and disk. The DB approach shows slightly higher
performance gains for this oversubscription case likely
due to mutual exclusion inside the kernel (kernel locks),
which impacts WB more due to more time spent in the
kernel.

The next NPB program tested was the CG benchmark
for class C inputs. We varied the number of nodes from
4 over 8 and 16 to 32 processors. The incremental to full
checkpoint ratio is kept at 4:1. Checkpoints are taken
every 10 seconds.

Figure 8 depicts the kernel runtime for CG. These re-
sults indicate considerable savings for DB over WB for
4 processors and smaller savings for 8 processors. At
16 processors, more savings materialize for DB. In con-
trast, the overhead of WB increases drastically. This
anomaly can be explained as follows. The total running
time of CG is low. Checkpoints were taken at an inter-
val of 10 seconds. Since the savings due to the DB ap-
proach exceed 10 seconds, the benchmark run under DB
resulted in fewer checkpoints, which further decreased
the application runtime. In contrast, WB ran past the
next checkpoint interval, which incurred one additional
checkpoint. Thus, we may gain by issuing fewer check-
points under DB due to the lower kernel overhead of the
latter.
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Figure 8: CG benchmark

Figure 9 depicts the total application time for CG. We
see considerably more savings of DB over WB in the
case of 16 nodes than for 4 or 8 nodes due to the lower
number of checkpoints for DB. In all other cases, DB
slightly outperforms WB. The higher overall runtime for
32 processes is caused by node oversubscription again.

Next, we assessed the performance under the LU bench-
mark for 4,8,16 and 32 processors under class C inputs.
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Checkpoints were taken every 45 seconds, and the in-
cremental to full checkpoint ratio was 4:1.

Figure 10 depicts the kernel time. As in the previous
experiment, there are significant savings in time spent
in the kernel. The total time decreases as the number
of nodes increases from 4 over 8 to 16. Under 32 pro-
cesses, we see an increase of total time relative to the
prior process counts due to node oversubscription. The
savings of the DB compared to WB are significant in all
cases. As in the previous savings, these savings in the
order of microseconds only materialize in minor overall
application runtime reductions as application runtime is
in the order of seconds. The results for total application
time for LU are depicted in Figure 11.
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Figure 10: LU benchmark

In terms of overall runtime for LU, we see that DB is
at par or slightly outperforms WB. We also see that the
percent are quite low compared to the percent savings
for kernel runtime in the previous graph. As explained
before, this is due to the fact that the time spent in kernel
is measured in microseconds while application time is
measured in seconds.
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In summary, we observe that the DB approach incurs
significantly less kernel overhead but only slightly less
overhead than WB approach for most test cases. Larger
savings are observed for longer-running applications as
a slight reduction in DB overhead may aggregate so that
fewer overall checkpoints are taken at the same check-
point interval.

6 Future Work

We have developed and evaluated two different ap-
proaches to incremental checkpointing. One (WB) re-
quired patching the Linux kernel to detect modifications
at page level while the other (DP) did not require any
patches. We have further quantitatively compared the
two approaches. We are currently investigating if patch-
ing of the kernel for DB can be omitted when swap
is turned off. This would alleviate the user from the
tedious kernel patching and recompilation of the ker-
nel. This approach is particularly promising for high-
performance computing under MPI as swap tends to be
disabled. We are currently DB usage within the ker-
nel beyond swap functionality to determine if utiliza-
tion of DB by the BLCR would create any side effects
for the kernel. We are also considering dynamic acti-
vation and deactivation of swap while a process is run-
ning. In that case, the DB functionality bit should be
gracefully handed over to the kernel without affecting
ongoing checkpoints. These issues are currently being
investigated and we aim to implement them in the fu-
ture. Furthermore, we are considering to integrate both
incremental checkpointing mechanisms, DB and WB,
with the latest BLCR release. The mechanism are al-
ready in the BLCR repository and the integration work
is under way.

7 Conclusion

In this paper, we outlined two different approaches to
incremental checkpointing and quantitatively compared
them. We conducted several experiments with the NPB
suite to determine the performance of the DB and WB
approaches in head-to-head comparison them. We make
the following observations from the experimental re-
sults. (1) The DB approach is faster significantly than
the WB approach than DB with respect to kernel ac-
tivity. (ii) DB also slightly outperforms WB for over-
all application in nearly all cases, and particularly for
long-running application where DB may result in fewer
checkpoints than WB. (iii) The WB approach does not
required kernel patching or kernel recompilation. (iv)
The difference in performance between the WB and the
DB approach increases with the amount of memory uti-
lization within a process. (v) The advantage of DB for
kernel activity could be significant for proactive fault
tolerance where an immanent fault can be circumvented
if DB-based live migrations moves a process away from
hardware about to fail.
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