
Management of Virtual Large-scale High-performance Computing
Systems

Geoffroy Vallée
Oak Ridge National Laboratory

valleegr@ornl.gov

Thomas Naughton
Oak Ridge National Laboratory

naughtont@ornl.gov

Stephen L. Scott
Tennessee Tech University and Oak Ridge National Laboratory

sscott@tntech.edu

Abstract

Linux is widely used on high-performance computing
(HPC) systems, from commodity clusters to Cray su-
percomputers (which run the Cray Linux Environment).
These platforms primarily differ in their system config-
uration: some only use SSH to access compute nodes,
whereas others employ full resource management sys-
tems (e.g., Torque and ALPS on Cray XT systems). Fur-
thermore, the latest improvements in system-level virtu-
alization techniques, such as hardware support, virtual
machine migration for system resilience purposes, and
reduction of virtualization overheads, enable the usage
of virtual machines on HPC platforms.

Currently, tools for the management of virtual machines
in the context of HPC systems are still quite basic, and
often tightly coupled to the target platform. In this docu-
ment, we present a new system tool for the management
of virtual machines in the context of large-scale HPC
systems, including a run-time system and the support for
all major virtualization solutions. The proposed solution
is based on two key aspects. First, Virtual System Envi-
ronments (VSE), introduced in a previous study, provide
a flexible method to define the software environment
that will be used within virtual machines. Secondly, we
propose a new system run-time for the management and
deployment of VSEs on HPC systems, which supports a
wide range of system configurations. For instance, this
generic run-time can interact with resource managers
such as Torque for the management of virtual machines.

Finally, the proposed solution provides appropriate ab-
stractions to enable use with a variety of virtualization
solutions on different Linux HPC platforms, to include
Xen, KVM and the HPC oriented Palacios.

1 Introduction

Virtual machines are widely used for server virtualiza-
tion aiming at consolidating physical resources and, ul-
timately, increase the resource usage. As a result, many
tools are available for the definition, deployment, and
management of virtual machines (VMs) on servers or
a small set of servers. Furthermore, over the past few
years, two new trends appeared and were the focus of
many research efforts: the deployment of cloud infras-
tructures, and the deployment of “virtual clusters”. In
fact, it has been shown that virtual clusters are an inter-
esting solution for high-performance computing (HPC).

Even if these computational platforms are very different
in nature, they are most of time running the Linux ker-
nel, even if the Linux distribution on top of it can be very
different and/or customized. For instance, most servers
in the business world are running Linux, in the context
of server consolidation, many VMs are Linux based. In
the context of HPC, the trend is even more clear since
more than 90% of HPC systems on the Top500 list [5]
are Linux based.

This document is focused on the HPC context, for which
it is preferable to have a few VMs running on the nodes
of the HPC platforms (typically one VM per core),
rather than running many virtual machines on a given
core (over-subscription). This is mainly because in the
context of HPC, input/output (I/O) operations are crit-

1The submitted manuscript has been authored by a contractor
of the U.S. Government under Contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a non-exclusive, royalty-
free license to publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Government purposes.

• 93 •



94 • Management of Virtual Large-scale High-performance Computing Systems

ical (because they are involved in communication be-
tween the execution entities of a parallel application).

To the best of our knowledge, all ongoing efforts for the
design and development of tools that aims at managing
a large number of VMs are focusing on the “many VMs
on a few nodes” paradigm rather than the “a few VMs on
many nodes” paradigm. As a result, existing solutions
are not adapted for the management of many VMs on
HPC systems and ultimately the execution of parallel
applications within these VMs.

In this document, we present the architecture of a new
system-level solution for the deployment and manage-
ment of many VMs that are used for the execution of
large-scale parallel applications on HPC platforms. Be-
cause the primary target of the proposed system is large-
scale HPC systems, the following characteristics are
critical for its design:

• Scalable bootstrapping: the bootstrapping on
many VMs running on many nodes of HPC sys-
tems is a challenging tasks, from the staging of
both the VM image and the application, to the ini-
tialization of the VMs and the launch of parallel
applications within the running VMs. Based on the
large number of nodes and VMs, it is necessary to
implement some advanced methods for startup of
VMs and applications, with linear approaches be-
ing too expensive.

• Portability: HPC systems may have very differ-
ent hardware configurations, as well as very differ-
ent software configurations. Furthermore, different
virtualization solutions will most certainly be de-
ployed on different HPC systems. As a result, the
proposed solution must support all major virtual-
ization solutions, and abstract the underlying virtu-
alization solution away from the users (so they can
easily run their applications on various virtualized
HPC platforms).

• Customization: one of the benefits of system-level
virtualization is to allow users to define their own
execution environments within the VMs (typically
software configuration). Tools are already avail-
able for the specification and deployment of cus-
tomized environments that will perfectly match the
requirements of parallel applications. The pro-
posed tool must support such customization capa-
bilities.

• Fault tolerance: because the system is composed
of many distributed hardware components, the
probability of a failure during the execution of a
parallel application at scale increases accordingly.
As a result, even if the goal of this study is not
to provide fault tolerance mechanisms for parallel
applications, we have to ensure that the proposed
system and its overall infrastructure will tolerate
failures to some extent, at least to allow users to
cleanly terminate the execution of their applica-
tions. For that, it is necessary to detect failures,
and guarantee communications even in the con-
text of link failures.

To address these challenges, the proposed solution is
based on three different abstractions:

1. a set of tools and methods for the specification
and instantiation of customized execution environ-
ments,

2. a control infrastructure that will be used for the
management of VMs (startup, monitoring, termi-
nation), as well as the control of the execution
of the parallel application; this “run-time” system
must be scalable and fault tolerant,

3. a tool for the abstraction of the underlying virtu-
alization solution so the user will not have to deal
with technical details specific to the virtualization
solution deployed on a given HPC system, which
means that this abstraction must support all major
virtualization solutions.

The remainder of this document is organized as follows:
Section 2 presents how users can specify a customized
execution environment for their applications that will be
used for the deployment of VMs on HPC systems. Sec-
tion 3 presents the control infrastructure used to control
and orchestrate many VMs used in the context of the ex-
ecution of a large-scale parallel applications. Section 4
presents the abstraction layer used to allow the user to
implicitly switch between different virtualization solu-
tions. Finally, Section 6 concludes.

2 Customization of Execution Environments

Based on the 36th edition of the Top500 list (September
2010), 91% of the 500 most powerful HPC systems are



2011 Linux Symposium • 95

based on Linux. However, the software configuration
of these systems vary greatly, from customized kernels
and Linux distributions to out-of-the-box Linux distri-
butions and the kernel they provide by default. Further-
more, each of the HPC systems have a well-defined set
of available software, including scientific libraries and
tools. So far, the users had to modify their application
to fit the configuration of the target HPC platforms, lead-
ing to wasted resources and redundant effort (scientists
should focus on the science gathered in their applica-
tions and not on modifications because of technical de-
tails of the HPC system).

An approach to address this challenge is to allow the
users to define their execution environments based on
the requirements of their applications. In a previous
work, we introduced the concept of Virtual System En-
vironment (VSE) [6] that enables the description of the
software requirements of a given applications. We also
proposed a set of tools for the instantiation of a VSE on
a given HPC platform.

As a result, it is possible to specify the “static” require-
ments of the scientific application; requirements that are
not specific to a given run of the application on a given
platform. For instance, the user can specify require-
ments such as the Linux distribution to be used (e.g.,
Red Hat Enterprise Linux), the version of the Linux
kernel, a set of scientific libraries. The specification
is translated into terms of “packages” available from
repositories. During the instantiation of a VSE on a
given HPC platform, the list of packages is used to cre-
ate a new image, which can then be used to setup a VM.
Note that the tools associated with the VSE ensure that
the image can be deployed independently of the virtual-
ization solution that is ultimately used. For instance, the
users do not have to know whether KVM or Xen will
be used as the virtualization solution, the provided tools
create a VM image that is agnostic to the different virtu-
alization solutions. Note that the tool that abstracts the
virtualization solution (presented in Section 4) ensures
that the image is correctly “loaded” based on the target
virtualization solution.

3 Control Infrastructure

The previous section presents how a user can customize
the execution environment for their applications. This
task can typically be done off-line and is independent
from the target HPC system. Once on the HPC systems,

the users must deploy the required VMs and start the
application execution. A typical way to see the execu-
tion of a parallel application is the concept of job: a
job is the combination of the application and an allo-
cation for its execution (typically a set of nodes). Un-
fortunately, HPC systems can be used with very differ-
ent configurations: some provide tools that assign an
allocation to a given job (based on the number of re-
quested nodes, the job manager allocates nodes to the
job); while some other systems allow direct access to
compute nodes (e.g., via SSH). This heterogeneity di-
rectly impacts how VMs will be deployed.

Furthermore, because we target large-scale HPC sys-
tems, it is not efficient to setup VMs and start the ap-
plication execution in a linear fashion, more advanced
startup methods are required.

Finally, even if failures occur during the execution of a
parallel application running within VMs, we must con-
tinue to keep control on the running VMs. In the context
of this study, our goal is not to provide fault tolerance
capabilities for the VMs or even for the application, but
to guarantee that even if compute nodes or VMs fail, it
will still be possible to control remaining VMs and let
the user decide the best solution (e.g., cleanly terminate
VMs that are still alive and therefore, terminate the job).

3.1 Architecture Overview

In order to deploy VMs on compute nodes and control
the execution of applications within these VMs, we need
to have control on each compute node of the job allo-
cation. Furthermore, in order to separate the system as-
pects (such as resource allocation) from the job manage-
ment, the proposed architecture is based on the concept
of agents, and five different types of agents have been
defined: root agents (typically system agents), session
agents (specific to a job), and tool agents (specific to a
“tool”, a tool being a self-contained part of a job, e.g.,
one of the binaries of a job when the parallel application
is composed of different sub-applications).

• Root agent: agent in charge of resource allocation
and release. Thus, this agent is a privileged agent.
Only one root agent is on each compute node and is
used to deploy other agents (both session and tool
agents). Root agents are not specific to a job.



96 • Management of Virtual Large-scale High-performance Computing Systems

• Session agent: agent in charge of instantiating a
job on allocated compute nodes. This is not a priv-
ileged agent and it acts on behalf of a user. A sin-
gle session agent is deployed on compute nodes of
a given job allocation.

• Tool agent: agent that instantiates the job itself;
multiple tool agents can be deployed on compute
nodes of a job allocation, and all tool agents act on
behalf of the users. In the context of this paper,
the tool agents are used to manage VMs. For that,
we developed a specific tool agent that can be used
to drive the tool that implements the abstraction of
the underlying virtualization solution (presented in
Section 4). For instance, the dedicated tool agent
can instantiate a VM, pause it, or terminate it.

• Controller agent: agent in charge of creating an
internal representation of a job and of coordinat-
ing the deployment of the different agents and the
creation of communication channels between the
agents. The communication channels are orga-
nized based on topologies (e.g., trees, meshes) that
describe how the controllers, the root agents, the
session agents, and the tool agents can commu-
nicate. In this example, root agents are running
on different compute nodes, and both session and
tool agents, that are children of a given root agent,
actually run on the same compute nodes. Fig-
ure 1 presents an example of a tree-based topology.
Topologies are also used to set routing tables up
(which are then used to send messages from one
agent to another), and to stage files, including the
VM image.

• Front-end agent: agent that runs on the user’s ma-
chine or on the HPC system login node. The front-
end provides a MPI-like user interface to submit a
job where the user specifies the VSE specification
file and the number of nodes required.

3.2 Scalable Bootstrapping

To efficiently startup agents, we define a boot topology
(the initial implementation is based on a binary tree but
any k-ary tree could be used). This tree allows us to start
the different agents in parallel, and provides good scal-
ability. This approach is used in various HPC specific
run-times and has proven to be efficient.

If failures occur during the bootstrapping phase, the dif-
ferent agents are designed and implemented to automat-
ically terminate. This is implemented using a handshake
mechanism with the agent’s parent within the boot-
strapping topology, as well as timers. Typically, if the
handshake does not succeed within a window of time,
we assume a failure and the agent terminates. On the
other hand, if the handshake succeeds, the bootstrapping
phase is assumed successful; the agent’s state switch to
running, and the parent assumes that the agent is running
and reachable. As such, the failure detection is then in
charge of detecting and reporting agent failures.

3.3 Fault Tolerance

For fault tolerance purposes, we provide two capabil-
ities: failure detection and a fault tolerant topology.
These two capabilities ensure that even if a node fails
or if an agent fails, it will still be able to send/receive
messages between agents that are still alive. This allows
the user to decide the best policy to apply in the context
of failure, for instance, triggering the clean termination
of remaining agents and ultimately VMs.

3.3.1 Fault Detection

A key point to tolerate failures is to first detect failures.
By detecting failures, it is possible to update routing ta-
bles and eventually re-establish failed communication
channels to ensure that we can still control live agents.
For this context, we propose a set of detectors. For in-
stance, a mesh-based detector establishes connections
between root agents and reports an error if the connec-
tion is closed. Another detector establishes connections
between root agents based on a mesh topology and per-
form periodic ping-pong probes. If the ping-pong fails,
a failure is reported. Finally, we provide a signal-based
detector that can be used on compute nodes to detect the
failure of any local session or tool agent (by catching the
SIGCHLD signal).

3.3.2 Communication Fault Tolerance

Since our boot topology is a tree-based topology, the
failure of any agent will prevent communications be-
tween different parts of the tree, leading to unreachable
agents. To address this issue, we setup a topology based



2011 Linux Symposium • 97

Figure 1: Example of Topology

on a binomial graph (BMG) [1] that provides redundant
communication links between agents. As a result, even
if a communication channel is closed because of a fail-
ure, it is possible to find another route to reach the des-
tination.

4 Abstraction of the Underlying Virtualization
Solution

Many tools are available for the management of virtual
machines, such as libvirt [3], However, these tools, to
the best of our knowledge, try to represent the union
of all the capabilities of all the virtualization solutions,
leading to overly complex tools. In the context of our
study, we only require a lightweight tool that provides a
simple API, typically start, stop, pause, un-pause a given
VM (we may support migration in a future version of
the system). For that, we propose the V2M tool from
a previous study [7]. This tool abstracts the underlying
virtualization solution via the implementation of plug-
ins. Each plug-in is in charge of translating manage-
ment tasks to commands that are specific to the underly-
ing virtualization solution. The tool is also in charge of
making sure that the VM image is correctly setup to be
used with the target virtualization solution.

V2M is based on the concept of profiles, which specify
how to deploy a VM based on VSE image. This profile

is automatically created based on job data such as the
allocation specification.

5 Use Case: the Palacios Virtualization Solu-
tion

Palacios is a virtualization solution specifically designed
for HPC [2, 4]. For that, Palacios is focusing on mini-
mizing its resource footprint and optimizing I/O (since
efficient I/O is critical for HPC applications). Figure 2
presents an overview of the architecture for Palacios.

Palacios proved to be very scalable and is therefore a
good candidate for experimentation at scale. In other
terms, by selecting Palacios, we can setup an experi-
mental configuration that is scalable and fault tolerant.

To support Palacios, a new V2M plug-in is created in
order to interface with our infrastructure; no other mod-
ifications or extensions are required.

6 Conclusion

In this document we present the architecture for a new
system-level infrastructure for the management of many
virtual machines to support the execution of parallel ap-
plications on large-scale high-performance computing



98 • Management of Virtual Large-scale High-performance Computing Systems

Figure 2: Overview of the Architecture of the Palacios Virtualization Solution

systems. The proposed architecture focuses on scala-
bility and fault tolerance. Furthermore, the proposed
solution abstract the underlying virtualization solution
and can therefore be used with most of the current vir-
tualization solutions such as Xen or KVM. Finally, our
solution enables the customization of the execution en-
vironment that is deployed inside the virtual machines,
which ultimately allows scientists to focus on science
rather than technical details associated with the config-
uration and execution of their application on elaborate
high-performance computing systems.

To implement these capabilities, we propose three dis-
tinct abstractions: the concept of VSE for the customiza-
tion of the execution environment; a scalable and fault
tolerant control infrastructure for the coordination of the
VMs running across the compute nodes, and finally an
abstraction of the underlying virtualization solution.

The implementation of the proposed architecture is still
ongoing but initial experimentation shows that the de-
sign of the control infrastructure is scalable and main-
tains connectivity between the different nodes involved
in the execution of a given application even in the event
of failures.

Finally, Palacios, a virtualization solution designed for
high-performance computing, is able to scale to a few
thousand VMs, and we are working with the Palacios
development team to perform experiments at scale using
our tool on some of the world’s larger HPC systems.

Acknowledgments

We would like to thank the Application Performance
Tools group from ORNL, and especially Richard L. Gra-
ham, for their support on the development of the control
infrastructure.

References

[1] Thara Angskun, George Bosilca, and Jack Don-
garra. Binomial graph: A scalable and fault-tolerant
logical network topology. In International Sympo-
sium on Parallel and Distributed Processing and
Applications, pages 471–482.

[2] John Lange, Kevin Pedretti, Trammell Hud-
son, Peter Dinda, Zheng Cui, Lei Xia, Patrick
Bridges, Steven Jaconette, Mike Levenhagen, Ron
Brightwell, and Patrick Widener. Palacios and kit-
ten: High performance operating systems for scal-
able virtualized and native supercomputing.

[3] The virtualization api. http://libvirt.org/.

[4] Palacios – an os independent embeddable vmm. http:
//v3vee.org/palacios/.

[5] Top 500 supercomputer sites. http://top500.
org/.

[6] Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand
Tikotekar, Christian Engelmann, Wesley Bland, Ferrol

http://libvirt.org/
http://v3vee.org/palacios/
http://v3vee.org/palacios/
http://top500.org/
http://top500.org/


2011 Linux Symposium • 99

Aderholdt, and Stephen L. Scott. Virtual system environ-
ments. In Systems and Virtualization Management. Stan-
dards and New Technologies, volume 18 of Communica-
tions in Computer and Information Science, pages 72–
83. Springer Berlin Heidelberg, October 21-22, 2008.

[7] Geoffroy Vallée, Thomas Naughton, and Stephen L.
Scott. System management software for virtual environ-
ments. In Proceedings of ACM Conference on Comput-
ing Frontiers 2007, Ischia, Italy, May 7-9, 2007.



100 • Management of Virtual Large-scale High-performance Computing Systems


	Management of Virtual Large-scale High-performance Computing Systems
	Geoffroy Vallée, Thomas Naughton, Stephen L. Scott
	Introduction
	Customization of Execution Environments
	Control Infrastructure
	Architecture Overview
	Scalable Bootstrapping
	Fault Tolerance
	Fault Detection
	Communication Fault Tolerance


	Abstraction of the Underlying Virtualization Solution
	Use Case: the Palacios Virtualization Solution
	Conclusion



