
Recovering System Metrics from Kernel Trace

Francis Giraldeau
École Polytechnique de Montréal
francis.giraldeau@polymtl.ca

Julien Desfossez
École Polytechnique de Montréal
julien.desfossez@polymtl.ca

David Goulet
École Polytechnique de Montréal
david.goulet@polymtl.ca

Michel Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Mathieu Desnoyers
EfficiOS Inc.

mathieu.desnoyers@efficios.com

Abstract

Important Linux kernel subsystems are statically instru-
mented with tracepoints, which enables the gathering
of detailed information about a running system, such as
process scheduling, system calls and memory manage-
ment. Each time a tracepoint is encountered, an event is
generated and can be recorded to disk for offline anal-
ysis. Kernel tracing provides system-wide instrumenta-
tion that has low performance impact, suitable for trac-
ing online systems in order to debug hard-to-reproduce
errors or analyze the performance.

Despite these benefits, a kernel trace may be difficult to
analyze due to the large number of events. Moreover,
trace events expose low-level behavior of the kernel that
requires deep understanding of kernel internals to ana-
lyze. In many cases, the meaning of an event may de-
pend on previous events. To get valuable information
from a kernel trace, fast and reliable analysis tools are
required.

In this paper, we present required trace analysis to pro-
vide familiar and meaningful metrics to system admin-
istrators and software developers, including CPU, disk,
file and network usage. We present an open source pro-
totype implementation that performs these analysis with
the LTTng tracer. It leverages kernel traces for perfor-
mance optimization and debugging.

1 Introduction

Tracing addresses the problem of runtime software ob-
servation. A trace is an execution log of a software, that

consists essentially of an ordered list of events. An event
is generated when a certain path of the code is executed,
commonly called tracepoint. Each event consists of a
timestamp, a type and some arbitrary payload.

Tracepoints can be embedded statically in software or
dynamically inserted. Dynamic tracing allows custom
tracepoints to be defined without source code modifica-
tion. While this approach is flexible, static tracepoints
are generally faster. In addition, tracing can be per-
formed at the kernel and user-space level. In this pa-
per, we focus on the static instrumentation of the Linux
kernel provided by the Linux Trace Toolkit next genera-
tion (LTTng) [1]. Unlike a debugger, tracing a program
does not interrupt it. As such, performance of the tracer
is critical to minimize disturbance of the running soft-
ware. LTTng offers this level of performance, allowing
to trace the kernel very efficiently.

Runtime information on a system can also be obtained
by recording metrics periodically from files under the
/proc directory. Utilities like top and ps use this in-
terface, parse their content and format them for display.
This technique provides statistics about the system at a
sampling frequency based determined by the interface.
In contrast, kernel tracing records all events according to
time. Instead of pooling metric values, they can be re-
covered at arbitrary resolution afterwards from the trace.

This paper is organized as follows. The kernel tracing
infrastructure is presented in section 2. This presenta-
tion applies to the latest stable release of LTTng 0.249,
which is used throughout the paper. In section 3, we
present available tracepoints in the Linux kernel, their

• 109 •



110 • Recovering System Metrics from Kernel Trace

meaning and how we can recover metrics by processing
them. A prototype that performs such analysis is pre-
sented in section 4. Finally, future work for LTTng 2.0
is discussed in section 5.

2 LTTng kernel tracer

The tracer is based on static tracepoints in the kernel
source code. Each time a tracepoint is encountered
and is enabled, an event is added to an in-memory ring
buffer. There are three operating modes for subsequent
data processing.

The normal mode is suitable for offline analysis. When
a buffer is full, a signal is sent to a transport daemon,
which then syncs buffers to disk before they get over-
written. On average, disk throughput must be higher
than event output. If all buffers are full, which can
happen if disk bandwidth is lower than event genera-
tion throughput, then events are dropped. The number
of such lost events is kept in the trace. Lost events
can compromise further trace analysis. To avoid lost
events, buffer size can be increased at trace start, but
not while tracing, because buffers are allocated at trace
setup. Hence, enough space must be reserved according
to disk speed and maximum expected event throughput.

In cases where high throughput is expected and only the
most recent data is desired, the flight recorder mode is
well suited. In this mode, the ring buffer is overwritten
until a condition occurs, and then the most recent events
are written to disk. No event will be lost in this mode,
but the actual trace duration depends on the buffer size.

The final supported mode is live reading. In this mode,
buffers are flushed to disk regularly, before each read,
to ensure consistency between different trace streams
within a bounded delay (e.g. 1 second). This applies
even for buffers that are only partially filled. The flush
guarantees the consistency of the trace, avoiding the
possibility of reception of older events out-of-order,
which would otherwise appear to the analysis module
out of chronological order.

LTTng uses per-CPU buffers to avoid data access syn-
chronization between CPUs in multi-core architectures,
and allows scalable tracing for large number of cores.
Events are grouped in channels. Each channel repre-
sents an event stream and has its own buffers. Hence,
the total number of allocated buffers is (P×C), where P

is the number of processors and C the number of chan-
nels.

The Linux kernel is instrumented with over 150 tra-
cepoints at key sites within each subsystem. Each
tracepoint is compiled conditionally by the CONFIG_

MARKERS configuration option. This option depends
on CONFIG_TRACEPOINTS, which enables other kernel
built-in instrumentation. Once tracepoints are compiled,
they can be later activated to record a trace. A tracepoint
compiled in, but not activated, reduces to a no-op in-
struction, hence the performance impact is undetectable.
Kernel tracing is highly optimized, but the overall per-
formance impact is proportional to the number of events
generated per unit of time. Benchmarks show that each
event requires 119 ns to process on 2 GHz Intel Xeon
processor in cache-hot condition [3].

Another aspect to observe is the impact of compiled tra-
cepoints on the kernel size. For each tracepoint, a new
function and static data is added, and thus increases the
kernel size. For kernel 2.6.38, compiling tracepoints re-
sults in an increase of about 122 kB of the vmlinuz im-
age, or 1%. This includes LTTng tracepoints and other
built-in kernel tracepoints.

2.1 Trace format

An event is composed of a timestamp, an event type and
an arbitrary payload. The timestamp is mandatory to
sort events according to time. The event type is used to
determine the format of the payload.

The timestamp uses the hardware cycle counter and is
converted to nanoseconds since the boot of the system.
Special care is taken to guarantee that the time always
increases monotonically between cores. The time is rep-
resented with 27 bit time delta, while the event id is five
bits wide, for a total event header size of 32 bits. If
no event occurs and the time delta overflows, which oc-
cur in the order of 100 ms on recent CPUs, an extended
header is written. The timestamp is extended to 64 bits,
while 16 bits are reserved for the event type.

The payload is an ordered set of fields, where the size
and format are defined by the event type. Fields can
be any standard C basic type, as well as variable size
strings. The size of a field may differ from the actual
type used in the code in order to compress the data. For
example, an integer enum value can be recorded in the
trace as a byte if the actual value is always less than 255,
thus saving space.



2011 Linux Symposium • 111

2.2 Trace reading

The library liblttvtraceread is provided to read
events from a trace for further processing. The library
opens all files from the trace at the same time and returns
events in total order. It provides a merged view of the
trace, which abstracts the complexity of handling per-
CPU and per-channel files. The library provides conve-
nient functions to seek at a particular time in the trace
performed by a binary search. The library handles en-
dianness transformations automatically if necessary. It
parses each event in the trace and returns the timestamp,
event type and an array of parsed fields.

3 Recovering metrics

System metrics include CPU usage, memory allocation,
file operations and I/O operations, such as network and
block devices. The trace contains a comprehensive set
of data from which system metrics can be measured and
accounted to a process. This section presents events and
algorithms used to perform these computations.

3.1 Trace metadata

The Trace metadata channel is used to declare the
trace event types. It contains two pre-defined events
types, core_marker_format and core_marker_id

that are implicit and fixed. The purpose of core_

marker_format is to list available channels and event
types in the trace, along with the format of each field in
their payload. Meanwhile core_marker_id lists event
IDs and their corresponding channel and event name.
This event inventory enables selection of the correct for-
mat to parse the payload of a particular event.

3.2 System state dump

The state dump consists of information about the system
as it was at the beginning of the trace. The available
information in the state dump is listed in Table 1. Events
in the state dump can be split in two categories, static
and variable.

Static information is invariant for the duration of the
trace. This information may be referenced by other
events. For example, the system call table enables sys-
tem call IDs to be resolved to a meaningful name. This

is necessary because system call IDs may differ from
one system to another.

Variable information is the initial inventory of resources,
which may be modified by later events. For example,
the state dump contains the list of active processes at the
beginning of the trace. This list is modified by fork and
exit events, that add and remove processes respectively.

In addition, the special event statedump_end indi-
cates the end of the state dump and metadata.

3.3 Process recovery

As presented in Section 3.2, the state dump includes
the initial process list. This list includes the process
id, thread id, thread group id, parent process id and
a flag to indicate a kernel thread. While tracing, the
event kernel.process_fork indicates a new pro-
cess, while kernel.process_exit means a process
terminated. The executable name can be deduced from
the field filename of the fs.exec event. Until this
event occurs, the executable name is the same as the par-
ent process or the previously known name.

An additional step is required to link an event to a pro-
cess. Since the process id is not saved on a per-event
basis, this information must be recovered from the trace
itself. The corresponding CPU on which an event occurs
is known from the trace file id. The relation with the pro-
cess id running on a given CPU can be established from
the kernel.sched_schedule events. This event type
contains two integers, prev_pid and next_pid. Each
event occurring on a given CPU following a scheduling
event can be related to the process next_pid, assuming
no scheduling event is dropped.

3.4 CPU usage

CPU usage is a basic system metric for understanding
the behavior of a system. To recover CPU usage per
process on the system, we use scheduling events. A pro-
cess has only two states, which are scheduled or idle. If
no process runs on a given CPU, the kernel schedules
the special thread swapper and we consider the CPU
as idle. The total CPU time used by a process is the sum
of intervals for which it was scheduled.

To chart the CPU usage according to time, we first di-
vide the trace into fixed intervals to match the desired



112 • Recovering System Metrics from Kernel Trace

State channel Type Description
fd_state.file_descriptor Variable File name and PID of opened fd
irq_state.idt_table Static Interrupts descriptor table for processor exceptions
irq_state.interrupt Variable Hardware IRQ ids, names and addresses
module_state.list_module Variable List of loaded kernel modules
netif_state.network_ipv4_interface Variable List of IPv4 interface names and IP addresses
netif_state.network_ipv6_interface Variable Same as IPv4, but for IPv6 network interfaces
softirq_state.softirq_vec Static List of SoftIRQ ids, names and addresses
swap_state.statedump_swap_files Variable Swap block devices
syscall_state.sys_call_table Static List of system call ids, names and addresses
task_state.process_state Variable List of active processes information
vm_state.vm_map Variable List of all memory mappings by process

Table 1: Available events in state dump

Figure 1: Average CPU usage recovery

resolution. Then the CPU usage of one interval is ob-
tained by summing all overlapping scheduled intervals,
as shown in Figure 1.

3.5 Memory usage

Tracepoints related to memory management provide in-
formation at the page level. The events page_alloc

and page_free are encountered when a memory page
related to a process is allocated or freed at the kernel
level. The system memory usage at the beginning of the
trace is given by the event vm_state.vm_map in meta-
data. Separate tracepoints report huge page operations.
Thus the system memory usage on the system at a given
time can be obtained by replaying subsequent page allo-
cation and free events.

Note that the physical memory usage observed at the
kernel level can differ from memory operations per-
formed by the application. This behavior is intended
to reduce the number of system calls that shrink or grow
the heap and the stack of a process. The GNU libc may
not release memory to the operating system after a call
to free() to speedup subsequent allocations.

3.6 File operations

File operations are performed, for instance, through
open, read, write and close system calls by user-
space applications. These system calls are instrumented
to compute file usage statistics, such as the number of
bytes read or written, and to track opened files by a pro-
cess. These events occur only if the system call suc-
ceeds. File operation events are recorded for files ac-
cessed through a file system as well as via network sock-
ets.

The fs.open event contains the filename requested by
the application and the associated file descriptor. All
subsequent operations performed on this file descriptor
by fs.read and fs.write contain the file descriptor
and the byte count of the operation.

Tracing network operations on sockets is similar to files
on a file system. Socket file descriptors are created upon
net.socket and net.accept events, and byte trans-
fer count is reported by net.socket_sendmsg and
net.socket_recvmsg or fs.write and fs.read,
depending on the system call involved.

3.7 Low-level network events

Low-level network events provide TCP and UDP pack-
ets fields, like ports and addresses involved in the com-
munication. These extended network events are not en-
abled by default. To enable them, ltt-armall must be
called with the switch -n.

Various metrics can be recovered directly from the pay-
load of these events. The information provided by ex-
tended network events is a subset of what is available



2011 Linux Symposium • 113

with tcpdump. Recording this information at the kernel
level has the advantage of precise timestamps relative to
system events. A network packet is always sent before
being received, thus providing a convenient way to cor-
relate traces from multiple systems without a common
clock source. Average trace synchronization accuracy of
68.8 µs with TCP on standard 100 Mbit/s Ethernet has
been achieved by using the Convex Hull algorithm [5].

3.8 Block Input/Output

In addition to file operations, underlying block device
activity can be traced. Actions of block I/O scheduler,
such as front and back merge requests, are recorded.
Once the queue is ready, the event fs_issue_rq is
emitted with the related sector involved. Each issue
event is followed by the event fs_complete_rq when
the request is completed. The delay between the issue
and complete event indicates the latency of the disk op-
eration.

Global disk offset can be observed with block level
events. Disk offset is the difference between two con-
secutive sector requests to the device. For mechani-
cal disks, high average offset between requests degrade
throughput. Such bad performance is sometimes dif-
ficult to understand when it results from multiple pro-
cesses performing independant operations on physically
distant areas of the disk. The disk offset can be com-
puted from fs_issue_rq event. The sector number
from this event corresponds to the hardware sector. To
relate this request to an inode, the bio_remap event is
required. It contains the inode, the target device, the
block requested at the file system level and the result of
block remap, which is the hardware sector global to the
device. Disk offset can thus be accounted on per inode
basis.

4 LTTng kernel trace analyzer

We implemented a prototype of CPU usage computation
to demonstrate the usefulness of the analysis. The soft-
ware is coded in Java and uses the liblttvtraceread
JNI interface. The system traced has two cores and runs
Linux 2.6.36 with LTTng 0.249. The system is loaded
with three cpuburn processes, started with one second
interval between each. Figure 2 shows the trace loaded
in the graphical interface.

The interface is divided in two parts. The top half con-
tains the chart view of CPU usage according to time.
The bottom half lists processes sorted according to total
CPU usage. The chart has interactive features. Selecting
an interval on the chart updates the process list statistics,
while selecting a specific process displays its CPU us-
age. In Figure 2, the first cpuburn process is selected,
and we can observe the CPU saturation occurring in this
workload once these processes are started.

5 Future work

The goal of the LTTng project is to provide the commu-
nity with the best tracing environment for Linux. We
first present upcoming enhancements to the tracing in-
frastructure and future development of analysis tools.

5.1 Tracing infrastructure

The current stable version of LTTng requires the ker-
nel to be patched. Those patches are being converted
to modules to work with vanilla kernel. The mainline
kernel is already well instrumented. By default, those
tracepoints will be available. Using stock kernels re-
duces the complexity of distributing LTTng, and helps
towards making tracing ubiquitous.

The Common Trace Format (CTF) will be used to record
the trace [2]. CTF has the ability to describe arbitrary
sequence of binary objects. This new format will make
it easier to define custom tracepoints in an extensible
fashion.

Kernel tracing requires root privileges for security rea-
sons. Enhancements to tracing tools will allow kernel
tracing as normal user based on group membership, sim-
plifying system administration. In addition, the unified
git-like utility command-line tool lttng will control
both kernel and user-space tracing on per-session basis.
The live tracing mode will support reading data directly
in memory, without flushing it to disk.

As presented in section 3.3, recovery of the PID of
an event requires all scheduling events to be recorded.
Omitting the PID from recorded events reduces the trace
size, but increases analysis complexity. In some situa-
tions, appending a context to each event may be desir-
able to simplify event analysis, tolerate missing schedul-
ing events, or to get values of performance counters



114 • Recovering System Metrics from Kernel Trace

Figure 2: LTTng trace analyzer prototype

when specific events occur. The next release will al-
low such event context to be added as a tracing option.
Available context information includes, among others,
the PID, the nice value, and CPU Performance Monitor-
ing Unit (PMU) counters.

5.2 Trace analyzer

Analysis tools will require updates according to these
changes to the tracing infrastructure. One purpose of
the existing LTTng kernel patch is to extend the kernel
instrumentation. Those tracepoints may not be available
anymore with a vanilla kernel and the modules-based
LTTng. We plan to propose additional tracepoints up-
stream to perform useful analysis for system adminis-
trators and software developers. For example, system
calls are instrumented with entry and exit tracepoints,
but arguments are not interpreted. Some of them may be
pointers to structures, but saving an address is not useful
for system metric recovery. Dereferencing the pointer
and saving appropriate fields is required for many trace-
points.

Our current prototype implementation only includes the
CPU usage. Our goal is to implement other presented
metrics. System metrics computation can be integrated
to the Eclipse LTTng plugin, part of the Eclipse Linux
Tools project [6]. For this purpose, an open source na-
tive CTF Java reading library is being developed. Also,
a command line tool similar to top is being developed
to provide lightweight and live system metrics display
from tracing data.

Further trace analysis are being developed to understand
global performance behavior. Previous work has been

done on critical path analysis of an application [4]. Our
goal is to extend this analysis in two ways. First, com-
puting the resource usage allows to get the cost of the
critical path of an application. Secondly, analyzing com-
munication paths between processes allows to recover
links between distributed process. By combining those
two analysis, we could provide a global view of the pro-
cessing path of a client request made in a distributed
application.

6 Conclusion

We showed that tracing can provide highly valuable
data on a running system. This data can help to under-
stand system-wide performance behavior. We presented
the tracing infrastructure provided by LTTng and tech-
niques to extract system metrics from raw events. Fu-
ture developments to LTTng demonstrate the commit-
ment to provide a state of the art tracing environment
for the Linux community.

References

[1] Linux trace toolkit next generation.
http://lttng.org.

[2] Mathieu Desnoyers. Common trace format specification
v1.7. git://git.efficios.com/ctf.git.

[3] Mathieu Desnoyers. Low-Impact Operating System
Tracing. 2009.

[4] P.M. Fournier and M.R. Dagenais. Analyzing blocking
to debug performance problems on multi-core systems.
ACM SIGOPS Operating Systems Review, 44(2):77–87,
2010.

http://lttng.org
git://git.efficios.com/ctf.git


2011 Linux Symposium • 115

[5] B. Poirier, R. Roy, and M. Dagenais. Accurate offline
synchronization of distributed traces using kernel-level
events. ACM SIGOPS Operating Systems Review,
44(3):75–87, 2010.

[6] D. Toupin. Using tracing to diagnose or monitor
systems. Software, IEEE, 28(1):87–91, 2011.



116 • Recovering System Metrics from Kernel Trace


	Recovering System Metrics from Kernel Trace
	F. Giraldeau & J. Desfossez & D. Goulet & M. Dagenais & M. Desnoyers
	Introduction
	LTTng kernel tracer
	Trace format
	Trace reading

	Recovering metrics
	Trace metadata
	System state dump
	Process recovery
	CPU usage
	Memory usage
	File operations
	Low-level network events
	Block Input/Output

	LTTng kernel trace analyzer
	Future work
	Tracing infrastructure
	Trace analyzer

	Conclusion



