
Boosting up Embedded Linux device: experience on Linux-based
Smartphone

Kunhoon Baik
Samsung Electronics Co., Ltd.
knhoon.baik@samsung.com

Saena Kim
Samsung Electronics Co., Ltd.
saina.kim@samsung.com

Suchang Woo
Samsung Electronics Co., Ltd.
suchang.woo@samsung.com

Jinhee Choi
Samsung Electronics Co., Ltd.
jh106.choi@samsung.com

Abstract

Modern smartphones have extensive capabilities and
connectivities, comparable to those of personal com-
puters (PCs). As the number of smartphone features
increases, smartphone boot time also increases, since
all features must be initialized during the boot time.
Many fast boot techniques have focused on optimizing
the booting sequence. However, it is difficult to obtain
quick boot time (under 5 seconds) using the fast boot
techniques, and many parts of the software platform re-
quire additional optimization. An intuitive way to obtain
instant boot times, while avoiding these issues, is to boot
directly from hibernation. We apply hibernation-based
techniques to a Linux-based smartphone, and thereby
overcome two major obstacles: long loading times for
snapshot image and maintenance costs related to hard-
ware change.

We propose two mechanisms, based on hibernation, to
obtain outstanding reductions in boot time. First, min-
imize the size of snapshot image via page reclamation,
which reduces the load time of image. Snapshot is split
into two major segments: essential-snapshot-image and
supplementary-snapshot-image. The essential snapshot
image is a minimally-sized image used to run the Linux
kernel and idle screen, and the supplementary-snapshot-
image contains the remained that could be restored on
demand. Second, we add additional device information
to the essential-snapshot-image, which is used when the
the device is reactivated upon booting up. As a result,
our mechanism omits some time-consuming jobs related
to device re-initialization and software state recovery. In
addition to quick boot times, our solution is low main-
tenance. That is, while the snapshot boot[3] is imple-
mented in the bootloader, our solution utilizes the kernel

infrastructure because it is implemented in the kernel.
Therefore, there is little effort required, even when the
target hardware is changed. We prototyped our quick
boot solution using a S5PC110[17]-based smartphone.
The results of our experiments indicate that we can ob-
tain get dramatic gain in performance in a practical man-
ner using this quick boot solution.

1 Introduction

Smartphones generally require long boot times. As the
number of smartphone functions increases, the initial-
ization times required for the corresponding software
modules also increase. In addition, as smartphones are
equipped with more and more peripheral devices such
as sensors, cameras, Bluetooth and WiFi, these devices
require their own initialization times, which further in-
creases boot time.

To obtain instant boot times, "boot optimization" or
"hibernation-based boot" techniques can be used. In the
case of "boot optimization", each module must be opti-
mized and the initialization flow must be modified after
a profiling step. This can be difficult to accomplish if
there are many software modules involved, or if the ini-
tialization process is complex. However, in the case of
"hibernation-based boot" techniques, we can obtain in-
stant boot times quite easily. In this paper, we apply
hibernation-based fast boot techniques to a Linux-based
smartphone.

There remain some barriers to applying hibernation-
based boot techniques.

1. Mobile software platforms, such as Android[14],
hold about 100MB of RAM capacity, but Flash

• 9 •

10 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

memory offers only poor I/O speed. If the read
performance is 20MB/s, then snapshot image alone
require loading time of about 5 seconds. There-
fore, we cannot obtain instant boot times via the
hibernation-based boot technique alone.

2. Because swsusp’s the device reactivation flow
in the standard Linux kernel was developed for
generic purposes1, it has some additional steps to
reactivate devices. The snapshot boot technique
eliminates these steps by restoring snapshot image
in the bootloader, but also requires additional im-
plementations in the bootloader.

3. If the same snapshot image is used every time the
device boots up, information inconsistency prob-
lems will occur in the file system and database.

In this paper, we introduce new methods to obtain in-
stant boot times by solving these issues. We focus
on the following two methods. The first method opti-
mizes the size of snapshot image to be less than 15MB
without compression, to reduce snapshot image loading
time. The second method improves the device reactiva-
tion flow to obtain similar performance to the snapshot
boot technique, without tinkering with the bootloader.
We also briefly discuss related issues such as informa-
tion inconsistency problems.

This paper is organized as follows. In section 2, we
summarize fast boot techniques already developed in
Embedded Linux systems, and compare them with our
approach. In section 3, we analyze smartphone boot
times and investigate points where improvements can
be made. In section 4, we introduce our approach,
which optimizes snapshot image loading times with on-
demand-paging and early device reactivation. Section
5 describes the experimental environment and provides
experimental results. Finally, in sections 6 and 7, we
suggest directions for future work and summarize the
paper.

2 Related studies

Until recently, Linux development has focused on the
desktop and server markets, in which boot time is not

1swsusp (Software Suspend) is a suspend-to-disk implementa-
tion in the 2.6 series Linux kernel. It is the Linux equivalent of
Windows hibernate functionality.

an important issue. However, boot time has become an
important feature as more and more embedded systems
are adopting Linux due to benefits such as low cost and
the ability to be utilized across a variety of hardware
platorms.

Boot time optimization techniques include profiling, re-
duction and optimizing techniques. These techniques
were well summarized by the Bootup Time Working
Group of the CE Linux Forum[5]. This section intro-
duces some of these techniques, which can be used with
our approach.

At the bootloader level, uncompressed kernel[6] or fast
kernel decompression[7] techniques can be used. In the
case of uncompressed kernel techniques, the kernel im-
age loading time is longer but decompression time is
not required. Fast kernel decompression improves ker-
nel decompression performance using fast decompress
mechanisms such as UCL[18]

At the kernel level, disable console[8], preset loops
per jiffy(LPJ)[9] and deferred initcalls[10] techniques
may be used. The disable console technique mini-
mizes kernel printk messages during boot time to re-
duce serial console accessing time. The preset LPJ
uses a constant delay value instead of the calibrate_
delay() function that is commonly used for calibrat-
ing delay time in the kernel. The deferred initcalls tech-
nique forces some initcalls to run later if they do not
need to be initialized early.

Hibernation-based techniques also reduce boot time.
Hibernation is a feature used for power management in
Linux. As a power saving mode, hibernation backs up
the running state of the system into the disk space as a
snapshot image, and powers down the system. When the
power comes back up, the system is restored to the run-
ning state based on the snapshot image. Hibernation can
be implemented by several techniques. Among these,
the most common techniques are the swsusp technique
that is included in the standard Linux kernel, and the
TuxOnIce(suspend2)[11] technique that is provided as
a patch of the kernel. The fundamentals are almost the
same in these two techniques, but TuxOnIce offers more
useful options compared to swsusp. However, the Tux-
OnIce patch requires many changes for the kernel, and
therefore also incurs additional maintenance costs ac-
cording to the kernel revision. The snapshot boot tech-
nique is a fast boot technique based on swsusp. In this
technique, every time a device boots up, the snapshot

2010 Linux Symposium • 11

Figure 1: Bootchart – normal boot sequence of the smartphone used in this study

image is loaded in the bootloader instead of the original
kernel image. Device initialization tasks are also per-
formed at the bootloader level to improve the device re-
activation flow in swsusp. However, most of the changes
in the bootloader are heavily dependent on hardware,
and for this reason, the associated maintenance costs
are increased due to required changes of hardware de-
sign. This shortcoming makes the application of snap-
shot boot techniques less practical. Even if the snapshot
boot technique is applied to a system, instant boot may
not be achieved without further optimizing the size of
the snapshot image. Recent smartphones require more
memory space than older models, because of their ex-
tensive functionalities, and for this reason optimizing
snapshot image must be considered a necessity. In a pre-
vious case study examining the use of the snapshot boot
technique for digital TV systems[4] many parts of the
software platform were modified to minimize the size
of the snapshot image. However, such an approach in-
creases maintenance costs due to the necessity of hard-
ware and software platform revisions.

3 Smartphone Boot Time

Figure 1 is a the bootchart[12] of the smartphone model
used in our experiments. More than 30 seconds of boot
time are required to initialize the user area. This indi-
cates that it will be difficult to reduce boot time to less

than 5 seconds by optimizing the boot sequence. Even
if we implement hibernation-based fast boot techniques,
we cannot achieve 5 second boot times due to the barri-
ers described in section 1.

To solve these problems, we must analyze each el-
ement of hibernation-based boot time. We calculate
hibernation-based boot time(tb) using the following for-
mula.

tb = tp + tl +∑ tr

tp includes the block device setup time for loading snap-
shot image and the cpu/clock/timer/power setup times
for minimal operation. These constitute the necessary
initialization events for booting from hibernation, and
therefore the time required for these steps cannot be re-
duced. tl is the time required to load the image from
disk to the original memory location, and tr is the time
required to restore the cpu/device to the same state as
when the snapshot image was made. These two factors
can be optimized by improving the implementation of
hibernation. tl can be calculated using the following fo-
mula.

tl =
size of snapshot image
disk read performance

+ tc

12 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

Create Bitmap for snapshot

Trigger

Freeze Process

Shirink Memory

Suspend & Power down
device

Save System State

Allocate memory &
copy memory contents

Write to swap

Create Bitmap for snapshot

Trigger

Freeze Process

Full Page Reclaim

Suspend & Power down
device

Save System State
and devices’ state

Allocate memory &
copy memory contents

Write to swap

Save Processor state and registers
Save the return address

Including swapout

Save Processor state and registers,
Save the return address
Save device related state

(a) ’swsusp’ suspend (b) Our approach - suspend

Figure 2: Comparision between the swsusp suspend method and our suspend approach

tc is the time required to copy the loaded snapshot im-
age, stored in in temporal memory, to the assigned mem-
ory location. As mentioned above, as the size of snap-
shot image get bigger, tl becomes longer. When this
happens, we can simply use a compression method such
as TuxOnIce to reduce the size of the snapshot image.
However, this method requires additional decompres-
sion time which increases tc.

Another factor that influences hibernation-based boot
time is tr which is heavily dependent on the method used
to restore the device. In the case of swsusp, all periph-
erial devices are initialized and then suspended to place
them in a resumable state, meaning the same state as
when the snapshot image was made. Therefore, if the
number of peripherial devices is increased, tr and tc are
also increased because the memory required for those
device drivers is occupied. The snapshot boot technique
places peripherial devices into the resumable state and
loads snapshot image at the bootloader level. In this
way, tr is much reduced and tc is eliminated. However,
the snapshot boot technique requires additional mainte-
nance costs associated with necessary changes of hard-
ware.

In this paper, we suggest the following two mechanisms
to speed up boot times. The first is to minimize the size
of the snapshot image in order to reduce snapshot im-
age loading time (tl) which is the most influential factor
hibernation-based boot time. To implement this mech-
anism, we store snapshot image separately as essential-

snapshot-image, which will be loaded at boot time, and
supplementary-snapshot-image, which will be restored
on demand. The other mechanism is to place the pe-
ripherial devices in resumable states using information
stored in snapshot image, to reduce ∑ tr. The details of
these mechanisms are described in the next section.

4 Minimizing Boot Times: Our Approach

4.1 Overall Architecture

In this section, we analyze the suspend/resume flow
in swsusp and introduce our improved suspend/resume
flow.

As shown in Figure 2, we modify the "shrink memory"2

stage to "full page frame reclamation," which involves
minimizing the size of snapshot image by reclaiming al-
most of all of the memory required except for essential
code and data required for hibernation. At the "save sys-
tem state" stage, we save information about device re-
lated states as well as processor related states to resume
the device stage after power up.

As shown in Figure 3-(a), the swsusp resume is started
after all devices are initialized. And at the "Suspend de-
vice" stage, all of them are suspended – in other words,

2A stage in the swsusp suspend flow that ensures enough mem-
ory space is allocated to create the snapshot image in memory space.

2010 Linux Symposium • 13

Initialize Kernel core

Load Kernel

Start and prepare
Software Resume

Freeze Process

Load snapshot image

Suspend device

Restore System State

Resume device
and Thaw process

Initialize Kernel core

Load Kernel

Start and prepare
Software Resume

Freeze Process

Load snapshot image

Suspend device

Restore System State
and devices’ state

Resume devices
and Thaw process

arch/machine initcall arch/machine initcallInitcall (0~3)

subsystem, fs, rootfs,
device initcallInitcall (4~7)

Early subsystem and
early device initcall

Copy snapshot image to its original address
Restore registers and processor state

Jump to the saved return address

for all device

for all device

Initcall (0~3)

Copy snapshot image to its original address
Restore registers and processor state
Restore device related state
Jump to the saved return address

for all device

for partial device

(a) ’swsusp’ resume (b) Our approach - Kernel level resume

Bootloader

Kernel

Figure 3: Comparision between the swsusp resume approach and our resume approach(kernel level)

this stage place them into the resumable state. There-
fore, if there are more devices, or device complexity in-
creases, the time required to initialize and suspend de-
vices will be increased. On the other hand, in our ap-
proach as shown in Figure 3-(b), the device initialization
and suspend stages are removed and the "restore devices
state" is added to the "restore system state" stage. At the
"restore devices state" stage, we can place the devices
into resumable states based on information that is saved
in the snapshot image.

4.2 Full Page Reclamation

Figure 4 outlines a logical view for "full page frame
reclamation." Using the "swap out" mechanism in
Linux, all application code and data can be reclaimed
except locked memory and the caches can be dropped.
The reclaimed memory can be restored on demand us-
ing the "on demand paging" mechanism in Linux. By
taking advantage of these features, the snapshot image
can be seperated into two parts, the essential-snapshot-
image, which will be restored at boot time, and the
supplementary-snapshot-image, which will be restored
on demand while the system is running.

To implement the mechanism described above, we cre-
ate a new swap device for the supplementary-snapshot-
image and reclaim pages in the "shrink memory" stage
until the number of reclaimable pages reaches zero. We
define this mechanism as "full page frame reclamation."
As shown in Figure 4, supplementary-snapshot-image,
backed up to the file, or dropped.3 Among the remain-
ing parts, we can exclude the unnecessary parts such
as the kernel code4 using the register_nosave_
region(). As a result, the essential-snapshot-image
includes a minimal number of pages, and we can en-
ter the running state simply by restoring the essential-
snapshot-image. Other pages requested by users will be
restored on demand by the Linux memory management
mechanism.

Smartphones require many processes that must be re-
stored right after boot up, such as idle screens and
other service daemons, causing natural delays after
boot up. At the moment of boot up, many pages are
swapped in for initial running. To improve performance,
the supplementary-snapshot-image can be split up and

3Before entering hibernation, all pages in the other swap partition
must be swapped in

4Kernel code is already included in the original kernel image that
is loaded by the bootloader.

14 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

Kernel Code
Kernel Data

Locked pages

Application
Code

Application
Data 1

Cache

Essential
Snapshot Image

File
(Disk)

ramzswap

Full Page Reclaim

Throw out
Non-volatail

memory space

Volatail
memory space

Except
nosave region

Unmap
& File back

Swap out

Application
Data 2

Swap out

Supplementary
Snapshot Image

Figure 4: Making a snapshot image

stored in separate swap memory areas: ramzswap[13]
and flash/disk swap. Because ramzswap is a RAM based
block device, the read performance of ramzswap is bet-
ter than other swap memory areas. If pages that must be
restored right after boot up are stored in the ramzswap
area, users only rarely perceive the latency. However,
when making the snapshot image, the ramzswap parti-
tion is included in the essential-snapshot-image because
it is a part of the kernel area. The method chosen to di-
vide the supplementary-snapshot-image is important to
improve performance after boot up. An easy method
to achieve this is to make the flash/disk swap partition
first and the ramzswap partition later. At the "full page
reclaim" stage, inactive pages are reclaimed first and ac-
tive pages are reclaimed later. Therefore, most, or all,
inactive pages are stored in the flash/disk swap partition
first, and the rest of the pages, including active pages,
are stored in the ramzswap partition.

4.3 Fast Device Reactivation

In smartphones, sleep mode, or suspension to RAM
(STR), is a necessary implementation because standby
time is much longer than actual used time. When a
smartphone goes into sleep mode, processes are frozen
and devices are suspended to save power. The waking
up process reverses the sleep process. A notable char-
acteristic of this mechanism is that the suspended de-
vice information is backed up to memory before enter-
ing sleep mode, and then restored from memory when
woken up by external stimuli.

In our approach, we store suspended device information
in the essential-snapshot-image when entering hiberna-
tion. This is different from STR because the alive and
non-alive block information for the processor are both
stored in our approach, while STR stores only non-alive
block information. When restoring from hibernation,

we place the peripherial devices into resumable state
based on the stored information instead of the initializ-
ing and suspending stages. However, some devices, in-
cluding some block subsystems and some block devices
that are used for loading snapshot image or devices that
require special initializations, should be initialized.

To implement this mechanism, three new initcall sec-
tions are added: "early subsystem initcall," "early device
initcall," and "resume initcall," as shown in Figure 3.
"Early subsystem initcall" and "early device initcall" are
required to initialize necessary devices that are used to
restore devices from hibernation or to initialize devices
that require special initialization. At the "resume init-
call" section, the kernel performs the rest of the resume
sequence in software_resume().

In fact, the "initall 4∼7" sections5 are the most time con-
suming parts of the normal booting sequence because it
includes lots of delay routines. If there are many de-
vices, or many kinds of devices, involved, then boot time
will be increased. As a result, the time required for those
sections is decreased with our mechanism.

Our mechanism operates via simple re-ordering of part
of the subsystem/device initializing sequence, so it can
continue to work in case of normal boot up, as shown in
Figure 5. This mechanism can be used when restoring
at the bootloader level, like the snapshot boot technique
with a simple modification. When restoring at the kernel
level, the technique is more generic and does not require
additional management costs. The trade-offs between
boot time and management cost can be minimized by
manipulating the features of the system. More details
about these trade-offs are discussed in section 6.

5initcall 4∼7 has "subsystem initcall," "device initcall," and
"rootfs/fs initcall."

2010 Linux Symposium • 15

core/arch initcall

Init Kernel Core

Early subsystem and
early device initcall

Check
Resume header

Initcall (4~7)

Freeze Process
Normal boot

Resume from Hibernation

Run Iinit script

Load
Essential snapshot image

Suspend device

Restore System State
and devices’ state

Resume device
and Thaw process

Run
Hibernation resume script

subsystem, fs, rootfs,
device late initcall

Initcall (0~3)

Copy snapshot image to its original address
Restore registers and processor state
Restore device related state

Figure 5: Our mechanism - booting sequence flow

4.4 Resolving Inconsistency Problems

The original purpose of hibernation is not for booting
but for restoring, and in such cases the snapshot image
is used only once. However, for hibernation-based boot-
ing, if the snapshot image is created newly at every boot-
up the life of flash memory may decrease due to frequent
I/O operation. In addition, it is difficult to produce a
snapshot image representing the state of a system right
after boot-up, and it takes a long time to do so. Situa-
tions of power failure situation must also be considered
when entering hibernation.

However, the keep-image mode6 results in inconsis-
tency problems, because the information in storage can
be changed anytime. TuxOnIce recommends following
two methods to resolve inconsistency problems. The
first is using a read-only file system. The second is to un-
mount the file system before entering hibernation and
re-mount the file system after restoration from hiberna-
tion. However, in the real world, such constraints may
be unacceptable. So, we tried the other way to resolve

6Using the same snapshot image for every boot-up is referred to
as keep-image mode in TuxOnIce.

this problem. The way is updating superblock7 and in-
odes8 in memory when restoring from hibernation, for-
bidding to modify inodes included in a snapshot image
after restoration from hibernation.

In keep-image mode, SIM9 or database information in-
consistency problems and changes of user configura-
tions must also be considered for implementations. Mo-
dem devices use external storage such as SIM card, and
information saved in a SIM card, or the SIM card itself,
can be changed anytime. Some service daemons like
alarm must be reinitialized according to configuration
changed by user. Therefore, proper synchronization is
required after boot up from hibernation.

5 Experiments

A smartphone based on Linux kernel 2.6.29 is used
for this experiment. This smartphone has a Samsung
S5PC110 CPU and a Cortex A8 processor, 512MB of
Flash memory and 384MB of DRAM. A UBI[15] and

7A structure representing the underlying filesystem
8The objects that represent the underlying files
9Subscriber Identity Module

16 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

three UBIFS[16] are used as the file system, and the
LCD resolution is 400x800. The I/O performances of
the Flash memory are 20MB/s for read and 3MB/s for
write. Before the experiment, we implemented swsusp
for ARM Cortex A8 because the kernel does not support
the software suspend mechanism for ARM. The ACPI
code lines were disabled because ARM does not sup-
port ACPI.

We make the snapshot image in IDLE screen view right
after boot up, and keep it in the swap partition. Be-
fore making the snapshot image, we mark some re-
gions as nosave_region to exclude them from the snap-
shot image, such as the kernel code, a portion of the
frame buffer, the sound buffer, and the reserved region
for the camera and 3D using register_nosave_
region(). Every boot up, the same snapshot image
is loaded to measure the performance.

5.1 Full Page Reclamation

Table 1: Boot time - Full Page Reclamation
Category Time(ms)

Bootloader
initialization 597
kernel image loadinga 270
go kernel 27

kernel

Kernel core initb 214
initcall 0 ∼ 3 37
initcall 4 ∼ 7 3,749
prepare resume 12
snapshot image loadingc 741
device suspend (all) 236
copy memory to original 77
resume device and thaw process 453

Total 6,413

a Size of kernel image = about 5.5MB
b Include 100ms of calibrating delay
c Size of snapshot image = 15MB

Before applying "full page frame reclamation", the size
of snapshot image is 120MB, and loading time alone
takes about 6 seconds. After applying "full page frame
reclamation", we obtain a 15MB essential-snapshot-
image and a 50MB supplementary-snapshot-image. As
a result, we can reduce the size of the snapshot image
about 87.4%, and the loading time is dramatically re-
duced to 0.75 second. We measure the time for each
stage using a hardware (H/W) timer, and Table 1 shows
the boot time when only "full page frame reclamation"
is applied. Total boot time is 6.4 seconds, but there

is some delay required in initial operation to load the
supplementary-snapshot-image on demand. If 10MB of
ramzswap partition is applied, it will require an addi-
tional 494ms of boot time to load 10MB of ramzswap
partition, but the user will only rarely perceive the la-
tency.

5.2 Fast Device Reactivation

Table 2: Boot time - Full Page Reclamation and Fast
Device Reactivation

Category Time(ms)

Bootloader

initialization 597
kernel image loadinga 270
go kernel 27

Kernel

kernel core initb 214
initcall 0 ∼ 3 37

early subsystem initcall 59early module initcall
prepare resume 7
snapshot image loadingc 741
device suspend (partial) 35
copy memory to original 61
resume device and thaw process 492

Total 2,540

a Size of kernel image = about 5.5MB
b Include 100ms of calibrating delay
c Size of snapshot image = 15MB

According to Table 1, restoring from hibernation is
started after 4.894 seconds. The most time-consuming
task is initcall 4∼7, because the smartphone used in this
experiment includes many peripheral devices. In the
"fast device reactivation" technique, we add the "early
system init" and "early device init" sections before re-
sume. The "early system init" includes a memory tech-
nology device (MTD) and block I/O subsystem initial-
ization, and the "early device init" includes flash device
initialization. Initialization of the power management
chip is added to the "early device init." As shown in Ta-
ble 1, restoring from hibernation is started after 1.204
seconds with the "fast device reactivation" technique.
As a result, we achieve boot up within 3 seconds when
applying both "full page frame reclamation" and "fast
device reactivation". The time required for the "device
suspend" stage is reduced by about 85%. By extension,
we can compare these results with results for restoring
the bootloader level. If the snapshot image is loaded at
the bootloader level, we can skip some tasks – kernel im-
age loading (270ms), go kernel (27ms), kernel core init

2010 Linux Symposium • 17

Kernel core init (1.1s) Initialize device (3.8s) Run Init script (33.8s)

Restore from hibernation (1.4s) Update information

Bootloader init (0.6s)

Normal boot

Our approach
Kernel level

Our approach
Bootloader level

Kernel core init (1.1s)

IDLE Screen is shown

IDLE Screen is shown

Restore from hibernation (1.6s) Update information

Figure 6: Estimated boot time for each technique

(214ms), initcall 0∼3(37ms), early subsystem/module
initcall (59ms), prepare resume (7ms), device suspend
(35ms), and copy memory to original (61ms). The total
time requied for these tasks is 610ms, not including the
time for calibrating the delay (100ms), but we must add
206ms because the loading kernel image includes ker-
nel data as well as kernel code. In other words, the total
reduction from loading the snapshot image in the boot-
loader is under 0.5 second. Further details about apply-
ing our approach at the bootloader level are discussed in
the next section.

5.3 Resolving Inconsistency Problems

We add a file system recovery stage after boot from hi-
bernation to solve the file system inconsistency problem.
The file system recovery stage includes following oper-
ations: UBI re-scanning, updating UBIFS superblock in
memory, updating inodes in memory. Our current im-
plementation does not include forbidding modifications
for inodes which are included in essential-snapshot-
image yet, and it is left as our future work. As a result,
2.4 seconds10 are added after boot from hibernation to
recover the file system, but it can be improved by im-
proving the UBI re-scanning method.

To resolve the modem service inconsistency problem,
we simply stop the modem service daemon before mak-
ing the snapshot image. After boot from hibernation, we
execute the modem service daemon to synchronize with
the modem device. For other service daemons like alarm

10The UBI re-scanning operation requires 1.8 seconds for 512MB
memory and updating UBIFS superblock requires 0.6 seconds.

daemon, we publish an update notification message us-
ing inotify to force them to update their information.

5.4 Estimation

Figure 6 shows a comparision of boot times between
normal boot mechanisms and our improved mecha-
nisms. While a normal boot takes about 40 seconds,
we visualize the idle screen within 3 seconds and total
boot time does not exceed 6 seconds with our mecha-
nism. If the approach is applied at the bootloader level,
we realize an additional reduction of 0.5 seconds.

6 Discussion

To apply our mechanism at the bootloader level, some
functions must be implemented in the bootloader which
are already implemented in the kernel: snapshot image
loading, initializing some devices, and some other func-
tions. As a result, applying these mechanisms at the
bootloader level can eliminate another 0.5 seconds of
boot time. Although the bootloader level approach re-
quire additional implementation and management, the
required works are much less than the snapshot boot.
This result suggests that there is a trade-off between
boot time and management cost.

7 Conclusions and Future Work

This paper introduce two mechanisms: "full page frame
reclamation," which minimizes the sizes of snapshot im-
ages, and "fast device reactivation," which improves de-
vice reactivation flow. As a result, we designed a plat-
form independent mechanism that can be easily applied

18 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

to Linux-based software platforms and eventually ob-
tained instant boot time in a Linux based smartphone.
We also considered some issues stemming from keep-
image-modes. Obviously, some obstacles still remain
to applying these mechanisms to commercial products,
such as showing splash, and some other inconsistency
problems. However, we believe that these issues may be
overcome with proper user workflow and careful verifi-
cation.

References

[1] Tim R. Bird, "Methods to Improve Bootup Time in
Linux," In Proc. of the Linux Symposium, 2004.

[2] A. Leonard Brown, Rafael J. Wysocki, "Suspend-
to-RAM in Linux," In Proc. of the Linux Sympo-
sium, 2008

[3] Hiroki Kaminaga, "Improving Linux Startup Time
Using Software Resume," In Proc. of the Linux
Symposium, 2006

[4] Heeseung Jo, Hwanju Kim, Hyun-Gul Roh, and
Joonwon Lee, "Improving the Startup Time of
Digital TV," IEEE Transactions on Consumer
Electronics, Volume 52, Issue 2, May 2009.

[5] CELF - Boot Time, http://eLinux.org/
Boot_Time

[6] Uncompress Kernel, http://elinux.org/
Uncompressed_kernel

[7] Fast Kernel Decompression, http://elinux.
org/Fast_Kernel_Decompression

[8] Disable console, http://elinux.org/
Disable_Console

[9] Preset LPJ, http://elinux.org/Preset\
_LPJ

[10] Deferred Initcalls, http://elinux.org/
Deferred_Initcalls

[11] TuxOnIce (suspend2), http://www.
tuxonice.net/

[12] Bootchart, http://www.bootchart.org/

[13] Ramzswap, http://code.google.com/p/
compcache/

[14] Android, http://www.android.com/

[15] UBI, http://www.linux-mtd.
infradead.org/doc/ubi.html

[16] UBIFS, http://www.linux-mtd.
infradead.org/doc/ubifs.html

[17] Samsung, http://www.samsung.com/
global/business/semiconductor/

[18] UCL, http://www.oberhumer.com/
opensource/ucl/

Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

