
Prediction of Optimal Readahead Parameter in Linux by Using
Monitoring Tool

Ekaterina Gorelkina
SRC Moscow, Samsung Electronics
e.gorelkina@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Jaehoon Jeong
SAIT, Samsung Electronics

hoony_jeong@samsung.com

Mikhail Levin
SRC Moscow, Samsung Electronics

m.levin@samsung.com

Abstract

Frequently, application developers face to the hidden
performance problems that are provided by operating
system internal behavior. For overriding such problems,
Linux operation system has a lot of parameters that can
be tuned by user-defined values for accelerating the sys-
tem performance. However, in common case evaluating
of the best system parameters requires a very time con-
suming investigation in Linux operating system area that
usually is impossible because of strong time limitations
for development process.

This paper describes a method that allows any applica-
tion developer to find the optimal value for the Linux
OS parameter: the optimal maximal read-ahead win-
dow size. This parameter can be tuned by optimal
value in easy way that allows improving application per-
formance in short time without getting any knowledge
about Linux kernel internals and spending a lot of time
for experimental search for the best system parameters.

Our method provides the prediction of optimal maximal
read-ahead window size for Linux OS by using the mon-
itoring tool for Linux kernel. Scenario of our method
using is very simple that allows obtaining the optimal
value for maximal read-ahead window size for the sin-
gle application run. Our experiments for Linux 2.6 show
that our method detects an optimal read-ahead window
size for various real embedded applications with ade-
quate accuracy and optimization effect can be about a
few and even a few dozen percents in comparison to de-
fault case. The maximal observed optimization effect
for accelerating the embedded application start-up time
was 59% in comparison to default case.

Taking into account these facts the method proposed in

this paper has a very good facilities to be widely and
simply used for embedded applications optimization to
increase their quality and effectiveness.

1 Introduction

In modern computing systems high performance disk
drive systems very often have a serious problem related
with its performance, effectiveness and speed. Usu-
ally the disk input-output (I/O) performance is related
with time which needs to mechanical parts of the disk to
move to a location of the data storing. This time usually
defines the time delays in the data extraction. Operating
systems incorporate disk read-ahead cache to minimize
the time delays. Typically, the data from the disk are
buffered in a memory with a relatively fast access time.
If requested data is already reside in the cache mem-
ory, the data can be transferred directly from the cache
memory to the requester. In result the performance is in-
creased because the access to data from the cache mem-
ory is substantially faster than the access from the disk
drive [1].

Very often such cache can be sufficiently effective. But
sometimes it can produce the low system performance.
This relates with the sensitivity of the read-ahead cache
to cache hit statistics [2]. A read-ahead cache having
a low hit rate may perform more poorly than an un-
cached disk due to caching overhead and queuing de-
lays, among others. This problem is especially impor-
tant to be solved for embedded systems, because they
usually have less memory and slow CPUs than servers
and workstations.

Performance of read-ahead subsystem can be controlled
by its main parameter - maximal read-ahead window

• 83 •



84 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

size: the maximum amount of data which can be read-
ahead from block device. The performance of each ap-
plication that is running under management OS depends
on the performance of read-ahead cache. Thus, using
optimal maximal read-ahead window size value for the
current application can improve performance of this ap-
plication significantly. Typically, the finding the opti-
mal maximal read ahead window size for target applica-
tion consists of the following steps: (1) tune operating
system by current maximal read-ahead window; (2) re-
boot the system; (3) run the target application; (4) mea-
sure the time of execution of target application. These
steps should be repeated several times for various maxi-
mal read-ahead window sizes until the optimal value of
read-ahead window size will be found. The main dis-
advantage of such method is too much time that should
be spent for finding the optimal value of maximal read-
ahead window size. Thus, finding the optimal value of
maximal read-ahead window size during single applica-
tion run could significantly improve the performance of
target application and save a lot of machine and human
resources.

2 Method Overview

The suggested technique consists of the following steps:
(1) user should collect data from the application and
OS during application execution by monitoring tool for
Linux kernel one time; (2) monitoring tool analyzes col-
lected data and evaluates optimal maximal read-ahead
window size automatically; (3) user can access evalu-
ated optimal read-ahead window size value via moni-
toring tool user interface. Thus, in comparison to man-
ual method of finding optimal read-ahead window size
and other existing methods (see [11], [12], [13] for de-
tails), the suggested method has the following advan-
tages: (1) determines optimal maximal read-ahead win-
dow size value during single run of application that is
to be optimized; (2) uses existing read-ahead subsystem
without any changes.

This method is designed to be used as a module of a
monitoring tool such as SWAP - System-Wide Analyzer
of Performance developed by Samsung Research Cen-
ter (SRC) in Moscow. The initial version of SWAP
was developed in 2006 and uses functional interfaces of
Kprobe for providing dynamic instrumentation of Linux
kernel for ARM and MIPS architecture. Next revision
of SWAP tool was developed in SRC in 2007. This re-
vision allowed collecting traces from predefined func-

tions in Linux kernel that contains general information
of system characterization. The current SWAP revision
can monitor both kernel and application levels of the
Linux system. It provides evaluation of a set of impor-
tant system characteristics for main Linux subsystems
(such as Memory Management, Process Management,
File System and Network). Additional, current revision
of SWAP has some automatic performance analysis fea-
tures such as trace comparison, automatic bottleneck re-
gion localization, etc.

We have integrated our method into SWAP framework
because SWAP satisfies to all necessary requirements of
our method.

2.1 General Idea

We suggest that optimal solution can be obtained by
minimization of the following two characteristics: the
number of requests to the block device and the amount
of pages that were forced to read by target application,
but were not used.

The big value of maximal read-ahead window size pro-
vides minimization of the first characteristic – number
of requests to the block device. However, in common
situation the big value of maximal read-ahead window
size provides reading a lot of pages from block device
that are not used by application. In the other words the
big value of maximal read-ahead window size makes OS
performs a lot of unnecessary job that is very time con-
suming. It is obvious that application performance de-
grades because of such OS behavior.

The small value of maximal read-ahead window size
provides minimization of the second characteristic – the
amount of pages that were forced to read by target ap-
plication, but were not used. However, in this case op-
timization effect of read-ahead cache is decreased be-
cause of a lot of application requests for memory pages
invoke the requests to the block device instead of re-
quests to the read-ahead cache.

Thus, to reach the optimal OS behavior for current ap-
plication we need to obtain such maximal read-ahead
window size value that provides minimization of both
characteristics simultaneously.

2.2 Collected Data

The first step of our method requires collecting the im-
portant information about application behavior during



2010 Linux Symposium • 85

execution for future analyzing and evaluating the result.
For these purposes, it is necessary to monitor the ac-
cesses to the memory that has been performed by appli-
cation. SWAP has ability for tracking memory accesses
and organizing them in trace that allows estimating the
following aspects: 1) the total number of accessed mem-
ory pages, loaded from block device; 2) the addresses of
accessed memory pages and their source (loaded from
block device or not); 3) the order of accesses.

Notice, that our method requires the single application
run only for gathering the monitoring information for
evaluation of the optimal values of maximal read-ahead
window size.

2.3 Analysis of Collected Data

According to the basic idea, two following values should
be minimized simultaneously:

• F - number of requests to the block device;

• G - number of pages that were forced to read by
target application, but were not used.

Both values - F and G - can be evaluated according to
the information about memory pages that have been ac-
cessed by application.

Our method performs the emulation of read-ahead pro-
cedure for obtaining the required parameters for resolv-
ing the minimization problem. Linux 2.6 read-ahead
cache has a complex behavior: after each request to
the page from block device, some additional follow-
ing pages are loaded into read-ahead cache. Number
of additional pages is less or equal to the maximal read-
ahead window size value. During emulation of read-
ahead cache behavior we simplify the real OS behavior:
we consider that the number of additional pages that are
loaded into read-ahead cache is equal to the size of read-
ahead window (see Figure 1).

This emulation procedure allows determine those pages
can be potentially loaded into read-ahead cache for any
predefined maximal read-ahead window size value. Ac-
cording to this information it is possible to evaluate the
number of requests to the block device F . Thus, the
number of requests to the block devices F can be de-
scribed as a function:

Application

Memory

1 2 3 4 3 1 2 3 4 4 1 1

1

2

3

4

Read−ahead window Read−ahead window

Pages which were accessed by application and were
read directly from block device, without read−ahead

Pages which were accessed by application and were
read from block device via read−ahead cache

Pages which were read from block device into read−ahead
cache and were not used by application

Pages which were not used by application

Figure 1: Read-ahead emulation procedure

F = Rrn(Ma,Rws) (1)

where Rrn is the number of requests to the block device,
Ma is number of memory accesses that requires map-
ping pages from block device and Rws is the maximal
read-ahead window size.

The value of G that describes the number of pages that
were forced to read by target application, but were not
used, can be evaluated by taking into account the fol-
lowing peculiarities of Linux 2.6 read-ahead cache be-
havior:

• each read-ahead request produces a read opera-
tion for page from block device, which will not be
placed in read-ahead cache;

• each read-ahead request additionally produces Rws
read operations for pages from block device

Thus, the total amount of pages that were read from
block devices within the performed read-ahead emula-
tion can be expressed as a following function g:

g = Rrn∗Rws+Rrn (2)

Since the collected information on memory accesses
provides information about total amount of pages re-
quested by application, it is suitable to define the value
of G (see Fig. 1) as follows:

G = Rrn∗Rws+Rrn−Tap(Ma) (3)



86 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

Here Tap is a total amount of pages from block device
requested by application. Thus, we define G as a differ-
ence between the number of pages that have been really
read from the block device as a result of the read-ahead
cache behavior and the number of requested pages.

Notice that both functions F and G depend on two ar-
guments, namely on the collected information on mem-
ory accesses (Ma) and on the read-ahead window size
(Rws). The first argument Ma can be considered as a
constant since the problem of performance optimization
is solved for some fixed behavior of target application.
Hence, both characteristics are the functions of a single
argument - maximal read-ahead window size (Rws). It
is possible to obtain different emulated values for both
characteristics by varying Rws value.

According to the basic idea of the method the minimiza-
tion problem for functions F and G should be solved.
Both functions F and G reach their minimum value
in extreme points satisfying to the following necessary
conditions: 

∂F
∂Rws = 0

(4)
∂G

∂Rws = 0

Since functions F and G depend on one variable Rws,
we have a redefine system of two equations. To solve
this incorrect problem [3], we change searching of ex-
act solution of the redefine system of two equations by
searching of its quasi-solution satisfying to solution of
the following minimization problem:

minRws{F2(Rws)+G2(Rws)} (5)

This minimization problem can be rewritten also as fol-
lows:

minRws{Rrn2 +[Rrn∗ (Rws+1)−Tap]2} (6)

Here we call an expression in figure brackets as a
coe f f iciento f optimality:

Copt = {Rrn2 +[Rrn∗ (Rws+1)−Tap]2} (7)

It is easily to see that there are two limiting values for
Rws which gives trivial solution exact for G:

1. Rws = 0, in that case each page, accessed by applica-
tion is read from block device and none of the pages are
read into read-ahead cache. In this case Rrn is equal to
Tap. Thus, G is always equal to 0.

And for F :

2. Rws = total amount of memory in computing system.
In this case, after first access to the page with minimal
address, all pages will be read into read-ahead cache.

Notice, when function F has the minimal value, then
function G has the maximal value and vice versa. Both
mentioned limited values of Rws allow restricting the set
of possible values of Rws.

The minimization problem can be solved by the exhaus-
tive search. However, during test period it is was noted
that minimized expression is a function with one turn-
ing point - the point of minimum. We use the itera-
tive method for speeding up the search: we emulate the
read-ahead cache behavior for different values of maxi-
mal read-ahead window size Rws and choose such Rws
value that makes a coefficient of optimality (7) becomes
minimal.

3 Experimental Data

Using SWAP monitoring tool with our optimization
method we collected several sample traces for embed-
ded boards with running applications considered below.
The appropriate results obtained in our experiments are
also presented and discussed. For measuring inaccu-
racy of our method we use the following technique: the
optimization percentage of optimal maximal read-ahead
window size (found by hands) and quasi-optimal maxi-
mal read-ahead window size (proposed by our method)
are measured (with comparison to default maximal read-
ahead window size); the difference between optimal
percentage and quasi-optimal percentage gives us the
“amount” of missed optimizations. For example, the
start-up of application for default Rws = 255 equals to
34.9 seconds; for quasi-optimal Rws = 2 equals to 14,5
seconds; for optimal Rws = 1 equals to 14 seconds. The
optimization percentage of quasi-optimal Rws in com-
parison with default Rws is 58.45%. The optimization
percentage of optimal Rws in comparison with default
Rws is 59.88%. The difference between optimal and
quasi-optimal solutions is (59.88%−58.45%) = 1.43%.



2010 Linux Symposium • 87

Environment Details
Board DTV_x260, MIPS-based

Kernel version 2.6.10
Application Digital TV

management
software (exeDSP)

Initial read-ahead 255 pages
window size
Performance SWAP

measurement tool
Base for memory access do_page_fault()

event information SWAP event

Table 1: Characteristics of DTV_x260 board and
exeDSP application

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5000000

10000000

15000000

20000000

25000000

Read−ahead window size

C_opt

Figure 2: Copt for application exeDSP. Quasi-optimal
solution (point of minimum of Copt) Rws = 1 is marked
with star

3.1 Digital TV Management Application

The experiment consisted of optimizing the start-up pro-
cedure of application textitexeDSP (digital TV manage-
ment software) which supervises digital TV board (DTV
x260): the time of full initialization should be decreased
as much as possible.

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of maximal read-
ahead window Rws is equal to is 1 (see Figure 2).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 2.

We can see that minimum is reached for Rws = 1 page

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 14.2
1 14
2 14.5
3 16
4 18.4
5 23
15 26.5

255 (default) 34.9

Table 2: Runs of exeDSP application on DTV_x260
board

0 1 2 3 4 5
0

Read−ahead window size

5

10

15

20

25

30

35

40

15 255

Time, seconds

Figure 3: Start-up time for application exeDSP. Quasi-
optimal solution is marked with star. Optimal solution
Rws = 1 is marked with square

(see Figure 3). Optimal read-ahead window size is
Rws = 1.

The difference of start-up time between default read-
ahead (255 pages) and optimal read-ahead suggested by
our method (1 page) is about 20.9 seconds or about 59%
from default start-up time. The difference between op-
timal and quasi-optimal solutions is 0%, because quasi-
optimal and optimal solutions are coincided.

3.2 Web Browser

The experiment consisted of optimizing the start-up pro-
cedure of FireFox (web browser) on multimedia board
MVL2443: the time of full initialization should be de-
creased as much as possible.



88 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

Board MVL2443,
ARM based

Kernel version 2.6.16
Application Firefox

Initial read-ahead window size 7

Table 3: Characteristics of MV2443 board and Firefox
application

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10000000

20000000

Read−ahead window size

C_opt

30000000

40000000

50000000

60000000

Figure 4: Copt for application FireFox. Quasi-optimal
solution (point of minimum of Copt) Rws = 2 is marked
with star

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of read-ahead
window Rws is equal to 2 (see Figure 4).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 4.

We can see that minimum is reached Rws = 3 pages (see
Figure 5). Optimal read-ahead window size is Rws = 3.
The difference of start-up time between default read-
ahead (15 pages) and quasi-optimal read-ahead sug-
gested by our method (2 pages) is about 5.8 seconds or
about 7.34% from default start-up time. The difference
of start-up time between default read-ahead (15 pages)
and optimal read-ahead found by hands (3 pages) is
about 6.3 seconds or about 7.97% from default start-up
time. The difference between optimal and quasi-optimal
solutions is (7.97%−7.34%) = 0.65%.

3.3 MP3 player

The experiment consisted of optimizing the file load-
ing procedure of MadPlay MP3 player on the board

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 75
1 73.1
2 73.2
3 72.7
4 73.5
5 74.5
7 79

15 (default) 79
31 81

Table 4: Runs of Firefox application on MV2443 board

0 1 2 3 4 5

Read−ahead window size

68

70

72

74

76

78

80

7 15

Time, seconds

31

82

Figure 5: Start-up time for application FireFox. Quasi-
optimal solution is marked with star. Optimal solution
Rws = 3 is marked with square

OMAP5912OSK: the time of playback with null output
device should be decreased as much as possible.

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of read-ahead
window Rws is equal to 2 (see Figure 6).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 6.

We can see that minimum is reached for value Rws =
3 (see Figure 7). Optimal read-ahead window size
is Rws = 3. The difference of start-up time between
default read-ahead (15 pages) and quasi-optimal read-
ahead suggested by our method (2 pages) is 0.5 seconds
or about 4.70% from default start-up time. The differ-
ence of start-up time between default read-ahead (15



2010 Linux Symposium • 89

Board OMAP2912OSK
ARM based

Kernel version 2.6.10
Application MP3 Player (Madplay)

Initial read-ahead
window size 15

Table 5: Characteristics of OMAP5912 OSK board and
MadPLay application

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 10.66
2 10.13
3 10.09
4 10.17
5 10.17
6 10.23
7 10.31
8 10.31

15 (default) 10.63
19 10.73
31 10.95

Table 6: Runs of MadPLay application on OMAP5912
OSK board

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Read−ahead window size

C_opt

50000

100000

150000

200000

250000

300000

350000

400000

Figure 6: Copt for application MadPlay. Quasi-optimal
solution (point of minimum of Copt) Rws = 2 is marked
with star

0 2 3 4 5

Read−ahead window size

9.6

9.8

10

10.2

10.4

10.6

10.8

7 15

Time, seconds

31

11

6 8 19

11.2

Figure 7: Time of input file loading for application Mad-
Play. Quasi-optimal solution is marked with star. Opti-
mal solution Rws = 3 is marked with square

pages) and optimal read-ahead found by hands (3 pages)
is 0.54 seconds or about 5.07% from default start-up
time. The difference between optimal and quasi-optimal
solutions is (5.07%−4.70%) = 0.37%.

4 Conclusion

We have presented a new method for automatic evalua-
tion of optimal value for single Linux tunable parameter:
maximal read-ahead window size. Tuning of this Linux
parameter by obtained value can improve performance
of embedded application significantly. Our method is
simple to use and requires single run of application for
evaluation of all necessary characteristics. It does not



90 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

require any additional knowledge in system or optimiza-
tion areas and can be used by any application developer
who wants to increase performance of his application by
reducing hidden performance bottlenecks in Linux op-
erating system. Due to its advantageous characteristics,
this method can be widely used for optimization of em-
bedded systems to increase their quality and effective-
ness.

References

[1] Daniel P. Bovet, Marco Cesati, Understanding the
Linux Kernel, Third Edition, O’Reilly Media,
2006.

[2] Linux kernel source files
(http://kernel.org).

[3] V. A. Morozov, Regular Solution Methods of
Non-Correct problems, Nauka, Moscow, 1987.

[4] James R. Larus and Eric Schnarr, Computer
Sciences Department, University of Wisconsin,
Madison, EEL: Machine-Independent Executable
Editing. (ftp://ftp.cs.wisc.edu/wwt/
pldi95_eel.ps).

[5] Amitabh Srivastava, Alan Eustace, ATOM: A
System for Building Customized Program
Analysis Tools.

[6] Ted Romer, Geoff Voelker, Dennis Lee, Alec
Wolman, Wayne Wong, Hank Levy, and Brian
Bershad, University of Washington, Brad Chen,
Harvard University, Instrumentation and
Optimization of Win32/Intel Executables Using
Etch.(http:
//etch.cs.washington.edu/
etch-usenixnt/etch-usenixnt.html).

[7] Ananth Mavinakayanahalli, Prasanna
Panchamukhi, Jim Keniston, Anil
Keshavamurthy, Masami Hiramatsu, Probing the
guts of Kprobes, Ottawa Linux Symposium,
pp.101-114, July 2006.

[8] Frank Ch. Eigler, RedHat, Problem Solving With
Systemtap. (http://sourceware.org/
systemtap/wiki/OLS2006Talks?
action=AttachFile&do=get&target=
problem-solving-with-stap.pdf).

[9] David J. Pearce, Paul H.J. Kelly, Tony Field, Uli
Harder, Imperial College of Science, Technology
and Medicine, London, GILK: A dynamic
instrumentation tool for the Linux Kernel.

[10] Giridhar Ravipati, Andrew R. Bernat, Nate
Rosenblum, Barton P. Miller and Jeffrey K.
Hollingsworth, Toward the Deconstruction of
Dyninst, Technical Report, Computer Sciences
Department, University of Wisconsin, Madison
(ftp:
//ftp.cs.wisc.edu/paradyn/papers/
Ravipati07/SystemtabAPI.pdf).

[11] US5809560, Adaptive read-ahead disk cache.

[12] US2005154825A1, Adaptive file read-ahead
based on multiple factors.

[13] US2003115410A1, Method and apparatus for
improving file system response time.



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


