
Dynamic Binary Instrumentation Framework for CE Devices

Alexey Gerenkov
SRC Moscow, Samsung Electronics
a.gerenkov@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Jaehoon Jeong
SAIT, Samsung Electronics

hoony_jeong@samsung.com

Abstract

Developers use various methods and approaches to find
bugs and performance bottlenecks in their programs.
One of the effective and widely used approach is appli-
cation profiling by dynamic instrumentation. There are
many various tools based on dynamic instrumentation.
Each tool has its own benefits and limitations what of-
ten forces developers to use several of them for profiling.
For example, in order to use Kprobe-based [1] Sys-
temtap [2] tool developers need to write instrumenta-
tion script using special language. To use Dyninst [3]
profiling library developers need to write instrumenting
programs in C++. Thus each tool realizes its own pro-
filing technology. Additionally various profiling tools
produce output data in their own formats and those for-
mats are incompatible. Thus two above problems sig-
nificantly increase complexity of debugging.

In this paper we describe unique dynamic binary instru-
mentation engine concept which is used in our moni-
toring tool — System-Wide Analyzer of Performance
(SWAP). This tool has modular open architecture and
API which allow integrating various tools for provid-
ing powerful instrumentation and analysis framework
for developers. Dyninst and Kprobe-based instru-
mentation engines are integrated into SWAP framework
and used in a similar way. Modular structure of SWAP
can be extended with other instrumentation and analysis
methods by easy way. Also SWAP has several levels of
API: instrumentation API, connection API, control API,
user interface API and monitoring language framework
API. This multilevel API architecture allows develop-
ers to re-use SWAP functionality and embed it into their
own solutions. All above mentioned SWAP advantages
essentially simplify debugging profiling process for em-
bedded software.

1 Introduction

During the last decade computer market has been shift-
ing its focus from PCs to consumer electronic devices
that have made great steps in increasing their function-
ality. Now CE embedded systems can provide wide set
of capabilities for user. Devices interact directly with
consumers and quality of their work influence manu-
facturer’s brand greatly. So bugs and ineffectiveness of
software are very critical for CE products. It is agree-
able that Linux has become popular as a platform for
modern embedded systems. However, it still has issues
to be solved due to limited resources (i.e. CPU power
& memory size) and absence of network interface in
the embedded environment. Linux developers use var-
ious methods and approaches to find bugs and perfor-
mance bottlenecks in their programs. One of the effec-
tive and widely used approach is application profiling
by dynamic instrumentation.

There are a number of tools based on dynamic instru-
mentation for *nix systems. Every tool has its own list
of supported features that can be split into the following
categories:

• Supported operating systems, kernel versions;

• Supported processor architectures;

• Instrumentation capability (functions entries/exits,
functions bodies, certain types of instructions etc.);

• Type of collected information (variables, stack,
user or kernel space data etc.);

• Instrumentation overhead;

• Format of collected profiling data;

• 75 •



76 • Dynamic Binary Instrumentation Framework for CE Devices

Set of features supported by particular tool is limited,
and the list of features provided by tool determines its
advantages and disadvantages for developers. For ex-
ample, well-known Kprobe-based tool Systemtap
which provides powerful script language for dynamic
instrumentation does not support MIPS architecture.
Another well-known tool LTTng [4] supports great set
of architectures (including MIPS), but its instrumen-
tation capabilities are limited by hooks inserted into
source code.

Since every tool has limited set of supported features
developers should often make choice what tool to use
in certain circumstances. The problem of choosing a
suitable tool for dynamic instrumentation and profiling
is widely discussed over the technical forums in the in-
ternet, Recently a comparison report [5] has been pub-
lished for the tools mentioned above and DTrace [6],
another instrumentation tool for Solaris, Mac OS X,
BSD and QNX. All those discussions and comparison
report were intended to provide developers with sum-
marized view of available profiling functionality on dif-
ferent platforms.

As it was mentioned above features provided by single
tool can be insufficient for developers, so it is reasonable
to consolidate the advantages of multiple tools simulta-
neously to perform one experiment: typical case which
usually requires the using of several tools is instrument-
ing both user and kernel space. But using several tools
on CE devices is not quite convenient due to the follow-
ing reasons:

• Some tools can not be executed on CE devices in
standalone mode, due to device resource limita-
tions, so experiments which need to run multiple
tools simultaneously can not be performed;

• Not all tools support host-target architecture which
is preferable for resource limited CE devices, so
experiments which need to run multiple tools si-
multaneously can not be performed;

• Using multiple tool complicates instrumentation
process, because instrumentation scripts/programs
needs to be written for several tools;

• All tools have different format of collected data,
so additional scripts/programs are needed to bring
different output data to one format which can be
used for analysis;

• Quite often data, collected using several tools,
should be merged and synchronized in order to cre-
ate ordered sequence of events which reflects the
essence of experiment;

All above problems significantly increase complexity of
profiling using multiple tools.

Let’s consider the following example (see Figure 1)
of profiling programs using multiple tools. Devel-
oper wants to analyze how many page faults are gen-
erated by memory accesses made by considered pro-
gram and if it is possible to find access patterns which
can be optimized. For this experiment developer needs
to profile all memory access made by his program
and all calls to do_page_fault kernel function.
To instrument memory accesses he uses well-known
tool — Dyninst, to instrument do_page_fault
Systemtap is used. In order to use Dyninst en-
gineer has to write special instrumentation program in
C++, compile it and link with Dyninst library. For us-
ing Systemtap developer needs to write instrumenta-
tion script using special language. After gathering nec-
essary data by both tools one needs to take care about
merging data sets after experiment. This is not enough
convenient for developer because of to perform data
analysis developer needs to create a analyzing script
which needs to parse data and represent it as objects
for further processing. Finally, all these actions can
be available if and only if CE device has enough re-
sources for instrumenting the considered application in
standalone mode. Otherwise, one should take care about
remote instrumentation using typical host-target model.

Thus, using Universal Instrumentation Engine could
significantly simplify using multiple dynamic instru-
mentation tools (see Figure 2):

• Instead of working with several separate tools de-
veloper uses universal instrumentation API which
helps to avoid writing handlers with different lan-
guages and perform several linking/compiling pro-
cedures;

• Universal Instrumentation API encapsulates
unique instrumentation technique for each tool
and provides a unified method of using each DBI
engine;



2010 Linux Symposium • 77

Systemtap 
text script

C++ source file

systemtapGCC

Instrument and 
run program

Output data 1 Output data 2

GCC

dyninst

Instrument and 
run program

Compile handlers
Compile 
and link

with dyninst 
library

Separate buffers

Format 
depends on 

handlers 
written 

in pseudo C

Format 
depends on 

handlers 
written 

in C/C++

Figure 1: Using Multiple Instrumentation Tools

• Universal engine provides requested dynamic in-
strumentation in standalone or remote mode using
as less resources for multiple tools as possible;

• All handlers of multiple tools are written similarly
in sense of output data format, so the collected
trace of events will be, firstly, saved in unified
data format and, secondly, provided in a merged
state, thus avoiding developer from taking care of
problems regarding parsing/merging different for-
mat data;

This approach eliminates disadvantages of process
of using multiple instrumentation engines described
above. Universal engine integrates several instrumen-
tation methods in order to provide developer with abil-
ity to run his instrumentation scenarios using several
methods through one universal interface. It also pro-
vides gathered data in unified format what simplifies
post-mortem data analysis.

2 Framework Description

In this paper we describe unique dynamic binary instru-
mentation engine concept which is used in our moni-
toring tool — System-Wide Analyzer of Performance
(SWAP). This tool was designed for profiling of user and
kernel space software on embedded Linux systems. It

provides extensible framework for system profiling and
analysis of gathered data. It uses dynamic instrumenta-
tion technique for collecting data about system behavior.
SWAP integrates several instrumentation tools and pro-
vides developers with ability to use multiple tools for
profiling applications on CE devices. It has open mod-
ular design which allows other tools (e.g. front-ends,
GUIs) to re-use its functionality. To fit the needs of
various embedded platforms SWAP also supports host-
target communication concept and standalone mode of
operation when there is no connection to host. Finally,
it provides a simple and convenient toolkit for post-
mortem data analysis based on Python scripts which can
be easily extended on the needs of user.

2.1 Architecture

In general profiling of applications consists of the fol-
lowing steps:

1. Developer specifies probing points and handlers
which should be attached to those points;

2. Instrumentation engine resolves probing points in
application binary and prepares instrumentation
code to be inserted into application;

3. Instrumentation code is transferred to target in case
of host-target architecture;



78 • Dynamic Binary Instrumentation Framework for CE Devices

1st method:
Instrument and 

run program

Output data

2nd method:
Instrument and 

run program

3rd method:
Instrument and 

run program

Universal
Instrumentation 

API

Universal Engine

User

Single buffer
for all methods

Figure 2: Universal Instrumentation Engine

4. Engine inserts instrumentation code into applica-
tion and runs it if necessary;

5. Profiling data are collected by instrumentation han-
dlers;

6. Engine removes instrumentation code;

7. Collected data is transferred from target to host in
case of host-target architecture;

8. Collected data are stored in intermediate storage;

9. Developer analyzes collected data;

SWAP has open modular architecture (see Figure 3)
which allows developers to re-use it for building their
own tools. SWAP instrumentation framework consists
of the following main components which implement
above profiling scenario for embedded devices and pro-
vide the full set of capabilities for dynamic instrumen-
tation and further data analysis:

• Instrumentation Engine. This is essential compo-
nent of SWAP instrumentation framework which
fully implements the functionality of described
above Universal Instrumentation Engine. It pro-
vides API for instrumentation of user and ker-
nel space functions using various instrumentation
methods. It allows to instrument entry/exit and

body of specified functions. Also it provides
API to configure and control profile data collec-
tion. It consists of two parts: host and target.
Host Instrumentation Engine performs step 2 from
above scenario. It prepares data necessary for in-
strumentation, for example, resolves function ad-
dresses and prepares instrumentation code to be
inserted. Target Instrumentation Engine performs
steps 3 and 4 from above scenario. It does es-
sential work: inserts instrumentation into applica-
tion/kernel and collects data. Currently engine in-
tegrates two instrumentation methods: Kprobe-
based and Dyninst-based. For kernel instrumen-
tation Kprobe-based method is used. For user
space Kprobe or Dyninst methods are used de-
pending on what program points should be instru-
mented (e.g. functions or memory access instruc-
tions).

• Communication Agent. This component provides
API for connecting to target and transferring com-
mands and responses to target and obtaining col-
lected data from target. It consist of two parts: host
and target. The component encapsulates SWAP tar-
get communication protocol. This component is
used by instrumentation engines to control instru-
mentation process and data transfer. In standalone
mode this component is not used.



2010 Linux Symposium • 79

• Collected Data Storage. This is storage for col-
lected data. It stores collected data and provides ef-
fective methods for retrieval of collected informa-
tion when data are analyzed. SWAP supports sev-
eral modes of data collection: normal mode when
all data are collected on target and after experiment
they are transferred to host and continuous mode
when data are transferred to host continuously as
they appear. These two modes allows to user to
choose optimal data collection policy for his ex-
periment. Normal mode has less overhead for tar-
get, but it is limited by size of buffer on target for
collected data. So in normal mode amount of pro-
filed data are limited by size of buffer on target.
Continuous transfer mode has no such limitation.
Buffer is used as intermediate storage before data
are transferred to host. But this mode has greater
overhead because of data transmission.

• Data Analyzing Framework. As a final step of re-
solving considered problem, SWAP provides to de-
velopers analyzing framework which allows easy
data manipulating and analyzing. This component
provides framework with API for loading, parsing
and analyzing data kept in Collected Data Storage.
Developers can easily extend this framework and
reuse its components in their own analyzing scripts
written in SWAP Python-based language.

The described components cover all basic functionality
needed for monitoring with help of dynamic instrumen-
tation: ability to instrument kernel space and user space,
ability to use standalone mode or host-target model,
ability to save collected data in unified format and, fi-
nally, perform data analysis for understanding consid-
ered behavior of the CE device. Let’s consider general
SWAP profiling scenario in details (see Figure 3):

• Upon user actions SWAP GUI configures instru-
mentation and starts it via instrumentation API pro-
vided by engine. Instrumentation configuration in-
cludes functions to be instrumented, size of buffer
for collected data etc;

• Host instrumentation engine prepares information
necessary for profiling, connects to target via host
communication agent and sends data to target;

• Instrumentation agent on target inserts instrumen-
tation code into application and starts it if neces-
sary;

• Data collection started;

• When user stops data collection (via SWAP GUI)
collected data are transferred back to host via com-
munication agents and saved in data storage;

• Then when user wants to visualize results of pro-
filing SWAP GUI uses analyzing scripts based on
Data Analyzing Framework to calculate and repre-
sent various statistics;

• SWAP visualizes results;

2.2 Instrumentation API

As it was mentioned above SWAP instrumentation en-
gine provides to developers universal instrumentation
API. This API provides common way for profiling pro-
grams using different instrumentation methods. As it
was said before currently there are two methods are sup-
ported by SWAP: Kprobe-based and Dyninst-based.
This API provides general set of functions which does
not depend on underlying instrumentation engine. API
allows to:

• Add/remove probe for specified kernel function.
Kernel function probes trace entry and exit from
functions;

• Add/remove probe for specified user space appli-
cation’s function. User space function probes trace
entry and exit from functions;

• Add/remove probe inside functions. Function body
probes trace execution of instruction at specified
address inside functions;

• Add/remove memory access probe inside func-
tions. Memory access probes trace execution of
memory access instructions inside functions;

• Configure target buffer size;

• Set filters by process IDs and names;

• Define conditions for data collection start and end;

• Start and stop profiling process;

• Retrieve list of libraries used by application;

• Retrieve list of application/library functions;

• Retrieve list of kernel functions;

• Configure data transfer mode for host-target model
(one-time or continuous);



80 • Dynamic Binary Instrumentation Framework for CE Devices

Target Instrumentation Engine

Host Instrumentation Engine 

Host Communication 
Agent

Dyninst Host
Agent

Symbolic Info 
Library

Instrumentation commands

Dyninst 
Instrumentation 

Agent

Kprobe 
Instrumentation 

Agent

D
a
t
a
 
B
u
f
f
e
r

data

data

Data Analysis 
Framework

SWAP GUI 3rd party GUIs

SWAP 
Analyzers

3rd party
 Analyzers

GUIs

API 
calls

results

EthernetRS232 USB

Data Packets

Target Communication 
Agent

EthernetRS232 USB

Instrumentation 
commands

HOST

TARGET

Kprobe Host
Agent

Collected 
data 

storage

Collected Data

Figure 3: SWAP Architecture

3 Profiling With SWAP

There are several ways in which developers can use
SWAP instrumentation framework for profiling:

• They can use it as library in order to build their own
tools on top of the engine;

• Developers can use SWAP GUI front-end itself for
instrumentation, control and visualization of re-
sults;

As it was described earlier SWAP instrumentation en-
gine is universal instrumentation engine which inte-
grates several instrumentation tools (see Figure 4).
SWAP GUI follows general approach of building tools
on top of SWAP instrumentation engine. It uses it as
shared library. Also it extends SWAP data analyzing
framework with a set of own scripts which analyze col-
lected data and produce data for visualization of various

statistics. Let’s see how SWAP solves problems raised
by usage of multiple tools. We will consider exam-
ple described in introduction where memory accesses
and do_page_fault kernel function should be in-
strumented for the same application behavior (developer
wants to analyze how many page faults are generated by
memory accesses made by considered program and if
it is possible to find access patterns which can be opti-
mized).

Steps which should be performed to instrument program
using multiple tools Systemtap and Dyninst:

1. Write Systemtap script for kernel functions in-
strumentation using a built-in language;

2. Compile written handlers for kernel functions;

3. Instrument kernel functions and run considered
program;

4. Collect and save essential data;



2010 Linux Symposium • 81

C++ source file

Output data

GCC

Universal Engine

Instrument 
via KProbe

Instrument 
via Dyninst

Analyzer

Results prepared
for visualization

One file for 
all platforms

Compile and link
with engine library

Single 
buffer
for all 

methods

Figure 4: SWAP Profiling Scheme

5. Write C++ program which uses Dyninst for in-
strumentation of memory accesses;

6. Compile and link considered program with
Dyninst library;

7. Run instrumented program second time;

8. Collect and save essential data;

9. Merge data collected by both tools;

10. Write program/script for data analysis, including
data parser, data analysis itself and formatted out-
put information;

In comparison with previous procedure, developer
should perform much less steps to instrument program
using SWAP:

1. Write C++ program which uses SWAP engine for
instrumentation of memory accesses and kernel
functions using two or more DBI engines simul-
taneously;

2. Compile and link considered program with engine
library;

3. Run program only one time;

4. Collect and save essential data using standalone
mode or host-target mode;

5. Write program/script for data analysis itself, avoid-
ing time consuming development of data parsing
and formatting of output information;

As it can be easily seen, in this example, SWAP instru-
mentation procedure:



82 • Dynamic Binary Instrumentation Framework for CE Devices

• is more simple, universal and resource saving due
to unified approach for instrumentation needs less
compilations/linking of instrumentation handlers;

• produces synchronized data which do not need
merging due to simultaneous use of two or more
DBI engines;

• provides more correct conditions of experiment
due to one-time launch of considered program;

• allows perform considered experiment under host-
target mode or standalone mode, thus extending
abilities under strict hardware conditions (lack of
memory for saving data or unavailable network
connection);

• avoids developer of implementing data parsing dur-
ing data analysis, thus giving ability to concentrate
on analysis itself;

In more complex instrumentation scenarios developer
may spend significant time for writing Systemtap
script and Dyninst-based tool.

4 Conclusion

There are a number of instrumentation tools which have
their advantages and disadvantages. There is no ideal
tool which will satisfy all developer’s needs. So devel-
opers have to duplicate and maintain their instrumenta-
tion scenarios in various forms which are supported by
every tool.

In this paper we presented our tool SWAP which is built
on top of universal profiling framework which can be
extended by users analyzing modules. SWAP frame-
work makes use of universal instrumentation engine
concept in order to integrate functionality of several in-
strumentation tools and provide developers with uni-
versal and effective way of profiling programs on vari-
ous embedded platforms using different instrumentation
methods and analyzing collected profiling data.

References

[1] William E. Cohen, Gaining insight into the Linux
kernel with Kprobes, RedHat Magazine, Issue#5,
March 2005

[2] Frank Ch. Eigler. Problem solving with
systemtap. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[3] Giridhar Ravipati, Andrew R. Bernat, Nate
Rosenblum, Barton P. Miller and Jeffrey K.
Hollingsworth, Toward the Deconstruction of
Dyninst, Technical Report, Computer Sciences
Department, University of Wisconsin, Madison,
2007.

[4] Mathieu Desnoyers, and Michel R. Dagenais, The
LTTng tracer: A Low Impact Performance and
Behavior Monitor for GNU/Linux, Linux
Symposium Proceedings, Volume 1, Ottawa,
Ontario, 2006.

[5] Systemtap, Dtrace, LTTng Comparison.
http://sourceware.org/systemtap/
wiki/SystemtapDtraceComparison

[6] Richard McDougall, Jim Mauro, and Brendan
Gregg, Solaris Performance and Tools: Dtrace
and Mdb Techniques for Solaris 10 and
Opensolaris, Prentice Hall, 2006.



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


