
UBI with Logging

Brijesh Singh
Samsung, India

brij.singh@samsung.com

Rohit Vijay Dongre
Samsung, India

rohit.dongre@samsung.com

Abstract

Flash memory is widely adopted as a novel non-
volatile storage medium because of its characteristics:
fastaccess speed, shock resistance, and low power con-
sumption. UBI - Unsorted Block Images, uses mecha-
nisms like wear leveling and bad block management to
overcome flash limitations such as “erase before write”.
This simplifies file systems like UBIFS, which depend
on UBI for flash management. However, UBI design
imposes mount time to scale linearly with respect to
flash size. With increasing flash sizes, it is very im-
portant to ensure that UBI mount time is not a linear
function of flash size. This paper presents the design
of UBIL: a UBI layer with logging. UBIL is designed
to solve UBI issues namely mount time scalability &
efficient user data mapping. UBIL achieves more than
50% mount time reduction for 1GB NAND flash. With
optimizations, we expect attach time to reduce up to
70%. The read-write performance of UBIL introduces
no degradation; a more elaborate comparison of results
and merits of UBIL with respect to UBI are outlined in
the conclusion of the paper.

1 Introduction

Flash memories are extensively used in embedded sys-
tems for several remarkable characteristics: low power
consumption, high performance and vibration tolerance.
However flash storage has certain limitations namely
“erase before write”, write endurance, bad blocks. The
block of a flash memory must be erased before writ-
ing again. Besides, each block has limited erase en-
durance; the block can be erased for a limited number
of times. Traditional applications need software assis-
tance to overcome these limitations.

There are two common approaches to deal with the flash
limitations. Firstly, a flash translation layer (FTL) that
does transparent flash management. It gives a generic

disk interface. The traditional file systems like ext2,
FAT work unchanged. This approach limits optimiza-
tions as file systems are not flash aware.

Second approach uses flash file system. Flash file sys-
tems, like JFFS [1], YAFFS [2], are designed to han-
dle flash limitations. In this approach, every flash file
system address flash limitations. It is ideal to address
them in separate flash layer. This leads us to the third
approach. A flash aware file system that can co-operate
with a software layer for optimum flash usage. UBI [3]
is a software layer designed to follow this approach.

UBI is a flash management layer which also provides
volume management. A UBI volume can be a static vol-
ume or a dynamic volume. For flash management, UBI
provides following functionalities.

• Bad block management

• Wear leveling across device

• Logical to Physical block mapping

• Volume information storage

• Device information

2 Related Work

UBI was developed in 2007. UBI gives logical block
interface to the user; each logical erase block (LEB) is
internally associated with a physical erase block (PEB).
This association is called “Erase Block Association
(EBA)”. EBA information of each PEB is stored in VID
header. VID header of a physical block resides in the
same block. Apart from this, UBI also stores EC header
in each physical block; EC header stores erase count
of the block. Typical UBI block structure is shown in
Figure 1. Initialization of UBI demands processing of
both headers from every block. UBI scans complete
flash in order to build in-RAM block associations. This

• 57 •

58 • UBI with Logging

introduces a scalability problem. UBI’s initialization
time scales linearly with respect to flash size; increase
in flash size increases mount time of UBI. With flash
sizes increasing up to several GB’s, it is very important
to ensure that UBI mount time is not a linear function of
flash size.

Data

VID Header

EC Header

Physical Block

Figure 1: UBI Physical Block Structure

Lei et al. [4] proposed Journal-based Block Images (JBI)
which focuses on reducing number of write operations
and flash space requirement. To achieve this, JBI uses
fragmented mapping table and journal system. Limited
work has been carried out to reduce mount time of UBI.
To address mount time scalability issue, it is important
to avoid scan of complete flash. Possible solution to this
problem is to store mapping information in fixed group
of blocks on flash.

3 UBIL: UBI with Log

In this paper we present UBIL: “UBI with Log”, to ad-
dress mount time scalability issue. In order to reduce
initialization time, UBIL stores block mapping informa-
tion to the flash. This design consists of super block,
commit block and EBA log. Super block which stores
location information for commit block and EBA Log,
is stored at fixed physical location. Commit block is a
snapshot of valid UBI block mapping. EBA Log is a dif-
ference between present state and last commit. Commit
and EBA Log can move anywhere in flash. Hence these
blocks are wear-leveled.

3.1 Super Block (SB)

Super block is stored at two erase blocks in flash. First
super block instance is present in first good erase block
and second instance is present in last good erase block.
The two instances of super block are not mirror of each
other. Instead, only one of them contains valid super
block entry. Every super block entry occupies page size

of flash. To update super block, instead of erasing and
writing the block, we log the super block. It means, any
update to super block is written in one of the physical
blocks.

Super block is written alternatively to one of the two
copies (like ping-pong table). As shown in figure, first
super block entry ‘Entry0’ is written on first block, SB0.
Next entry ‘Entry1’ is written to second super block
SB1. Subsequent entries Entry2, Entry3. . . are written
alternatively in each block. This gives advantage over
mirroring as space is not wasted. Also this improves
lifetime of physical blocks reserved for super block.

SB Header

Entry1

Entry3

SB0 SB1

Tail

SB Header

Entry0

Entry2

Entry4

Figure 2: Super Block Update Sequence

While reading super block, we scan through super
blocks and find latest written entry, which is a valid su-
per block entry. In Figure 2, valid super block entry is
pointed as tails. Writing super block entry may fail. In
such situations, other instance of super block contains
valid entry.

3.2 Commit block (CMT)

Commit contains mapping information. Size of commit
is decided at the time of Ubinize. Depending on parti-
tion size, commit may span up to multiple PEBs. Com-
mit information is crucial. Hence two mirror copies of
commit are maintained. Even if one of the copies is cor-
rect, it is possible to recover the commit. For clean de-
tach, UBI uses commit information during subsequent
attach. In case of failure replay of EL is done to restore
latest state. Super block contains two map information
of commit; present commit and future commit. During
commit process, list of future commit blocks in super
block is updated first. Then commit is written to these
blocks. On successful completion, super block is up-
dated replacing present commit by new commit. Hence
commit operation is atomic and tolerant to power fail-
ure. If commit is incomplete during detach, all the failed

2010 Linux Symposium • 59

commit blocks are recovered and given for garbage col-
lection. EL becomes invalid after commit. New empty
log is initialized during commit.
Note: UBIL gives option of compressing CMT. This de-
creases average read/write time of CMT.

3.3 EBA Log (EL)

EBA log contains mapping information of each physi-
cal erase block updated after last commit. Hence EL is
difference between last commit and present UBI state.
Each EL entry contains “EC and VID header” of a phys-
ical erase block. EL may contain valid and invalid en-
tries. When EL gets full, only valid entries are written
to the commit. After successful commit, old EL is in-
valid and fresh log is created. This operation is done by
reserving new PEBs for EL and handing over old PEBs
for garbage collection.
Note: It is possible to configure number of blocks allo-
cated to EL at compile time.

4 UBIL: Initialization

Layout

Volume

SB

Logged

Layout

Volume EBA

Log

Commit 1SB 1 Commit 2 SB 2

SB
EBA EBA

Logged

VTBL1 VTBL2 EBA Log

Figure 3: UBIL Flash Layout

UBIL flash layout is shown in Figure 3. UBIL ini-
tialization starts with reading super block and finding
latest super block entry. Super block locates CMT
and EL. For good detach, initialization involves read-
ing CMT. For bad detach, some of mapping informa-
tion may be present in EL. Hence, initialization involves
reading CMT and replaying EL. After successfully read-
ing CMT and EL, other sub-systems of UBIL are initial-
ized. This includes volume initialization, wear-leveling
initialization and EBA initialization. During initializa-
tion if one of CMT, SB or EL shows recoverable read
errors, UBIL initialization proceeds. In this case, after
successful initialization of all sub-systems, commit pro-
cess is called. This guarantees that, CMT is moved to
safer erase block, less vulnerable for corruption. Due
to removal of scanning, UBIL initialization time is very
less as compared to UBI. Steps followed in UBIL ini-
tialization are outlined below.

1. Find latest super block by finding tail of super
block.

(a) If the tail is bad (power cut happened while
writing super block) the other super block
PEB contains valid super block entry.

2. Locate CMT, EL blocks from super block.

3. Generate latest snapshot of UBI.

(a) Read CMT.

(b) Apply EBA Log.

4. If previous commit has failed, recover reserved
blocks for commit.

5. Initialize Volumes.

6. Initialize Wear leveling.

7. Initialize EBA information.

5 Performance Measurement

We have compared performance of UBIL against UBI
on SLC NAND flash. Mount time performance and
read-write performance tests were conducted. Tests
were performed on Apollon board with OMAP 2420
chipset having 64 MB RAM. We tested UBIL with
Linux kernel 2.6.33.

5.1 Mount time performance

UBI attach time increases linearly to partition size. This
is due to scanning of complete flash. In case of UBIL,
commit size increases with increase in flash size. Caus-
ing UBIL attach time to increase marginally. But this
increase is very minimal in comparison to UBI. Mount
time performance comparison is shown in Figure 4. It
is evident that UBIL performs far better than UBI. As
partition size increases, UBIL performs better than UBI
in terms of attach time. UBIL achieves more than 50%
attach time reduction for 1 GB NAND flash.

As partition size increases, UBIL performance better
than UBI in terms of attach time. UBIL achieves more
than 50% attach time reduction for 1GB NAND flash.

60 • UBI with Logging

0.5

1

1.5

2

200 400 600 800 1000 1200

M
ou

nt
 T

im
e

(s
ec

)

Partition Size (MB)

Mount Peformance

UBI
UBIL

Figure 4: Mount Performance : UBIL vs UBI

5.2 Read-Write Performance

This test measures actual file system read-write perfor-
mance. For performing this test we used Iozone running
on partition mounted with UBIFS. In read-write test we
performed sequential and random read-write tests. Per-
formance measurements are given in Table 5.2. It can
be inferred from table that there is no significant effect
on read-write performance. This is because, UBIL EL
writing frequency is same as meta data write frequency
of UBI.

Table 1: IO Performance
Operation UBI UBIL

(MB/s) (MB/s)
Read 6.33 6.33
Write 3.49 3.71

Re-read 6.33 6.33
Re-write 3.39 3.64

6 Conclusion and Future Work

In this paper we presented UBIL to effectively deal with
mount time scalability issue of UBI. While UBI stores
mapping information across flash, we maintained map-
ping information at one place. This significantly re-
duce mount time by avoiding full flash scan. Bedsides
UBIL, do not perform any extra read-write operation,

causing read-write performance comparable to UBI. As
discussed in results, Our approach reduces mount time
by 50% without affecting read-write performance.

Commit process can be optimized in future by writing
EBA mappings directly to the flash. As per present
UBIL design, super block is written at fixed location.
These blocks are not wear-leveled. Super block han-
dling can be improved by using block chaining scheme
as discussed in JFFS3 [6] design.

References

[1] D. Woodhouse, JFFS: The Journaling Flash File
System, In Proceedings of 2001 Linux
Symposium, Ottawa, Canada, July 25-28, 2001

[2] YAFFS: Yet Another Flash File System,
http://www.yaffs.net

[3] T. Gleixner, F. Haverkamp, A. Bityutskiy,
UBI-Unsorted Block Images, http://www.linux-
mtd.infradead.org/doc/ubidesign/ubidesign.pdf

[4] Lei Jiao, Y. Zhang, W. LinJournal-based Block
Images for Flash Memory Storage Systems, The
9th International Conference for Young Computer
Scientists, pp. 1331-1336, 2008

[5] D. Woodhouse, Memory Technology Device
(MTD) Subsystem for Linux, http://www.linux-
mtd.infradead.org/doc/general.html, Feb
2010

2010 Linux Symposium • 61

[6] A. Bityutskiy, JFFS3 Design Issues, Version 0.25,
http://www.linux-
mtd.infradead.org/doc/JFFS3design.pdf, Oct
2005

[7] Brijesh Singh, Rohit Dongre, UBIL Performance
Log for NAND,
http://git.infradead.org/users/brijesh/ubil_results
/blob/HEAD:/nand_mount_ti me.pdf

[8] Brijesh Singh, Rohit Dongre, UBIL- UBI with
Log, Source code,
http://git.infradead.org/users/brijesh/ubi-2.6.git

62 • UBI with Logging

Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

