
Page/slab cache control in a virtualized environment

Balbir Singh
Linux Technology Center, IBM,

balbir@linux.vnet.ibm.com

Abstract

The Linux page/slab cache subsystems are one of the
most useful subsystems in the Linux kernel. Any at-
tempts to limit its usage have been discouraged and
frowned upon in the past. However, virtualization is
changing the role of the kernel running on the system,
specifically when the kernel is running as a guest. As-
sumptions about using all available memory as cache
and optimizations will need need to be re-looked in an
environment where resources are not fully owned by one
guest OS.

In this paper, we discuss some of the pain points of page
cache in a virtualized environment; like double caching
of data in both the host and guest and its impact on mem-
ory utilization. We look at the current page cache be-
havior of Linux running as a guest and when multiple
instances of guest operating systems are running. We
look at current practices and propose new solutions to
the solving the double caching problem in the kernel.

1 Introduction

The cache systems are typically designed to grow, they
tend to use as much memory is required for caching key
data that can be reused later. They also provide a reclaim
system that can quickly reclaim back memory used for
caching. An often asked question on the Linux Kernel
Mailing List (LKML) [5] relates to why the free mem-
ory on the system is very low, even though the system
is mostly idle or even when the system has few applica-
tions that do not take up a lot of memory. Typically we
distinguish between free memory and freeable memory.
The cache (unless dirty) falls in the category of freeable
memory. We use memory to optimize the cost of other-
wise reading from a slow device. The ability to reclaim
from the cache when needed is a good design trade-off.

The scenario is quite different in a virtualized environ-
ment. The entire guest kernel memory is mapped into

the hypervisor address space. The memory cached in
the kernel, shows up as mapped memory in the hyper-
visor. Beyond the change of the way memory is visi-
ble, caching policies in both the guest and host can lead
to double caching. Double caching is not very good in
a virtualized environment, where resources are scarce
and heavily shared. In the sections to follow, we look
at page cache in a virtualized environment, some basic
data about page cache in a virtualized environment, our
approaches to solving the problem, future work and we
finally conclude with recommendations.

NOTE: We’ve used the terms host and hypervisor inter-
changeably in this paper.

2 I/O in a Virtualized Environment

Our focus in this paper is on the KVM hypervisor [3]
and the Linux Operating System running as the guest
operating system. The KVM hypervisor configuration
can be very complex. Lets look at the various ways of
carrying out I/O.

1. Direct Assignment: In this mode, the IOMMU [2]
creates one or more unique address spaces which
can be used for DMA operations. With IOMMU’s
and direct assignment, a device can be assigned
to a virtual machine directly. This speeds up
I/O immensely. The drawback of such a scheme
is scalability. There are standards that allow to
solve the scalability problem by virtualizing the
workqueues, interrupts, registers on a per VM ba-
sis while using the same device. The guest drivers
need to support these devices to make full use of
the capabilities.

2. Paravirtualized I/O: The hypervisor uses the virt
I/O [6] subsystem to paravirtualize the I/O and
makes as efficient as possible. The data exchanged

• 255 •



256 • Page/slab cache control in a virtualized environment

between the guest and the host is done via a zero-
copy mechanism, with efficient notification mech-
anism for availability of data. This mode requires
support from the guest operating system to have
paravirtualized drivers.

3. Emulated I/O: In this mode, the hypervisor emu-
lates a storage device. Guest drivers do I/O to the
emulated device and the emulated device in-turn
does I/O to the actual physical device.

Modes 2 and 3 above need support from the hypervi-
sor to carry out the complete I/O. Beyond the I/O modes
listed above, virtual machines themselves can be config-
ured in

1. Dedicated Partition Mode: In this mode, the vir-
tual machine is installed the file system on a parti-
tion. This could be an entire disk, a virtual partition
spanning multiple disks, an LVM partition or a disk
partition.

2. Virtual Machine Image Mode: In this mode, the
virtual machine is installed in an image file. A set
of Virtual Machine Images (VMI) are kept together
in a virtual machine repository

Understanding the details of the various image formats
is essential to identify the cost of doing I/O operations
and hence the levels of caching and the cost of caching
data in memory. In this paper, we don’t focus on any
specific image file format. The focus is on common
strategies.

3 Page Caching Strategies

There are various strategies that one can employ for
page cache. The strategies are examined here

3.1 Guest Only Caching

In the guest only caching strategy, the host page cache
is bypassed. This is done by passing the cache=none

argument to the hypervisor during guest startup. This
option enables direct I/O and directly writes the data to
disk, bypassing the host page cache. This strategy works
well for cases where the filesystem of the VM is dedi-
cated to the guest using direct assignment for I/O or if

the guest works in dedicated partition mode. Guest only
caching mode can be used with VMI’s, but it can be an
ineffective strategy if the hypervisor is doing I/O. Sev-
eral VM’s running in parallel, have their own I/O sched-
uler and if the host does not merge the I/O’s, it can cause
excessive head movement in seeking devices. If there
are several VM’s running in parallel, they could cache
memory proportional to their size. The total consump-
tion of memory in each of the guests for caching can be
very high. This consumption shows up as mapped mem-
ory in the hypervisor. The most effective way to free
the memory cached in the guests is through ballooning.
This requires that we have an auto ballooning daemon
running in the background and a cooperative guest. 1

3.2 Host Only Caching

In the host only caching strategy, the guest cache is
not used for caching. All the caching is delegated to
the host. This works well for VMI’s, the host page
cache optimizes disk I/O. The host is able to opti-
mize I/O from all VM’s and provides higher through-
put. KVM supports writethrough and writeback

caching. In writethrough caching, the I/O is blocked till
the data hits the disk. In writeback mode, the I/O re-
turns as soon as the data hits the host page cache. The
big advantage of the writeback mode is the through-
put, the biggest disadvantage is potential of data loss
if the hypervisor crashes. True host only caching is
not possible, each guest maintains its own cache, which
leads to mixed caching. Typical recommendations to
reduce guest caching include changing the setting of
vm.swappiness to 0. In section 4 we look at the re-
sults from the various modes mentioned in this section,
including results when vm.swappiness is set to 0.

3.3 Mixed Caching

In this mode, both the host and the guests cache I/O data.
This happens in a typical VM setup. The disadvantages
listed in section 3.2 apply to this strategy. Beyond that
a system with caching both on the host and the guest(s)
incurs a penalty of double memory usage for caching
the same data. While there are several ways to deal with
page duplication problem [1], none of them deal with
the duplication of page cache between the host and the
guest.

1A guest is considered cooperative if it has a balloon driver en-
abled and running



2010 Linux Symposium • 257

Figure 1: Cache Usage in various modes

Figure 2: Host Page Cache and Guest RSS Usage in
various modes

4 Page Cache Control

The double caching behaviour of was studied using
memory cgroups [7]. A new cgroup was created for the
virtual machine being executed. The virtual machine(s)
ran the kernbench [8] benchmark. Memory cgroups
can provide information about the RSS and page cache
(mapped and unmapped) usage of the process running
inside the cgroup (in this case the virtual machine com-
prises of the processes running as a part of hypervisor).
Each VM was allocated 1 gigabyte of RAM and 2 Vir-
tual CPUs (VCPUs)

Figure 1 shows the unmapped cache usage in three
modes.

1. The first mode is the writethrough mode, which
was described earlier in section 3.2. The guest

and host both consume memory for page cache si-
multaneously and independently. The guest usage
is however larger than the host usage. The data
showed 60% of the data was duplicated over the
entire run of the benchmark.

2. The second mode is the writeback with swappiness
in the guest set to 0. The results showed that the
guest page cache usage was lower than the host
page cache usage and also lower than the usage in
writethrough mode. The usage however was not
close to 0, it was close to 50% of the host page
cache usage. The host page cache usage was quite
high.

3. The last mode is the direct I/O or the cache=none
mode. In this mode, the hypervisor uses direct I/O
to write out the pages from the guest block device
to the disk. The data shows that the host page cache
usage for the virtual machine is almost 0, all the
caching is done in the guest. The size of the cache
in the guest is high and higher than the other modes
experimented with.

Figure 2 shows the page cache usage on behalf of the
guest versus the RSS of the virtual machine. The results
show that in addition to the memory being occupied by
as cache in the guest (which shows up under RSS usage
in the figure), the host is also caching page cache data.
The key observations are

1. Host side caching for cache=none is almost 0 as
expected.

2. With cache=writethrough, there is still double
caching. The host uses close to 40% of the guest
memory for caching data

3. When swappiness is set to 0 and the mode
is cache=writeback, the host uses additional
memory to cache guest data.

5 Proposed Approach

The proposed approach consists of two mechanisms to
reduce the double caching of page cache data. The ap-
proaches are discussed



258 • Page/slab cache control in a virtualized environment

5.1 Mixed Caching With Host Emphasis

In this mechanism, both the guest and host use mem-
ory for page cache, but the cache is primarily pushed
towards the host page cache. The guest page cache
is monitored and shrunk frequently. The kernel has
a partial implementation of this approach for NUMA
systems [4] when the zone_reclaim_distance is
greater than 0, implying that the cost of allocation from
different nodes is high, the code does local reclaim of
easy to free pages before allocating from a distant node.
The algorithm reuses this behaviour and exploits the
min_unmapped_ratio to keep the unmapped page
cache usage under control.

Algorithm 1 Modified VM algorithm for page cache
control
get_page_from_freelist()
...
determine zone to allocate from
if zone is below watermark then

if should_balance_unmapped_cache()
then

wakeup kswapd
end if

end if

Algorithm 2 Check if page cache should be controlled
should_balance_unmapped_cache()
if unmapped pages for zone > min_unmapped_

ratio * number of zone pages then
return TRUE

else
return FALSE

end if

Algorithm 3 Kswapd changes
balance_pgdat()
...
on wakeup check if zone is below watermark or
should_balance_unmapped_cache()
if unmapped pages need balancing then

Reuse zone_reclaim logic
for various reclaim priorities do

Invoke reclaim targeting only unmapped pages
and with swapping out of pages disabled

end for
end if

Figure 3: Time comparison of kernbench for with and
without changes

Algorithms 1, 2, 3 show the changes made to control
unmapped pages in the page cache. The code provides
control over unmapped page cache via a boot parameter
called unmapped_page_control. This boot param-
eter selectively activates the page cache control feature.
By default 1% of the memory can be used for unmapped
page cache. There is a sysctl vm.min_unmapped_

ratio that can be tuned in the guest to control the
amount of unmapped page cache.

5.1.1 Experiments and Results

The approach was tested by running four VM’s in par-
allel, each running kernbench. Each VM had 1 GB of
memory and 2 VCPUs.

The figure shows an overhead of close to 5% when the
feature is enabled with min_unmapped_ratio set to
1%.

Figure 4 shows the free and cached memory usage of the
benchmark running in four VM’s without any changes
to support control of unmapped pages. As can be seen,
the free memory is low and the unmapped page cache
memory usage is high. Figure 5 shows the free and
cached memory usage of the same benchmark running
in four VM’s with the unmapped_page_control boot
parameter specified during bootup. The figure shows
a higher free memory and lower unmapped page cache
utilization.



2010 Linux Symposium • 259

Figure 4: Free and cached memory inside the guest
without any changes

Figure 5: Free and cached memory inside the guest with
changes

5.2 Cooperative Unmapped Page Cache Control

In this mechanism, the ballooning driver is used to coop-
eratively control page cache. In contrast to the previous
approach, this approach is activated selectively on mem-
ory pressure within the hypervisor. The code changes in
this approach are quite simple and consists of the fol-
lowing:

1. Create a new GFP flag, called __GFP_FREE_

CACHE

2. Use __GFP_FREE_CACHE from the balloon driver,
when it allocates pages under pressure.

3. The virtual memory subsystem honours the __

GFP_FREE_CACHE flags by reusing code from
zone_reclaim and the approach above to free
both unmapped page cache and slab cache pages
when the guest operating system is ballooned.

The key challenge with this approach is that the cache
usage is externally controlled when ballooning occurs.
It is important to make the correct decisions on when
to balloon a particular guest and by how much. Typi-
cally a hypervisor would have a automatic tuning dae-
mon whose job is to monitor memory usage in the host,
the free memory, memory pressure in the host, the guest
memory usage, various entitlements and makes smart
decisions on which guests to balloon 2. For the experi-
ments and results obtained using this approach, we used
a similar tool to monitor and automatically balloon the
guests as required.

5.2.1 Experiments and Results

The test setup involved four VM’s all running kernbench
with 4 VCPUs and 6GB of memory. Four guest VM’s
ran this test in parallel. The test was run under a mem-
ory monitor as described in section 5.2, which means it
was subjected to auto ballooning based on host memory
pressure, the size, usage and entitlement of each of the
VM’s. As stated earlier, the ballooning operation could
increase or decrease the memory footprint of the guest
VM.

2A ballooning operation can either reduce the memory footprint
of the guest or give it additional memory to use



260 • Page/slab cache control in a virtualized environment

Figure 6: Host Anonymous Memory, running kern-
bench four VM’s

Figure 7: Host Free Memory, running kernbench four
VM’s

VM With Changes Without Changes
make -j3 1 88.83 87.582
make -j16 1 76.786 76.686
make -j3 2 88.124 87.463
make -j16 2 77.264 76.704
make -j3 3 88.808 87.544
make -j16 3 76.748 75.522
make -j3 4 88.128 87.436
make -j16 4 76.828 75.63

Table 1: Elapsed time four VM’s running kernbench

Figure 6 shows the anonymous memory usage in the
host and correspondingly figure 7 shows the in the graph
show the usage and free memory with and without
changes to the operating system for cooperative balloon-
ing. Figure 6 shows that the anonymous memory usage
after the changes is lower as expected. This indicates
that the cooperative ballooning technique, reduces the
cache size and in turn the RSS size of each guest VM3.
Similarly figure 7 shows that the free memory in the host
is higher with changes.

Table 1 shows the results for the kernbench run in each
VM with and without the ballooning changes for coop-
erative page cache management. The results show no
significant overhead of the patches, but as the graphs
earlier depict, it results in higher free memory in the hy-
pervisor.

6 Future Work

The approaches listed in the paper are by no means com-
plete. There are several additional possibilities to re-
duce page cache deduplication. One of them is to extend
KSM [1] to deal with page cache data between host and
guest operating systems. There is also additional scope
in paravirtualizing hints such as madvise(2), so that
the hypervisor is aware of the hints and can appropri-
ately handle the hints and manipulate its page cache us-
age in line with the hints coming from the applications
running in the guest operating system.

7 Conclusion

Our results show that there is definitely double caching
of page cache data between the hypervisor and guests.

3As seen from the host



2010 Linux Symposium • 261

Our approach pushes the caching of page cache data
(more specifically unmapped page cache) to the hyper-
visor. The approaches listed above unmapped page con-
trol and cooperative page cache control.

The unmapped page control approach provides the best
control over double caching and it also provides the flex-
ibility to the user on what percentage of memory can
be used for unmapped pages. This approach however,
shows a noticeable overhead on the run time, due to the
control introduced. We noticed in our experiments that
the overheads came from the time required to scan and
remove unmapped cached pages, rather than the lack of
memory for caching.

In the cooperative approach provides noticeable benefit
in terms of free memory available when the technique
is used. The technique however, requires a daemon that
continuously monitors all the guest operating systems
and invokes ballooning operations when necessary. The
really good aspect of this approach was minimal to no
overhead in implementing this feature.

We believe that both the approaches listed above have
an important role to play. The invocation and usage of
these approaches is best left to the system administra-
tor/user or a higher level software making decisions for
virtualization environments. The key advantage these
approaches provide is that they allow more free mem-
ory in the hypervisor, which allows additional work to
be executed in the hypervisor.

8 Acknowledgements

The author would like to thank the following people
for their help and support throughout this effort. Their
names appear in no particular order below. Naren De-
vaiah, Premalatha Nair, Dipankar Sarma, Vaidyanathan
Srinivasan, Adam Litke, Joel Schopp, Mike Day, Paul
Mckenney, Karl Rister, Avi Kivity, Dave Hansen, Tim
Pepper, Anthony Liguory, Rayan Harper, Rik van Riel,
Larry Kessler, Ankita Garg, Supriya Kannery, Venkata
R Jagana and many others who’ve been helped me via
discussion/suggestions.

9 Legal Statement

c©International Business Machines Corporation 2010. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may
not apply to you. This information could include technical
inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or
the program(s) described in this publication at any time with-
out notice.

References

[1] Andrea Arcangeli, Izik Eidusa, and Chris Wright.
Increasing memory density using ksm. In OLS ’09:
The 2009 Linux Symposium, pages 19–28, 2009.

[2] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski,
Karl Rister, Alexis Bruemmer, and Leendert van
Doorn. The price of safety: Evaluating iommu
performance. In OLS ’07: The 2007 Ottawa Linux
Symposium, pages 9–20, July 2007.

[3] Avi Kivity. kvm: the linux virtual machine
monitor. In OLS ’07: The 2007 Ottawa Linux
Symposium, pages 225–230, July 2007.

[4] Christoph Lameter. Local and remote memory. In
Memory in a Linux/NUMA System, pages 1–25,
July 2006.

[5] Linux Kernel Mailing List. http://lkml.org, Last
viewed in May 2010.



262 • Page/slab cache control in a virtualized environment

[6] Rusty Russell. virtio: towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, 2008.

[7] Balbir Singh and Vaidayanathan Srinivasan.
Containers: Challenges with memory resource
controller and its performance. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 209–222,
2007.

[8] Kernbench version 0.42.
http://www.kernel.org/pub/linux/kernel/people/ck/apps/kernbench/,
Last viewed in May 2010.



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


