
The Virtual Contiguous Memory Manager

Zach Pfeffer
Qualcomm Innovation Center (QuIC)

zpfeffer@quicinc.com

Abstract

An input/output memory management unit (IOMMU)
maps device addresses to physical addresses. It also in-
sulates the system from spurious or malicious device ad-
dresses and allows fine-grained mapping attribute con-
trol. The Linux kernel core does not contain a generic
API to handle IOMMU mapped memory; device driver
writers must implement device specific code to inter-
operate with the Linux kernel core. As the number
of IOMMUs increases, coordinating the many address
spaces mapped by all discrete IOMMUs becomes diffi-
cult without in-kernel support.

To address this complexity the Qualcomm Innovation
Center (QuIC) created the Virtual Contiguous Mem-
ory Manager (VCMM) API. The VCMM API enables
device independent IOMMU control, VMM interoper-
ation and non-IOMMU enabled device interoperation
by treating devices with or without IOMMUs and all
CPUs with or without MMUs, their mapping contexts
and their mappings using common abstractions. Physi-
cal hardware is given a generic device type and mapping
contexts are abstracted into Virtual Contiguous Memory
(VCM) regions. Users "reserve" memory from VCMs
and "back" their reservations with physical memory. We
have implemented the VCMM to manage the IOMMUs
of an upcoming ARM based SoC. The implementation
will be posted to the Code Aurora Foundation’s site.

1 Motivation and Opportunities

Driver writers who control devices with IOMMUs must
contend with device control and memory management.
Driver writers have a large device driver API that they
can leverage to control their devices, but they are lack-
ing a unified API to help them program mappings into
IOMMUs and share those mappings with other devices
and CPUs in the system.

Sharing is complicated by Linux?s CPU centric VMM.
The CPU centric model generally makes sense because
average hardware only contains a MMU for the CPU
and possibly a graphics MMU. If every device in the
system has one or more MMUs, a CPU centric memory
management (MM) programming model breaks down.

The VCMM was built to allow abstract device program-
ming and mapping interoperation.

2 VCMM Abstractions

Abstracting IOMMU programming into a common API
has already begun in the Linux kernel. It was built to ab-
stract the difference between AMD’s and Intel’s IOM-
MUs to support x86 virtualization on both platforms.
The interface is listed in kernel/include/linux/iommu.h.
It contains interfaces for mapping and unmapping as
well as ’domain management.’ This interface has not
gained widespread use outside the x86; PA-RISC, Al-
pha and SPARC architectures and ARM and PowerPC
platforms all use their own mapping modules to control
their IOMMUs. The VCMM contains an IOMMU pro-
gramming layer, but since its abstraction supports map
management independent of device control, the layer is
not used directly. This higher-level view enables a new
kernel service, not just an IOMMU interoperation layer.

Looking at mapping from a system-wide perspective re-
veals a general graph problem. The VCMM’s API is
built to manage the general mapping graph. Each node
that talks to memory, either through an MMU or directly
(physically mapped) can be thought of as the device end
of a mapping edge. The other edge is the physical mem-
ory (or intermediate virtual space) that is mapped.

In the direct mapped case the device is assigned a ’one-
to-one’ MMU. This scheme allows direct mapped de-
vices to participate in general graph management.

The CPU nodes can also be brought under the same
mapping abstraction with the use of a light overlay on

• 225 •



226 • The Virtual Contiguous Memory Manager

the existing VMM. This light overlay allows VMM
managed mappings to interoperate with the common
API. The light overlay enables this without substantial
modifications to the existing VMM.

In addition to CPU nodes that are running Linux (and
the VMM), remote CPU nodes that may be running
other operating systems can be brought into the general
abstraction. Routing all memory management requests
from a remote node through the central memory man-
agement framework enables new features like system-
wide memory migration. This feature may only be fea-
sible for large buffers that are managed outside of the
fast-path, but having remote allocation in a system en-
ables features that are impossible to build without it.

The fundamental objects that support these abstractions
are:

• Virtual Contiguous Memory Regions

• Reservations

• Associated Virtual Contiguous Memory Regions

• Memory Targets

• Physical Memory Allocations

In a nut-shell, users allocate Virtual Contiguous Mem-
ory Regions and associate those regions with one or
more devices by creating an Associated Virtual Contigu-
ous Memory Region. Users then create Reservations
from the Virtual Contiguous Memory Region. At this
point no physical memory has been committed to the
reservation. To associate physical memory with a reser-
vation a Physical Memory Allocation is created and the
Reservation is backed with this allocation.

3 Virtual Contiguous Memory Regions

A Virtual Contiguous Memory Region (VCM) abstracts
the memory space a device ’sees.’ The addresses of the
region are only used by the devices which are associated
with the region. This address space would normally be
implemented as a device page-table.

A VCM is created and destroyed with three functions:

vcm_id = vcm_create(start_addr, len);

vcm_id = vcm_create_from_prebuilt(ext_

vcm_id);

vcm_free(vcm_id);

start_addr is an offset into the address space where allo-
cations will start from. len is the length from start_addr
of the VCM. Both functions generate a vcm_id which is
an opaque instance of a VCM.

ext_vcm_id is used to pass a request to the VMM to
generate a vcm_id. In the current implementation the
call simply makes a note that the vcm_id is a VMM
vcm_id for other interfaces usage. This ’muxing’ is seen
throughout the implementation.

vcm_create() and vcm_create_from_prebuilt() produce
vcm_ids for virtually mapped devices (IOMMUs and
CPUs). To create a one-to-one mapped VCM users
pass the start_addr and len of the physical region. The
VCMM matches this and records that the vcm_id is a
one-to-one VCM.

The newly created vcm_id can be passed to any func-
tion that needs to operate on or with a virtual contiguous
memory region. Its main attributes are a start_addr and
a len as well as an internal setting that allows the imple-
mentation to mux between true virtual spaces, one-to-
one mapped spaces and VMM managed spaces.

The current implementation uses the genalloc library to
manage the VCM for IOMMU devices.

4 Reservations

A Reservation is a contiguous region allocated from a
VCM. There is no physical memory associated with it.

A Reservation is created and destroyed with:

res_id = vcm_reserve(vcm_id, len, attr);

vcm_unreserve(res_id);

A vcm_id is a VCM created above. len is the length
of the request. It can be up-to the length of the
VCM region the reservation is being created from. attr
are mapping attributes: read, write, execute, user, su-
pervisor, secure, not-cached, write-back/write-allocate,
write-back/no write-allocate, write-through. These attrs
can be changed to match to any architecture.

The implementation calls gen_pool_alloc() for IOMMU
devices, alloc_vm_area() for VMM areas and is a pass
through for one-to-one mapped areas.



2010 Linux Symposium • 227

5 Associated Virtual Contiguous Memory Re-
gions and Activation

An Associated Virtual Contiguous Memory Region
(AVCM) is a mapping of a VCM to a device. The map-
ping can be active or inactive.

An AVCM is managed with:

avcm_id = vcm_assoc(vcm_id, dev_

id, attr);

vcm_deassoc(avcm_id);

vcm_activate(avcm_id);

vcm_deactivate(avcm_id);

A vcm_id is a VCM created above. dev_id is an opaque
device handle that’s passed down to the device driver the
VCMM muxes in to handle a request. attr are associa-
tion attributes: split, use-high or use-low. split controls
which address hit a ’high-address’ page-table and which
addresses hit a “low-address” page-table. For instance,
all addresses whose most-significant-bit is one would
use the “high-address” page-table, any other register
would use the ’low address’ page-table. One vcm_id
can be associated with many devices and many vcm_ids
can be associated with one device.

An AVCM is only a link. To program and depro-
gram a device with a VCM the user calls vcm_activate()
and vcm_deactivate().For IOMMU devices, activating a
mapping programs the base address of a page-table into
an IOMMU. For VMM and one-to-one based devices,
mappings are active immediately; the API does require
an activation call for them for internal reference count-
ing.

6 Memory Targets

A Memory Target is a platform independent way of
specifying a physical pool; it abstracts a pool of physical
memory. The physical memory pool may be physically
discontinuous, need to be allocated from in a unique
way or have other user-defined attributes.

7 Physical Memory Allocation and Reserva-
tion Backing

Physical memory is allocated as a separate step from
reserving memory. This allows multiple reservations to

back the same physical memory. A Physical Memory
Allocation is managed using the following functions:

physmem_id = vcm_phys_

alloc(memtype, len, attr);

vcm_phys_free(physmem_id);

vcm_back(res_id, physmem_id);

vcm_unback(res_id);

attr can include an alignment request, a specification to
map memory using various block sizes and/or to use
physically contiguous memory. memtype is one of the
memory types listed in Memory Targets.

The current implementation manages two pools of
memory. One pool is a contiguous block of memory and
the other is a set of contiguous block pools. In the cur-
rent implementation the blocks pools contain 4K, 64K
and 1M blocks. The physical allocator does not try to
split blocks from the contiguous block pools to satisfy
requests.

The use of 4K, 64K and 1M blocks solves a problem
with some IOMMU hardware. IOMMUs are placed in
front of multimedia engines to provide a contiguous ad-
dress space to the device. Multimedia devices need large
buffers and large buffers may map to a large number of
physical blocks. IOMMUs tend to have small transla-
tion lookaside buffers (TLBs). The number of physical
blocks that map a given range needs to be small or else
the IOMMU will continually fetch new translations dur-
ing a typical streamed multimedia flow since the TLB
is small. By using a 1 MB mapping (or 64K mapping)
instead of a 4K mapping the number of misses can be
minimized, allowing the multimedia block to meet its
performance goals.

8 Low Level Control

It is necessary to access attributes of the abstractions.
The API contains many functions but the two that are
typically used are:

devaddr = vcm_get_dev_addr(res_id);

vcm_hook(dev_id, user_

handler, void *data);

The first function, vcm_get_dev_addr() returns a device
address given a reservation. This device address is a



228 • The Virtual Contiguous Memory Manager

virtual IOMMU address for reservations on IOMMU
VCMs, a virtual VMM address for reservations on
VMM VCMs and a ’virtual’ (physical) address for one-
to-one devices.

The second function, vcm_hook allows a caller in the
kernel to register a user_handler. The handler is passed
the data during a fault. The user can return 1 to indicate
that the underlying driver should handle the fault and
retry the transaction or can return 0 to halt the transac-
tion. If the user doesn’t register a handler the low-level
driver will print a warning and terminate the transaction.

9 A Detailed Walk Through

The following call sequence walks through a typical al-
location sequence. In the first stage the memory for a
device is reserved and backed. This occurs without map-
ping the memory into a VMM VCM region. The second
stage maps the first VCM region into a VMM VCM re-
gion so the kernel can read or write it. The second stage
is not necessary if the VMM does not need to read or
modify the contents of the original mapping. Figure 1
shows the mappings schematically.

Stage 1: Map and Allocate Memory for a Device

The call sequence starts by creating a VCM region:

vcm_id = vcm_create(start_addr, len);

The next call associates a VCM region with a device:

avcm_id = vcm_assoc(vcm_id, dev_

id, attr);

To activate the association users call vcm_activate() on
the avcm_id from the associate call. This programs the
underlining device with the mappings.

vcm_activate(avcm_id);

Once a VCM region is created and associated it can be
reserved from.

res_id = vcm_reserve(vcm_id, res_

len, res_attr);

A user allocates physical memory:

physmem_id = vcm_phys_

alloc(memtype, len, phys_attr);

To back the reservation with the physical memory allo-
cation the user calls:

vcm_back(res_id, physmem_id);

Stage 2: Map the Device’s Memory into the VMM’s
VCM region

If the VMM needs to read and/or write the region that
was just created the following calls are made.

The first call creates a prebuilt VCM:

vcm_vmm_id = vcm_from_prebuit(ext_vcm_

id);

The prebuilt VCM is associated with the CPU device
and activated:

avcm_vmm_id = vcm_assoc(vcm_vmm_id, dev_

cpu_id, attr);

vcm_activate(avcm_vmm_id);

A reservation is made on the VMM VCM:

res_vmm_id = vcm_reserve(vcm_vmm_

id, res_len, attr);

Once the topology has been set up a vcm_back() allows
the VMM to read the memory using the physmem_id
generated in stage 1:

vcm_back(res_vmm_id, physmem_id);

10 Mapping IOMMU, one-to-one and VMM
Reservations

Figure 3 demonstrates mapping IOMMU, one-to-one
and VMM reservations to the same physical memory.
It shows the use of phys_addr and phys_size to create a
contiguous VCM for one-to-one mapped devices. Fig-
ure 2 shows the mappings schematically.

11 Summary

The VCMM is an attempt to abstract attributes of three
distinct classes of mappings into one API. The VCMM
allows users to reason about mappings as first class ob-
jects. It also allows memory mappings to flow from
the traditional 4K mappings prevalent on systems today
to more efficient block sizes. Finally, it allows users
to manage mapping interoperation without becoming
VMM experts. These features will allow future systems
with many MMU mapped devices to interoperate simply
and therefore correctly.



2010 Linux Symposium • 229

vcm_id

start_addr

len

dev_id

physmem_id

res_len

Physical Space IOMMU Virtual Space

avcm_id

VMM start address

VMM len

dev_cpu_id

res_len

VMM Virtual Space

avcm_vmm_id

vcm_vmm_id

res_vmm_id

res_id

Figure 1: Walk Through

SZ_1K

SZ_16M

dev_iommu_id
physmem_id

res_len

Physical Space IOMMU Virtual Space

VMM start address

VMM len

dev_cpu_id

res_len

VMM Virtual Space

avcm_vmm_id

vcm_vmm_id

vcm_iommu_id

One-To-One Space

vcm_onetoone_id

phys_size

phys_addr

res_vmm_id

res_iommu_id

res_onetoone_id

dev_onetoone_id

avcm_onetoone_id

SZ_1M

SZ_1M

SZ_4K

Figure 2: Mapping IOMMU, One-to-One and VMM Reservations



230 • The Virtual Contiguous Memory Manager

physmem_id = vcm_phys_alloc(memtype, SZ_2MB + SZ_4K, CONTIGUOUS);}
vcm_iommu_id = vcm_create(SZ_1K, SZ_16M);}
vcm_onetoone_id = vcm_create(phys_addr, phys_size);}
vcm_vmm_id = vcm_from_prebuit(ext_vcm_id);}

avcm_iommu_id = vcm_assoc(vcm_iommu_id, dev_iommu_id, attr0);}
avcm_onetoone_id = vcm_assoc(vcm_onetoone_id, dev_onetoone_id, attr1);}
avcm_vmm_id = vcm_assoc(vcm_vmm_id, dev_cpu_id, attr2);}

vcm_activate(avcm_iommu_id);}
vcm_activate(avcm_onetoone_id);}
vcm_activate(avcm_vmm_id);}

res_iommu_id = vcm_reserve(vcm_iommu_id, SZ_2MB + SZ_4K, attr);}
res_onetoone_id = vcm_reserve(vcm_onetoone_id, SZ_2MB + SZ_4K, attr);}
res_vmm_id = vcm_reserve(vcm_vmm_id, SZ_2MB + SZ_4K, attr);}

vcm_back(res_iommu_id, physmem_id);}
vcm_back(res_onetoone_id, physmem_id);}
vcm_back(res_vmm_id, physmem_id);}

Figure 3: Mapping IOMMU, One-to-One and VMM Reservations Example



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


