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Abstract

Recently, phase change memory (PRAM) has been de-
veloped as a next generation memory technology. Be-
cause PRAM can be accessed as word-level using mem-
ory interface of DRAM and offer more density com-
pared to DRAM, PRAM is expected as an alternative
main memory device. Moreover, it can be used as ad-
ditional storage of system because of its non-volatility.
However, PRAM has several problems. First, the ac-
cess latency of PRAM is still not comparable to DRAM.
It is several times slower than that of DRAM. Sec-
ond, PRAM can endure hundreds of millions of writes
per cell. Therefore, if PRAM does not be managed
properly, it has negative impact on the system perfor-
mance and consistency. In order to solve these prob-
lems, we consider the Linux kernel level support to ex-
ploit PRAM in memory and storage system. We use
PRAM with a small size DRAM and both PRAM and
DRAM are mapped into single physical memory ad-
dress space in Linux. Then, the physical memory pages,
which are used by process, are selectively allocated
based on the access characteristics. Frequently updated
hot segment pages are stored in DRAM. PRAM is used
for read only and infrequently updated pages. Con-
sequently, we minimize the performance degradation
caused by PRAM while reducing 50% energy consump-
tion of main memory. In addition, the non-volatile char-
acteristic of PRAM is used to support file system. We
propose the virtual storage that is a block device inter-
face to share the non-volatile memory pages of PRAM
as a storage alternative. By using 256MB PRAM for vir-
tual storage, we can decrease more than 40% of access
time of disk.

1 Introduction

For several decades, DRAM has been the main mem-
ory of computer systems. Since the memory require-
ment is growing to support the increasing number of

cores and concurrent applications, DRAM based main
memory significantly increases the power and cost bud-
get of a computer system. Recent studies [8, 7] have
shown that 30-40% of modern server system energy is
consumed by the DRAM memory. Moreover, it is ex-
pected that DRAM scaling will be clamped by the lim-
itation in cell-bitline capacitance ratio [4, 10]. There-
fore, new memory technologies such as Phase-change
RAM (PRAM), Ferroelectric RAM (FRAM), and Mag-
netic RAM (MRAM) have been proposed to overcome
the limitation of DRAM.

Among these memories, PRAM is the most promising
technology for future memory. Figure 1 shows the ba-
sic structure of PRAM cell. PRAM uses phase change
material (GST: Ge2Sb2Te5). It has two phases;an amor-
phous or a crystalline phase. Since the amorphous and
the crystalline phase have a large variance on their re-
sistance, the data is read by measuring the current of
PRAM. The phase of GST can be changed by heat-
ing the material. The moderate and long current pulse
crystallizes GST. On the other hand, short current pulse
melts and quenches GST quickly and makes it amor-
phous.

Figure 1: PRAM cell structure [2]

Basically, PRAM is byte-addressable like DRAM. The
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great advantages of PRAM are the scalability and low
energy consumption. PRAM does not require imple-
menting capacitor for memory cell. PRAM provides su-
perior density relative to DRAM. Because the phase of
PRAM is maintained persistently, PRAM is non-volatile
memory and has negligible leakage energy. Therefore,
PRAM can be used to provide the memory that has
much higher capacity and lower power consumption
than DRAM.

However, the long current pulse for crystallizing in-
creases the latency of PRAM writes. Although PRAM
access latency is tens of nanoseconds, it is still not com-
parable to DRAM access latency. The frequent ac-
cess of PRAM can impact on the overall system per-
formance. Also, the PRAM write energy consumption
and endurance are limitations of PRAM. The high pulse
for phase change increases the dynamic energy con-
sumption. PRAM writing makes the thermal expansion
and contraction of material. It degrades the electrode-
storage contact and reduces the reliability of program-
ming current. This degrades the write endurance of
PRAM cells. PRAM can sustains 108 rewrite per cell
[11].

In this paper, we consider the Linux level support to ex-
ploit PRAM in current computer system. First of all,
we decide to use PRAM with a small size DRAM to
overcome the limitation of PRAM. PRAM and DRAM
are mapped into single physical memory address space.
Then, the physical main memory of Linux consists of
one small fast region (DRAM) and one large slow region
(PRAM). Therefore, the PRAM is used to increase the
size of main memory and eliminate a lot of page faults.
At the same time, we can use DRAM to reduce the over-
all main memory access latency. Based on this main
memory architecture, we propose a new Linux physical
page management mechanism. The physical memory
pages, which are used by process, are selectively allo-
cated based on the segment type. Consequently, we min-
imize the performance degradation and endurance prob-
lems caused by PRAM while achieving a large scale and
low power main memory.

In addition, we also discuss the block device interface to
share the non-volatile main memory pages of PRAM as
a storage alternative. It gives a lot of advantage for file
system to access metadata and small size file because it
can read or write the data as single word level and avoid
unnecessary seek latency of disk.

2 Hybrid main memory architecture
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Figure 2: Hybrid main memory architecture

Figure 2 shows the proposed hybrid main memory ar-
chitecture. Both PRAM and DRAM are used as a main
memory. This architecture reduces the cost and power
budget because large portion of main memory is re-
placed by PRAM. Using small size of DRAM, it mini-
mizes the performance degradation. Similar to the tradi-
tional main memory architecture, there is memory page
swap between hybrid main memory and the second level
storage. However, the number of page swapping can be
reduced because the main memory capacity is increased
by PRAM.

In hybrid main memory architecture, PRAM and
DRAM are assigned to single physical address space.
All memory pages of PRAM and DRAM can be directly
managed by the Linux kernel. However, it is necessary
for kernel to distinct the PRAM and DRAM region. We
assume that DRAM always has lower physical address
than PRAM and the size of each memory is provided by
the kernel option. The, Linux kernel has information of
the exact physical address range of PRAM and DRAM
as shown in Figure 2. Physical pages of PRAM and
DRAM can be distinguished by the physical address.

3 Hybrid main memory management

3.1 Free page management

For the hybrid main memory architecture, Linux kernel
needs to manage DRAM and PRAM region separately.
In current Linux kernel, the physical memory of the sys-
tem can be partitioned and managed in several nodes.
Also, physical memory of each node is divided into sev-
eral zones. If we can map DRAM and PRAM phys-
ical pages into separate memory nodes, memory man-
agement facilities can be used in proposed hybrid main
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memory architecture. However, Linux node is only pro-
posed for specific NUMA hardware and Linux zone is
proposed to cope with the hardware constraints. Instead
of making new node or zone for DRAM and PRAM,
we use additional free area for each zone as shown in
Figure 3.
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Figure 3: Free page management for hybrid main mem-
ory list

Proposed Linux kernel has two DRAM free area and
PRAM free area which contain only the free pages of
DRAM and PRAM, respectively. Although both free
areas are used by the same buddy system page alloca-
tor, the contiguous DRAM and PRAM block is indepen-
dently handled. In addition, When the kernel invokes a
memory allocation function, the page frames are selec-
tively allocated to one of the free area of specified zone.
The free area selection considers the characteristics of
allocated data. We will describe this allocation policy in
the section 3.2

After we divide the free areas, we also need to consider
the page reclamation method. Basically, Linux reclaims
free pages when there is not enough number of pages
in zones. Although we separately manage the free page
list of DRAM and PRAM, the page reclamation occurs
when the total number of pages in both DRAM and
PRAM free areas is lower than the threshold. There-
fore, we can fully utilize the main memory region before
swapping. Even though one of the memory devices is
fully utilized, the free pages of another memory device
are contributed as main memory. The large size PRAM
main memory region reduces a lot of page swapping.

3.2 Selective allocation

In hybrid main memory architecture, there are two dif-
ferent memory devices. Particularly, PRAM is very

different from the conventional DRAM. The physical
memory management of Linux kernel, which is only
developed for the uniform memory devices, should be
changed. The first thing which needs to be addressed is
the page allocation.

The goal of the page allocation of Linux is to serve
the memory allocation request from the Linux kernel
and the user processes. Conventional Linux kernel al-
locates physical memory pages when kernel functions
like alloc_page() and __get_free_page() are called.
These page allocation functions are successfully re-
turned when the free pages of requested size are found
and allocated. The conventional buddy system allocates
groups of contiguous page frames to solve the external
fragmentation.

Previously, it is not important where the memory pages
are located in main memory because the characteristics
of memory pages are always same in uniform memory
device. However, in our hybrid main memory architec-
ture, the location of pages can have significant effect on
the performance and power consumption of main mem-
ory. As we mentioned in section 1, PRAM write op-
eration is much slower than read and require high en-
ergy. If memory pages that are frequently updated are
allocated in PRAM, it can increase the dynamic power
consumption and decrease the overall access latency of
main memory. Moreover, it reduces the lifetime of main
memory because PRAM has limited write endurance.
Therefore, the key of our page allocation is to assign
frequently updated data into DRAM instead of PRAM.

The question is how to find the write intensive data be-
fore page allocation. Although it is very difficult to
predict the future access pattern of each page, we can
use the general characteristics of pages for page alloca-
tion. Traditionally, the process address space of Linux is
partitioned in several linear address intervals called seg-
ments. It is well known that the access pattern of data in
same segment is almost similar. For example, text seg-
ment includes the executable code which is read-only
data. Stack segment contains the return address, param-
eters and local variables which are frequently read write.
Table 1 summarizes the general access patterns of Linux
segments.

Figure 4 shows the design of selective allocation. The
memory segments are identified by the variables which
are included in the mm_struct memory descriptor. For
example, start_code and end_code store the initial and
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Segment type Access pattern

Text segment Read only
Initialized data segment Read centric

Uninitialized data segment Infrequent read/write
Stack segment Frequent read/write
Heap segment Frequent read/write

Table 1: Access pattern of Linux segments
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Figure 4: Design of selective allocation

final virtual address of the segments. start_stack store
the start virtual address of stack segments. Also, we can
get the virtual address, where physical page should be
mapped. It is delivered by the page fault handler be-
fore page allocation. Thus, only if the variable of the
mm_struct memory descriptor is compared to the virtual
address that cause the page fault, we can decide the seg-
ment type of page before allocation. After finding the
segment type, we selectively allocate a physical page
between DRAM and PRAM.

In current design of selective allocation, the page allo-
cation policy is fixed. The pages of heap and stack seg-
ments are allocated in DRAM. All other memory pages
are allocated into PRAM as shown in Figure 4. How-
ever, if we implement new system call salloc_policy(),
the selective allocation policy is changed by each appli-
cation. For example, a user can allocate stack and heap
pages in PRAM. Also, this system call can be used to
decide the allocation policy of file cache, mmap and li-
brary pages.

4 Hybrid main memory for virtual storage

4.1 Virtual stroage

Many previous researches prove that non-volatile mem-
ory is very effective to reduce the overhead of disk based

storage because it is free from seek latency and favor-
able for small size random accesses data [3, 6, 12]. In
proposed hybrid main memory, a part of main mem-
ory (PRAM) can be used for the byte-addressable non-
volatile storage. In order to exploit PRAM memory
as storage, we propose the virtual storage which is a
block level interface to use PRAM region of hybrid main
memory for storage as shown in Figure 5.

Figure 5: Virtual storage architecture

Similar to the virtual memory, the virtual storage is an
abstraction of single and contiguous storage. Physically,
it uses PRAM main memory region and disk as a stor-
age device. If the file system writes data to the vir-
tual storage interface, it selectively allocates data into
PRAM memory page or disk. However, we do not re-
serve PRAM pages for storage use. All free pages in
PRAM are dynamically allocated for memory page and
file page. The mapping from virtual page to physical
page in PRAM or disk is maintained by the storage page
table which contains the mapping of allocated virtual
pages as tree. In order to preserve the mapping infor-
mation after power-off, it should be stored in PRAM
and the root of table is managed in a fixed location of
PRAM.

4.2 Selective allocation for virtual storage

In section 3.2, we describes that the memory pages are
allocated based on the type of segments. On the other
hand, the basic metric for file page allocation algorithm
is data size. It is generally known that a small size file is
frequently and randomly accessed. Because PRAM has
fast access time and much smaller capacity than disk, it
is better to keep only data of a small size file in PRAM.
If the requested data size to virtual storage is over sev-
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eral tens of KB, contiguous physical pages in disk are
selected to store the data.

Also, the virtual storage is designed to support write re-
quest merging. Although the data size of a request is
small, if it is a sequential request that has a nearby vir-
tual address of previous one, the selective allocator de-
cides that those pages are in the same file and move them
into disk later. It can allocate a large file, whose size is
continuously increased, to disk. Consequently, the write
request merging reduces the waste of PRAM space and
number of disk access.

5 Evaluation

5.1 Hybrid main memory

Currently, PRAM is not available as a main memory.
Instead of hardware, we evaluate proposed hybrid main
memory and its management schemes using the M5
simulator [9]. In order to implement the hybrid main
memory architecture, we use additional memory mod-
ules in a physical main memory space. Two memory
modules are used to simulate DRAM and PRAM mem-
ory, respectively. The PRAM and DRAM memories are
mapped into same physical address space.

In addition, we add the memory access monitoring mod-
ule. It monitors all memory access of DRAM and
PRAM. Because we separately use two memory mod-
ules, the memory monitoring module can monitors both
DRAM and PRAM at the same time. Although we mon-
itors the total read/write access counter and size of mem-
ory, the memory monitors can be extended to get an any
information that is related with memory access. Finally,
the monitored read/write access count and size is used
to calculate the access latency and energy consumption
of overall main memory.

Then, the selective allocation for main memory is im-
plemented and evaluated on Linux 2.6.27 which is op-
erated on the M5 simulator. We execute benchmarks on
M5 using a simple execution ALPHA processor running
at 1GHz. We assume that the processor does not have
caches to focus on main memory evaluation. The total
main memory size is 256MB. For hybrid main memory,
64MB DRAM and 198MB PRAM is used. The access
latency and energy consumption of DRAM and PRAM
is calculated by the parameters of Numonyx [11]. Ta-
ble 2 summarizes the parameters used for DRAM and

Parameter DRAM PRAM

Read latency 50ns 50ns
Write latency 50ns 1us
Read Energy 0.1nJ/b 0.05nJ/b
Write Energy 0.1nJ/b 0.5nJ/b
Idle Energy 1W/GB 0.005W

Table 2: DRAM and PRAM characteristics [11]

PRAM. For our workloads, we use MiBench benchmark
suite.

First of all, we compare the energy consumption of pro-
posed hybrid main memory with DRAM. For this evalu-
ation, we should assume the idle time of main memory.
It has been well-established that the average utilization
of server is even below 30% [5]. Therefore, in all evalu-
ations of energy consumption, we assumes that memory
is only accessed 40% time.

Figure 6 and Figure 7 shows the reduction in memory
energy consumption. The hybrid main memory achieves
around 30% energy savings. Moreover, if we use the
selective allocation, we can reduce the PRAM write
operation which consumes more energy than DRAM
read/write and PRAM read operation. The total energy
saving ratio is increased by 50%. The selective alloca-
tion exploits the read-friendliness of PRAM as well as
writes friendliness of DRAM, and hence achieves better
overall energy efficiency.

Figure 6: Total energy consumption

Although PRAM is good for scalable main memory, it
can increase the overall latency of main memory. Fig-
ure 8 shows total access latency and Figure 9 shows the
latency overhead against the DRAM main memory. In
our experiments, the hybrid main memories that use typ-
ical Linux allocation algorithm have more than 100%
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Figure 7: Energy savings against DRAM main memory

latency overhead. However, if we use the selective al-
location, we can allocate the infrequently accessed page
in PRAM and reduce the 50% latency overhead. More-
over, the latency of 6 applications is only increased un-
der 20%, while reduce much more than 50% energy
consumption.

However, some benchmarks use much global variables
and update the variables frequently. It causes a lot of
write in data segment. The latency of these benchmarks
is much larger than DRAM main memory. For Type-
set application, selective allocation rather increases the
latency and reduces energy consumption.

Figure 8: Total access latency

5.2 Virtual storage

In order to evaluate the performance of virtual storage,
we estimate the total access time when executing OLTP
trace [1]. In virtual storage, each OLTP request can be
allocated to PRAM or disk. We use PRAM access la-
tency of Table 2 and assume 5ms disk access latency
for evaluation. Then, three allocation policies (random,
selective, and selective merging) are compared in this

Figure 9: Latency overhead against DRAM main mem-
ory

evaluation. The random allocation randomly assigns a
request to PRAM or disk. The selective allocation uses
PRAM only for the request whose size is under 64KB.
The selective merging uses both selective allocation and
write request merging which is proposed in section 4.2.
Figure 10 shows the evaluation result.

Figure 10: Total storage access time of virtual storage

Figure 10 presents that the use of PRAM decrease the
total access time of disk. It is because PRAM is free
from seek latency and favorable for small size random
access. However, random allocation cannot fully use the
PRAM because it dissipates PRAM for large size se-
quential data. Although the selective allocation reduces
the access time of virtual storage, it does not effective
when the size of PRAM is small. If the size of PRAM is
small, PRAM space is filled with fragmented sequential
requests soon. Many of small size random requests do
not have the benefits of PRAM.

On the other hand, selective allocation with write re-
quest merging is very effective because request merging
help to find more sequential data. The virtual storage
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can allocate the more random requests to PRAM. It re-
duces the number of disk accesses and more increase
the performance of virtual storage. If 256MB PRAM
is used as storage in virtual storage, we decrease more
than 40% of access time of disk.

6 Further work

Although the selective allocation statically allocates
memory pages by using the general characteristics of
segments, it cannot fully reflect the dynamic access pat-
tern of memory page. In order to minimize the access
latency of hybrid main memory, it is necessary to dy-
namically balance and move pages between DRAM and
PRAM. For example, if some memory pages are fre-
quently updated in a moment, it is better to be migrated
to DRAM at that time. If a page in DRAM is occasion-
ally read, it needs to be migrated to PRAM. The page
migration also increases the endurance of PRAM be-
cause the frequently updated page will be migrated to
DRAM.

In order to implement the memory migration, we may
use the LRU lists of OS kernel to manage. There are
active_list and inactive_list of pages in Linux kernel.
If we always select the page of inactive_list to migrate
into PRAM, recently accessed page is stored in DRAM.
However, the LRU list of OS kernel does not fully mon-
itor the memory access because memory access is oc-
curred without interruption of kernel. Therefore, we
need to think about hardware and software design of ker-
nel LRU list to reflect the memory access pattern.

Also, we described that PRAM is good for storage alter-
natives. However, all previous file systems statically as-
sign non-volatile RAM only for storage although PRAM
can be used both for main memory and storage system.
In order to maximize the advantage of PRAM, we need
to develop unified management of PRAM for memory
and storage devices. All PRAM pages need to be freely
allocated for main memory and storage. Linux kernel
should be implemented to control the use of PRAM ac-
cording to overall system status.

7 Conclusion

PRAM will be widely used in the future computing
system as memory or storage alternatives. In this pa-
per, we consider the Linux kernel level support to ex-
ploit PRAM. We use PRAM for hybrid main memory

and propose new page allocation algorithm. Conse-
quently, we minimize the performance degradation and
endurance problems caused by PRAM while reducing
50% energy consumption of main memory. Also, we
propose the virtual storage which is a new block level in-
terface using PRAM for storage. It allocates small size
random access data into PRAM and reduces the num-
ber of disk access. We can decrease more than 40% of
access time of disk.
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