
Impediments to institutional adoption of Free/Open Source Software

Peter St. Onge
Information + Technology Services, University of Toronto

pete.stonge@utoronto.ca

Abstract

Free and Open Source Software (FOSS) have a num-
ber of characteristics that make it highly desirable
in institutional settings: prevention of lock-in, cross-
platform availability and version consistency across
platforms, internationalization support, breadth and
depth of choices, availability of updates and cost. De-
spite these manifold advantages, institutional uptake of
FOSS has been limited. This paper discusses some of
the key factors limiting adoption, and presents some
suggestions on how these barriers can be overcome.

1 Introduction

This paper examines some of the strengths and weak-
nesses of FOSS as these relate to their use in institu-
tional settings, environments where a large number of
computers are in use – Typically this would involve any-
where from several tens of systems, upwards to several
thousand systems in active central management.

Given that organizations are driven to save money and
resources by realizing economies of scale wherever pos-
sible, the most important consideration in such a set-
ting is the ability to manage three major components –
users, systems, and services – as efficiently as possible.
The user base is generally highly variable in terms of
technical aptitudes, ability, and acceptance of any per-
formance issues or anything impacting their ability to
work, perceived or otherwise. The practical upshot of
this approach is that any element requiring manual con-
figuration or other "tweaking" is not suitable for use in
an institutional context.

There are excellent examples of where FOSS-based sys-
tems are used as the foundation for institutional com-
puting. This would include complex, multi-site file and
print services for Windows client systems [30], institu-
tional non-web single sign on [11], and corporate direc-
tories and authentication [3].

While extensive mention is made of Debian and deriva-
tive distributions in this paper, including the packaging
mechanism, it is understood that similar facilities exist
in RedHat/Fedora and other distributions of Linux and
that the same points apply to these distributions as well.

2 Packaging and Distribution

Similar to commercial software development, the prac-
tices and processes underlying the development, pack-
aging, and delivery of FOSS applications and systems
can be highly variable even where best practices (eg. re-
vision control, source code conventions, documentation
conventions, etc) are relatively well known.

2.1 Distribution

While the distribution of software from both com-
mercial and FOSS efforts can be done by the devel-
opers themselves, in the form of source tarballs or
pre-compiled binaries, greater mindshare is typically
achieved by making the application available via exist-
ing channel-based distribution systems, such as those
used by Debian, RedHat, and derivatives. Beyond their
philosophical differences underlying how FOSS-based
systems should work (eg. Debian vs Ubuntu or Red-
Hat or Fedora), all of the distributions of Linux serve
the particularly crucial role of being the primary distri-
bution channel for software in convenient form – pack-
ages. The importance of the distribution channel – the
different Linux distributions – manifests in the fact that
upstream developers often integrate distribution-specific
tools to facilitate packaging the application (eg. in the
Makefile); in this way, the amount of work required to
effectively package an application for different distribu-
tions is minimized.

The distribution systems (eg. package repositories) as
well as the packages themselves are difficult to subvert,
thanks to the good use of md5 hashes for repository

• 207 •



208 • Impediments to institutional adoption of Free/Open Source Software

content lists themselves, for each of the many pack-
ages in that repository, and for files inside packages
via manifest as required by the various distributions’
policies[24]. It is thus possible to audit the integrity of
system and application binaries on these FOSS-based
systems, something is in theory possible but not manda-
tory when creating an MSI or EXE-based installation
package. Newer, smaller organizations often do not
have the expertise or resources to test their packages
via build/install farm typical of larger organizations or
projects[8].

The different "distros" each also provide quality as-
surance for those packages they make available.
Distribution-specific policies set high standards for
both source (eg. the dreaded FTBFS[13]) and binary
packages[12]; packages are not permitted to enter into
the distribution system until the policy requirements are
met. Broadly-distributed tools such as linitian[25] and
the like, in conjunction with the distributions’ automatic
build testing, help to ensure the ability to consistently
install and uninstall individual packages cleanly and ef-
fectively.

In addition, these distribution mechanisms also allow
for the provisioning of a package’s dependencies (eg.
shared libraries) in a separate package; in non-FOSS
systems, these shared components were often shipped
as part of a dependant package, often leading to con-
flicts in different versions of the same libraries installed
on the system known as ’DLL Hell’[1], although this
has become less of a problem in recent years[4].

Ultimately, these channels also provide a mechanism to
provide patches back to the upstream source maintain-
ers to ensure that underlying bugs can be resolved in a
coordinated manner.

It is interesting to note that in the year 2010, the
paradigm for distribution of software on the Windows
operating system platforms is still primarily either the
retail channel, or via downloads from the develop-
ers’ sites, and that no central distribution channel ex-
ists. Moreover, no consist ant update mechanism has
achieved any real traction: Microsoft’s update mech-
anisms ("Windows Update" and "Microsoft Update")
have focused primarily on their software with what ap-
pears to be limited participation by hardware vendors
for driver updates (NVidia, ATI, Dell, Intel have oc-
casional but infrequent updates), and other approaches
like InstallShield’s distribution service appear to have

lost momentum after not gathering any real buy-in from
software manufacturers.

Unfortunately, FOSS offerings for non-FOSS systems
are also distributed in this same ad hoc manner for the
most part, which acts to limit the knowledge of and ac-
cess to the many multi-platform applications that would
otherwise help build FOSS’ mindshare outside of the
existing areas.

This vacuum presents a tremendous opportunity for ad-
vocates of "World Domination" (as quoted in [7]) to put
forward a packaging / distribution / update channel ef-
fort that would function effectively on non-FOSS plat-
forms, typical of the home or unmanaged user. Being
able to conveniently and easily install a FOSS pack-
age on a home user’s non-FOSS system, in the way
that synaptic would work, would be highly attractive
to technical and non-technical users alike.

Not only would this approach help serve to bring FOSS
to a much wider audience, it would also solve the prob-
lem of ensuring that end users can keep their applica-
tions up to date with minimal effort (eg. similar to how
update-notifier already works).

Previous efforts have attempted to bridge this gap,
strictly providing a distribution mechanism for pack-
ages: WPM[27] appears to have stalled during design
phase, Win-Get[23] had more success as an active dis-
tribution channel, but the apps in channel appear to be
quite dated (2.0.0.x for Firefox, Thunderbird). A third
attempt, Appupdater[19] combines a distribution mech-
anism with a user application that tracks available and
installed packages, and facilitates updates. It appears
to be the most successful approach thus far, at least for
unmanaged users in Windows, and continues to have
a modest selection of updated software packages – 88
packages, some of which are FOSS (eg. Thunderbird,
Firefox), some not (eg. Adobe PDF reader). This is
rather a small number of applications, however, given
that there are a rather large number of FOSS applica-
tions currently available for Windows.

2.2 Packaging

Even with a delivery mechanism to provide FOSS soft-
ware to non-FOSS operating systems, however, there
are other problems that remain particularly challenging
for institutional adoption of FOSS.



2010 Linux Symposium • 209

From the perspective of the distribution, the main goal
of a package is not just to facilitate the installation and
removal of that package’s application; it should also be
to facilitate the future replacement of that package by
another more updated version as it becomes available.
Although it is possible to build software for distribution
to non-FOSS platforms, it is generally not possible to
build the distribution package for non-FOSS platforms
(exe, msi) in the same way that is done for FOSS plat-
forms (rpm, deb, etc).

Firefox, in particular, is a good example as a web
browser popular with non-technical and technical peo-
ple for the relative speed, flexibility, and general resis-
tance to hostile sites[15]. Although there is a Windows
binary installer package available, it cannot be used in
managed Windows environments without first installing
it to a test system, creating an MSI file based on the pre-
install and post-install snapshots, then tested in a num-
ber of environments prior to being deployed via Group
Policy Object (GPO)[33]. As the work required to pack-
age the application and test it properly is considerable,
and given the frequency with which updates become
available, it is no surprise that few administrators have
opted to repackage applications themselves. This does
create opportunities for enterprising individuals to pro-
vide such a service[17], and this has helped penetration
of Firefox into some managed environments (eg. ours).
Unless these are done as part of normal FOSS project
activities, however, the project has no control over or
voice in how the application is packaged and provided.

At present, there are multiple approaches used to pack-
age FOSS applications for non-FOSS operating sys-
tems. NSIS[6] is an open-source suite used to build
executable (EXE) based installation packages; many
commercial offerings exist as well (eg. InstallShield).
These have all had a great deal of success in packaging
FOSS applications for end users of Windows systems.
From the perspective of managed systems, however, the
standard packaging format for applications on Windows
systems is the MSI[33]. Although other mechanisms
for software installation over large numbers of centrally
managed non-FOSS systems may exist, the best known
and most used software delivery mechanism in managed
environments typical of institutions is the MSI installer
package installed automatically via GPO.

Ultimately, the ability to build MSI packages for FOSS
applications for distribution on non-FOSS platforms,
with the same care and attention as other packaging

formats (deb, rpm, etc) to allow for package auditing
and assurance, as well as the development of a distri-
bution system similar to how FOSS software distribu-
tion already works, would remove a substantial barrier
to awareness of the broad availability of FOSS on non-
FOSS platforms in general, and to institutional adop-
tion of FOSS on centrally-managed non-FOSS systems
in particular.

3 Software

The advantages of FOSS in general have been treated
extensively and exhaustively elsewhere[26, 34]. From
the institutional perspective, there can be substantial
wins in adopting FOSS: the cross-platform availability
of given applications, support for internationalization,
the tendency towards frequent and non-disruptive up-
dates, and the ability to access support resources, both
internal and external.

There are, however, substantial downsides that must be
considered.

3.1 Cross-platform availability

Like numerous commercial applications, many estab-
lished FOSS applications like OpenOffice or Firefox are
available for multiple operating systems. Unlike many
commercial applications that produce different versions
of an application for different operating systems, how-
ever, FOSS applications tend to have consistent versions
and interfaces across different operating systems.

The ability to have the same user experience from an
application across multiple operating systems has im-
portant ramifications institutionally.

In terms of support, it becomes considerably simpler to
diagnose and rectify user issues with the application,
produce useful internal documentation to support the
use of that application, and build institutional knowl-
edge around the use of that applications.

From the user perspective, the application becomes the
important element rather than the operating system.
This can ease some pain points in heterogeneous com-
puting environments. In particular, it allows users to
be more "mobile" in terms of what operating system
they use: A consistent interface across platforms min-
imizes user disorientation with the application, particu-
larly when they already know that application well, even



210 • Impediments to institutional adoption of Free/Open Source Software

when the underlying operating system user interface dif-
fers from their "usual" platform.

This mobility offers an organization a great deal of flex-
ibility in developing their IT strategy, as they can choose
from different platforms based on their requirements
while minimizing disruption from transitions.

3.2 Internationalization

In addition to the ability to have consistent versions of
an application over multiple platforms, a further advan-
tage of using established FOSS applications is well-
known and well-supported ability for a single binary
application to present its user interface elements in any
number of languages[16].

Lacking such a well-documented practice, I have no-
ticed that many commercial applications have separate
releases to support individual languages. In many cases,
this is effectively a different version release of a given
application; the overhead of maintaining multiple con-
current versions of a commercial application makes in-
tegrating bug and feature fixes more complicated. The
end result we witnessed was an incompatibility between
an operating system of one language, and an applica-
tion of another, despite the fact that both were from the
same company. This has improved in Windows rela-
tively recently[20] but still appears considerably more
complex than how distros manage locales for i18n, and
existing Mac OS X support.

In an organization spanning different areas of languages,
dealing with language-specific software issues – partic-
ularly if a common vocabulary does not exist – adds
considerable complexity to support and administration
of these environments.

Conversely, a single binary application that has support
for relevant languages is far more easily deployed and
supported broadly, allowing for economies of scale and
leveraging of administrative efforts required in an insti-
tutional context.

3.3 Frequent, small changes

The development cycle and distribution process of pack-
aged binaries of FOSS applications provide a fairly
painless means to integrate the relatively frequent and
incremental updates over time. In the established or

"stable" dists, security and bug fixes are unremarkable
from the user standpoint as these minor internal issues
and not major changes to user interface and other ele-
ments.

Even in cases where one decides to use the more dy-
namic "testing" or "unstable" dists in Debian, the expe-
rience of significant breakage is quite small in my own
experience. This does not, of course, obviate the need
to test packages prior to wide deployment.

This capacity for accommodating frequent minor
changes provides the institutional administrator the
means to take company-specific or resource-specific
packages and maintain these in a state where minor
changes be readily propagated in response to corporate,
managerial or new policy requirements.

3.4 Support resources

In a large corporate organization, it is not unusual to
have local staff whose primary role is to coordinate with
a vendor for a particular product (or set of products), to
manage pending bug or function issues, feature requests,
and such. Although large software vendors often have
well-developed self-help and similar documentation re-
sources, dealing directly with support resources often
requires the dedicated staff to handle contract and enti-
tlement issues to ensure prompt access to updates and
support resources.

After considerable work ensuring that entitlements and
contracts are maintained, it was our experience as a rel-
atively small organization (a large University) that days
would usually pass between a support request and an
initial response, we felt generally poorly served by such
support arrangements. Especially in light of the cost of
the support contracts for expensive software: Typically
this was on the order of 20-25% of the original purchase
price, with the percentage increasing on an annual basis.

As a result, serious consideration of alternative open
source alternatives for some of these applications is be-
ing made at present[10]. Although in this case, justifi-
cation to technical and managerial oversight was sim-
ple due to the organization’s receptiveness to the use of
FOSS, other organizations may be more hesitant for var-
ious reasons; perhaps the most important is the lack of
formal "support" mechanisms.



2010 Linux Symposium • 211

As the number of organizations with similar problems
opt for the FOSS solution, the number of active devel-
opers and participants involved with projects increases –
each scratching their employers’ itches as well as their
own – these projects grow in capability and dependabil-
ity. Having individuals in a position to support criti-
cal applications employed on-site, the responsiveness of
support of FOSS in the form of immediate and direct ac-
cess to bug fixes is a valuable asset. Ultimately, if criti-
cal vendor applications would require staff dedicated to
support local customizations as well as coordinate with
remote vendors, it is difficult to see how dedicating lo-
cal staff to work on a FOSS project would imply any
greater staffing costs. Furthermore, local staff involved
in the development and support of internally developed
applications can also be the source of considerable in-
novation for those organizations.

Greater visibility of corporate or institutional involve-
ment in FOSS projects outside of the kernel, where this
involvement is well known, would provide additional
comfort to organizations considering adopting FOSS
applications in important and visible areas.

3.5 Limitations

The breadth and depth of mature FOSS applications is
a testament to the effectiveness of FOSS development
methods. These applications, however, have a number
of weaknesses that would have to be address to make
them suitable for institutional use.

As one example, it is currently not possible for most
of these very useful applications find all or part of their
configuration elsewhere. User configuration (user name,
email address, organization, incoming & outgoing mail
server configurations) for a mail user agent (eg. Thun-
derbird), for instance, is still a usually a task for the user,
or for a tech support representative. Web browser proxy
configuration is a similar issue, particularly in corporate
environments. Given the highly variable nature of user
technical aptitudes in organizations, expecting users to
enter in such information – simple as it may seem to
many readers – can easily lead to unexpected overbur-
dening of support resources and the loss of user accep-
tance of these applications.

In an environment where the mail service is managed
centrally, and all users are known a priori, the inability
to provision user data to the application on behalf of the

user reflects poorly on the technology and those who
administer it.

The ultimate goal of such efforts is to limit the need
for manual configuration of production user applications
– be they mail clients, web browsers, database clients,
databases, ODBC connections, etc. This not only al-
lows for a more productive user experience (minimiz-
ing time lost due to configuration issues), it also pro-
vides a means to minimize impacts of future service
changes (different server software, different IP address
used, etc).

4 Operating Systems

FOSS-based operating systems have had good sup-
port via PAM for external identity management sys-
tems for some time now, Kerberos and LDAP have
been two of the most commonly used of FOSS-based
systems[28, 11] for that purpose.

The primary goal of external authentication frameworks
like these is twofold. First, to shrink user credential
space by reducing the number of credentials that users
in an organization have to use to prove their identity to
non-critical services on a daily basis. Making it easier
for the user to remember their user name and one good
password (which can be enforced via password policy,
of course) rather than requiring many user names and
corresponding (and usually bad) passwords on differ-
ent systems – usually on systems where password poli-
cies cannot be implemented – can drastically reduce the
number of password reset requests and thus reduce de-
mands on IT help desks. Moreover, the common user
name across multiple systems allows for more effective
auditing of user activities across these systems, simpli-
fying the detection of anomalous behaviour (eg. access
to systems from "local" IP addresses concurrently with
access via VPN from "foreign" IP addresses).

The second, and perhaps more important goal, is to pro-
vide means for identity to be vouched for by a separate
trusted system (eg. Kerberos) once the user successfully
authenticates themselves; this process is often referred
to as Single Sign On[32], or SSO. From the user’s per-
spective, SSO reduces issues and inconveniences around
identification and authentication by having these han-
dled transparently after the initial authentication. Log in
once, and never again for that day.



212 • Impediments to institutional adoption of Free/Open Source Software

From the institutional perspective, however, SSO pro-
vides another important value. SSO reduces password
exposure by drastically reducing the number of infor-
mation system that have to handle passwords and hence
reducing the avenues for user credential compromise.
In other words, by relying on the Kerberos (or similar)
service for authentication, servers/services do not ever
handle the user’s password, and their compromise is less
likely to facilitate exploiting other systems via captured
user credentials.

Moreover, SSO simplifies services to some extent by ob-
viating the need to design and implement user credential
(user/pass) facilities, allowing developers to re-use code
dealing with the underlying SSO service for those pur-
poses.

Single sign on does not obviate the need for addi-
tional levels of protection and authentication around
critical institutional resources; services such as payroll,
finance, etc. require greater protection than the indi-
vidual user’s machine, for instance, and the use of two-
factor (or more) authentication is called for in these cir-
cumstances.

Kerberos is perhaps the most mature SSO systems,
and remains important, particularly because it remains
the only SSO solution that bridges both system-level
authentication and web single sign on through web
browsers[21].

Given the competing paradigms for identity man-
agement in play (Active Directory[5], LDAP[2],
Kerberos[11], PubCookie[22], Shibboleth[14], and oth-
ers), it would appear that institutional systems will need
to accommodate more than one of these approaches in
heterogeneous institutional environments.

5 Practice

Although the technological capacity for FOSS-based
systems to support institutional is already well-
established through the use of directory services[31], the
understanding of what directory services can provide is
still very limited by most administrators of FOSS sys-
tems.

In discussions with colleagues both near and far in-
volved in managing large numbers of machines in dif-
ferent environments, and generally the adoption of di-
rectory services to support administration is minimal.

As a result, the community of practice around the use
of directories to support FOSS-based or more heteroge-
neous environments remains relatively underdeveloped.

5.1 Directory services

The Lightweight Directory Access Protocol[35, 29]
(LDAP), is a directory service allowing for user, group,
machine, authorization, and service information to be
maintained centrally and in a secure manner. OpenL-
DAP provides a standards-based implementation of
LDAP[3], and Active Directory extends LDAP to sup-
port Microsoft Windows-based systems and services[5].

Central control of any resource usually invokes political
and other concerns. One of the advantages of directory
services is the ability to delegate control over parts of
the directory tree to particular individuals and groups,
allowing local control over access and facilitating man-
agerial tasks through a common GUI or web-based in-
terface.

The adoption of LDAP and AD by FOSS applications
manifests in many different areas. What follows is not
exhaustive by any means, but does serve to show possi-
bilities.

Mail user agents (Thunderbird and Evolution are only
two examples among others), for instance, can access
corporate directory information from an LDAP direc-
tory. The PostgreSQL database can have its service list
in stored in LDAP, which facilitates connecting to re-
mote institutional database servers.

Many office appliances (scanners, copiers, faxes) can
make use of user information from an LDAP server.

The ISC DHCP and BIND servers can both use LDAP to
contain their respective data; not only can this allow for
the management of data across multiple DNS / DHCP
servers across the institutional network, but they also
provide a means to ensure service redundancy inside the
institution.

Samba can use directories to manage user, group, and
machine elements in large organizations through the use
of LDAP to contain user account information[30].

PAM can also make use of user and group info in LDAP,
and with the proper components, new user home direc-
tories can be created at the initial login. Further, the



2010 Linux Symposium • 213

automounter can use information in LDAP to mount the
user’s remote home directory via NFS3 or NFS4.

The Puppet datacenter automation tool can make use of
LDAP to store configuration info for the machines that
it controls[18].

5.2 What’s missing...

Even with delegation and the breadth of applications
able to make use of directory services, there are a num-
ber of application shortcomings that remain.

As mentioned previously, the ability to tell user applica-
tions where to look for their configurations (eg. having
the user’s email application find the user’s info in a par-
ticular directory location) as a means to auto-provision
applications is an obvious institutional example.

For applications or services serving multiple users or
systems, however, similar benefits could accrue. Stor-
ing application configurations in a directory, where ap-
propriate, would allow for the ability to check and mod-
ify the application’s configuration remotely and non-
intrusively.

The benefits of directories are not always well-known,
particularly since these usually only become used in
larger environments not commonly experienced by a
sizable majority of FOSS users and developers.

The perception that the cost of one-off changes to sys-
tems to allow them to keep working or participate in the
local environment is far smaller than the benefit that a
well-designed directory service can provide; in aggre-
gate, however, the reverse is true. Not only would direc-
tory services provide am effective way to manage users
and equipment, but as mentioned above, would allow
user data to be provisioned appropriately across plat-
forms.

Another barrier in the FOSS world, the directory server
tree has no default population at install time. The nature
of most system administrators is to take the precaution-
ary approach in that they would want to understand how
a system works prior to configuring it. Combined with
the highly flexible nature of directories, in my experi-
ence the ethereal nature of a directory makes it harder
for most to grasp. In addition, configuring individual
machines or services to use the directory is a similarly
involved task, at least initially.

Unlike FOSS directory servers like OpenLDAP, Active
Directory-based directory servers come pre-populated
to accommodate the majority of common tasks (eg.
management of users, groups, and machines), primarily
through information gathered when the server is initially
installed. The process of enrolling Windows machines
is also relatively straightforward at install time.

In order to realize the manifold benefits of directory ser-
vices supporting the use of FOSS in organizations, a
greater community of practice around the use of these
techniques is needed. As this becomes more estab-
lished, other shortcomings at the level of software are
more likely to be addressed[9]. As in other communities
around technologies (eg. Samba), an intrinsic activity
this community should undertake is to document exam-
ples where directory services are used to support FOSS
systems, the problems encountered and lessons learned
(good and bad) in the process of set up and maintenance
of the directory, as well as best practices to ensure con-
tinuity.

6 Conclusions

Presently, the underlying technology required to pro-
ductively support the use of FOSS-based systems at the
institutional level exists at both the software application
and operating system levels. The majority of the techni-
cal limitations remaining involve the ability to for appli-
cations to obtain user-specific information through di-
rectory services.

It is expected that as FOSS applications are increasingly
adopted by institutional users that support for packag-
ing FOSS applications for non-FOSS platforms will be-
come more commonplace, akin to how FOSS applica-
tions are packaged for FOSS-based platforms, although
this would likely require a FOSS means to create MSI
files.

Finally, the most important limit to the potential of di-
rectory services is the general lack of knowledge of how
directory services work and how to properly design di-
rectories for particular situations.

7 Acknowledgements

This paper benefited immensely from discussions with
a number of people, and I would like to thank them: Ian



214 • Impediments to institutional adoption of Free/Open Source Software

Thomas, Martin Loeffler, Mike Wiseman, David Au-
clair, Peter Eden, John DiMarco, Ted Sikorski, David
Sutherland, Roger Dingledine, and Richard Sanford.

Any inaccuracies or errors are but my own.

References

[1] Rick Anderson. The End of DLL Hell.
http://msdn.microsoft.com/en-us/
library/ms811694.aspx.

[2] Brian Arkills. LDAP Directories Explained: An
Introduction and Analysis. Addison-Wesley
Professional, 2003.

[3] Gerald Carter. LDAP System Administration.
O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2003.

[4] Raymond Chen. Windows Confidential: Getting
Out of DLL Hell. http://technet.
microsoft.com/en-ca/magazine/
2007.01.windowsconfidential%.aspx.

[5] Brian Desmond, Joe Richards, Robbie Allen, and
Alistair Lowe-Norris. Active Directory:
Designing, Deploying, and Running Active
Directory. O’Reilly Media, Inc., 2008.

[6] The NSIS developers. The Nullsoft Scriptable
Install System (NSIS). http:
//nsis.sourceforge.net/Main_Page.

[7] Chris DiBona, Sam Ockham, and Mark Stone.
Open Sources: Voices from the Open Source
Revolution. O’Reilly Media, 1999.

[8] Andrew Dunstan. PostgreSQL BuildFarm.
http://buildfarm.postgresql.org/.

[9] The Apache Software Foundation. Apache
Directory Project.
http://directory.apache.org/.

[10] The Kuali Foundation. About the Kuali
Community.
http://www.kuali.org/about.

[11] Jason Garman. Kerberos: The Definitive Guide.
O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2003.

[12] The Debian QA Group. Debian quality assurance.
http://qa.debian.org/.

[13] The Debian QA Group. Debian wiki: FTBFS.
http://wiki.debian.org/qa.debian.
org/FTBFS.

[14] Internet2. Shibboleth.
http://shibboleth.internet2.edu/.

[15] Brian Krebs. A Peek Inside the ’Eleonore’
Browser Exploit kit. http:
//krebsonsecurity.com/2010/01/
a-peek-inside-the-eleonore-browser-e%
xploit-kit/.

[16] Tomohiro Kubota. Introduction to i18n.
http://www.debian.org/doc/
manuals/intro-i18n/.

[17] Ing-Long Eric Kuo. Firefox MSI. http:
//www.frontmotion.com/Firefox/.

[18] Puppet Labs. Storing Node Information in LDAP.
http://projects.puppetlabs.com/
projects/puppet/wiki/Ldap_Nodes.

[19] Neil McNab. Appupdater. http://www.
nabber.org/projects/appupdater/.

[20] Microsoft. Guide to Windows Vista Multilingual
User Interface. http:
//technet.microsoft.com/en-us/
library/cc721887(WS.10).aspx.

[21] University of Maryland Office of
Information Technology. Configuring Web
Browsers for Kerberos Authentication. http:
//www.helpdesk.umd.edu/topics/
applications/kerberos/4782/.

[22] University of Washington Techology Services.
Pubcookie: open-source software for
intra-institutional web authentication.
http://www.pubcookie.org/.

[23] Ryan Proctor. Win-get. http:
//windows-get.sourceforge.net/.

[24] The Debian Project. Debian Policy Manual.
http://www.debian.org/doc/
debian-policy/.

[25] The Debian Project. Lintian.
http://lintian.debian.org/.



2010 Linux Symposium • 215

[26] Eric S. Raymond. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001. Foreword
By-Young, Bob.

[27] Edward Ropple. WPM - A Windows Package
Manager. http://blacken.
superbusnet.com/oss/wpm/.

[28] Andrew Ryan. HOWTO-pam.
https://mon.wiki.kernel.org/
index.php/HOWTO-pam.

[29] J. Sermersheim. RFC4511: Lightweight
Directory Access Protocol (LDAP): The Protocol.
http:
//tools.ietf.org/html/rfc4511.

[30] John H. Terpstra. Samba-3 by Example: Practical
Exercises to Successful Deployment (Bruce
Perens Open Source). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[31] Wikipedia. Directory Sservices.
http://en.wikipedia.org/wiki/
Directory_service.

[32] Wikipedia. Single sign-on. http://en.
wikipedia.org/wiki/Single_sign-on.

[33] Wikipedia. Windows Installer.
http://en.wikipedia.org/wiki/
Windows_Installer.

[34] Sam Williams. Free as in Freedom: Richard
Stallman’s Crusade for Free Software. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[35] K. Zeilenga. RFC4510 Lightweight Directory
Access Protocol (LDAP): Technical Specification
Road Map. http:
//tools.ietf.org/html/rfc4510.



216 • Impediments to institutional adoption of Free/Open Source Software



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


