
Deploying Preemptible Linux in the Latest Camcorder

Geunsik Lim
Samsung Electronics

geunsik.lim@samsung.com

Jupyung Lee
Samsung Electronics

jupyung.lee@samsung.com

Sangbum Suh
Samsung Electronics

sbuk.suh@samsung.com

Abstract

Currently, the Linux kernel is well equipped to compete
with the soft realtime operating system. Linux has been
the choices of the operating system. We adjusted opti-
mized Linux kernel to the camcorder’s system architec-
ture which is equipped with ARM cortex-A8 and imple-
mented open-source based tool-chain, audio zoom cal-
culation, and realtime HDMI I2C communication and
userspace realtime thread program. Samsung has intro-
duced Consumer Electronics Show(CES) this year with
its new S-Series of full HD digital camcorders. These
product is the world’s first commercially available cam-
corder which includes built-in Wi-Fi and DLNA con-
nectivity.

This paper describes our trouble shooting, cross-
compiler issues, technical experiences and best practice
in reducing latency in Linux and applications for devel-
oping an embedded product like camcorder. This dis-
cussion focuses on how commercial platform can opti-
mize the realtime extensions available in Linux kernel,
but it is also relevant to any software developer who may
be concerned with finding a suitable tradeoff between
throughput and responsiveness for embedded systems.
Furthermore, many methods which implemented to fur-
ther improve the system performance will be presented
as well.

1 Introduction

Since 2000, commercial RTOSs such as pSOS, LynxOS,
QNX, Nucleus, Vxworks that have been used in em-
bedded devices have been replaced by Linux kernel.
For home appliances such as Digital TV, camcorder,
digital camera, printer, etc., electronic companies have
improved their differentiation and competitiveness by
modifying open-source software for each product use
since they adopted Linux which has the advantage not to
require paying royalty. For mobile platform such as mo-
bile phone, variable commercialization projects based

on Linux such as Maemo, Moblin, Android, and Palm-
Pre are in progress.

Particularly, when starting with Linux version 2.6,
realtime functionalities[19] such as O(1) Scheduler,
Threaded Interrupt Handling, Preemptible Kernel[8],
Priority Inheritance, High Resolution Timer[5], Tick-
less Timer and Userspace Realtime Mutex[2] have been
added so that they are being used for embedded devices
which require responsiveness as important factor.

For example, Commercial RHEL-RT[18] that its real-
time property is improved by Ingo Molnar[9] who is one
of the realtime system developers, currently working
for Red Hat has been applied for USS Zumwalt (DDG-
1000, U.S. Navy Next-Generation Destroyer) to ensure
that computers response correctly without halt & stop
of computers or failure of synchronization with other
events.

However, when originally development of the Linux
kernel began, it was not designed for the purpose of re-
altime property. That is why Linux may be suitable for
the system that required the soft realtime property, not
the hard realtime property.

Although Linux is continuously being developed to be
closer to the hard realtime property by many open-
source developers[1, 23] non-preemptible critical sec-
tions and interrupt off sections still exist in the RT
patched Linux kernel.

In the case of full HD camcorder, commercial cam-
corders have been developed by adopting RTOSs such
as Vxworks, TronOS instead of Linux for the OS in or-
der to meet realtime property. However, commercializa-
tion was attempted for the full HD camcorders from the
Samsung camcorder S-Series based on the Linux 2.6.29
kernel considering the advantages that the payment for
royalty is not required and the source can be freely mod-
ified.

1

The Samsung camcorder S-Series offer both built-in
Wi-Fi and DLNA connectivity and feature Samsung
AllShare that allows users to easily access, manage,
and share content including their full-HD videos across
other DLNA certified devices. The Samsung full HD
camcorder is commercially available in the worldwide
market.

2 Responsiveness VS. Throughput

The goal of Real Time Operating System(RTOS) is to
provide a predictable and deterministic environment.
The primary purpose is not to increase the speed of the
system[6], or lower the latency between an action and
response, although both of these increase the quality of
a RTOS[14].

Many companies have basically adopted RT patched
Linux kernel for their embedded products recently in or-
der to meet realtime property. When running software
in such a system, tradeoff between responsiveness and
throughput is often found. Otherwise, responsiveness
and throughput are inversely related.

The overhead for realtime preemption is applicable for
these cases [16].

• Mutex operations more complex than spinlock op-
erations

• Priority inheritance on mutex increases task
switching

• Priority inheritance increases Worst-Case Execu-
tion Time(WCET)

And, flexible design allows much better worst case sce-
narios in embedded products.

• Realtime tasks are designed to use kernel resources
in managed ways then delays can be eliminated or
reduced

For example, For recording mass files, if we try to un-
map memory that we allocated with 100MB for record-
ing in camcorder, we have to wait for more than 3sec-
onds to change mode from play mode to recording
mode. This results from the unit of memory unmapped

size when we are recording mass files like camcorder
particularly.

When performing memory unmap with system call to
virtual memory area used by user, it improves real-
time property by reducing the size of non-preemptible
sections associated with the unmap operation through
the minimization of "ZAP_BLOCK_SIZE". However,
the memory unmap operation results in delay due to
the minimized "ZAP_BLOCK_SIZE". In this case, we
recommend that default memory range to unmap allo-
cated memory from 8 pages to 1,024 pages. Figure 1
shows operation comparison between the memory un-
map ranges. We can not find side-effect during the sot-
ware quality assurance test after adjusting this approach
.

The unmap operations were repeated 3,328 times with
8 pages units in order to reset the 100MB of memory,
and check out whether any task with higher realtime
priority is waiting every time unmapping is completed
in each 8 pages units for realtime property. If any task
with higher realtime priority exists, the task preempts
the current task and the memory unmap operation will
be performed again after finishing the task. At the mo-
ment, It takes more than 3 seconds to unmap 100MB of
memory with 8 pages units in our test, and the average
share of CPU during the time accounted for 92% - 98%.

For a camcorder in this paper, as mass files have to
be recorded, memory has to be allocated with 100MB
unit and reset. When changing the boundary between
responsiveness and throughput to 1,024 pages from 8
pages through repeated tests, it showed the most realis-
tic performance. After changing the policy of memory
unmap which changes minimum unit for memory un-
mapping to 1,024 pages, the switching time from play
mode to recording mode in mass production has been
improved from 3 seconds and more to less than 1 sec-
ond. In our experiment, We decided that the best page
size of unmap operation was 1,024 pages without the
more page size like 2,048 pages and 4,096 pages to con-
sider both throughput and responsiveness.

When unmapping 100MB that was allocated for record-
ing video files through the Software Quality Assur-
ance(SQA) test process before and after changing the
unit in camcorders, it showed that the performance of
unmap_page_range() with 1,024 page unit is effective
to solve the memory unmap operation issue is delayed
due to the minimized "ZAP_BLOCK_SIZE".

2

Figure 1: Operation comparison between the memory
unmap ranges

3 Cross Compiler to solve low clock speed

While we prepared for the mass production of the Sam-
sung camcorder, we tried that the clock speed for the
product should be changed from 800Mhz to 600 Mhz
to reduce overall power consumption of camcorder. It
means that the lower clock speed is suitable for com-
mercial product if we can. After the change of the
clock speed is adjusted, Video recording test is failed
on SQA test before production release because of low
clock speed.

3.1 S5PC110 hardware specification

Before explaining the problem, We first presents hard-
ware characteristics of Samsung camcorder. The
S5PC110 is targeted for small form-factor connected de-
vices such as multimedia intensive smart phones in Fig-
ure 2, while the S5PV210 is aimed at portable comput-
ing devices such as netbooks that demand high perfor-
mance and design flexibility.[21]

High speed 3D graphics rendering and high resolu-
tion video support are two key differentiating features
for advanced mobile devices. Both the S5PC110 and
S5PV210 are equipped with a powerful built-in POW-
ERVR SGX 3D graphics engine, licensed from Imag-
ination Technologies, to support sophisticated 3D UI
and high-caliber games. In addition, the two proces-
sors integrate a1080p full HD codec engine that sup-
ports 30fps full HD video playback and recording. A

built-in HDMI1.3 interface allows output of captured or
downloaded mobile multimedia contents to an external
high definition digital display.

Figure 2: S5PC110(Cortex-A8) Architecture map

3.2 How to overcome low clock speed

First of all, We considered software technologies to min-
imize code size and optimized throughput according to
the compiler option tuning, As a result, we passed 68%
with GCC 4.4.3 based tuned toolchain and passed others
with updated AudioZoom engine library. Fortunately,
we overcomed the problem of low clock speed with soft-
ware approaches to observe the development schedule
that we had to work successfully for commericial prod-
uct.

3.3 GCC optimization for performance & code size

This optimization can provide significant increases in
performance and equally significant reductions in code
size for camcorder[4].

The default inline options for camcorder are following.

-finline-functions
-fno-inline-functions-called-once

Below are options that we found via mobile software
platform study like Android[22], Moblin, Maemo. Es-
pecially, Parameters setting is a key driver in perfor-
mance and size optimization. We searched for a config-
uration that reduces size the most using compiler option
search approach.

3

-finline
-fno-inline-functions
-finline-functions-called-once
--param max-inline-insns-auto=50
--param inline-unit-growth=0
--param large-unit-insns=0
--param inline-call-cost=4

• -fno-inline: Don’t pay attention to the inline key-
word. Normally this option is used to keep the
compiler from expanding any functions inline.
Note that if you are not optimizing, no functions
can be expanded inline.

• -finline-functions: Integrate all simple functions
into their callers. The compiler heuristically de-
cides which functions are simple enough to be
worth integrating in this way. Enabled at level ’-
O3’.

• -finline-functions-called-once: Consider all static
functions called once for inlining into their caller
even if they are not marked inline. Enabled at lev-
els ’-O1’, ’-O2’, ’-O3’ and ’-Os’.

• max-inline-insns-auto: When you use ’-finline-
functions’ (included in ’-O3’), a lot of functions
that would otherwise not be considered for inlin-
ing by the compiler will be investigated. To those
functions, a different limit compared to functions
declared inline can be applied. The default value is
50.

• inline-unit-growth: Specifies maximal overall
growth of the compilation unit caused by inlining.
The default value is 30 which limits unit growth to
1.3 times the original size.

• large-unit-insns: The limit specifying large transla-
tion unit. Growth caused by inlining of units larger
than this limit is limited by ’–param inline-unit-
growth’.

• inline-call-cost: Specify cost of call instruction rel-
ative to simple arithmetics operations(having cost
of 1). Increasing this cost disqualifies inlining of
non-leaf functions and at the same time increases
size of leaf function that is believed to reduce func-
tion size by being inlined. The default value is 12.

3.4 Code size comparison among the compilers

Figure 3 is the comparison as to how the size of
userspace library of camcorder changes by each GCC
version. When compiling the source of system library
by using tuned GCC 4.4.3 version, 6.60% of size re-
duction was obtained compared to existing GCC 4.2.0
version in Figure 3.

Figure 3: Code size comparison among the cross com-
pilers

3.5 Arithmetic speed for recording functions

Below is evaluation result among the cross compilers to
solve the low clock speed problem when running record-
ing function. From the test result, the arithmetic speed
of AudioZoom library engine for recoding functions by
using tuned GCC 4.4.3 version was increased by 10%
compared to existing performance speed in Table 1.

• Test environment: Preemptible Linux + Lightweight
root file system for embedded device

• GCC 4.2.X option: -march=armv7 -O3 -ffast-math -
fomit-frame-pointer -funroll-all-loops -pipe

• GCC 4.4.3 option: -finline -fno-inline-functions -
finline-functions-called-once –param max-inline-insns-
auto=50 –param inline-unit-growth=0 –param large-
unit-insns=0 –param inline-call-cost=4

3.6 CPU usage comparison

AudioZoom library performs arithmetic functions and
the largest computing tasks when recording video on the
camcorder. Figure 4 shows CPU usage monitoring re-
sult after moving latest GCC version and optimization.

4

GCC Version CodeSourcery(Lite) CrossTool-0.43 Montavista 5.0 Opensource(tuned)
4.2.1 4.2.0 4.2.0 4.4.3

Binary Size 175,034 175,034 170,377 156,019
1st Test 12,970,182 13,138,915 13,258,427 12,060,383
2nd Test 13,030,439 13,163,295 13,212,784 12,157,852
3rd Test 13,345,300 13,038,169 13,075,400 12,279,066
4th Test 12,889,146 13,353,949 13,171,671 12,277,243
5th Test 13,000,646 13,147,129 13,158,650 12,192,311
Average 13,047,143 13,168,291 13,175,386 12,193,371

Time(Sec) 1 1,009285 1.001402 0.916656

Table 1: Performance result of AudioZoom engine among the cross compilers

Figure 4: CPU usage comparison after improvement

3.7 SQA Test after changing cross compiler

After changing GCC version to 4.4.3, optimizing the in-
line function, and improving "Azoom(AudioZoom)" li-
brary engine for arithmetic process in recording, video
recording for 16 SD cards from different manufactur-
ers was normally performed in Software Quality Assur-
ance(SQA) test though the clock speed of CPU was low-
ered from @800MHz to @600MHz like Table 2.

3.8 GPL license issues

As we all know, Glibc open-source community se-
lected to encourage open-source based commercial
products. Our GCC 4.4.3 based tuned toolchain consists
of Glibc 2.11. Recently, Glibc 2.6.1+ is "LGPLv2+ and
LGPLv2+ with exceptions and GPLv2+". Many com-
panies want to close sources of userspace application of
camcorder for competitiveness thereby selecting LGPL
based Glibc open-source software. We can release our

software with "GCC 4.4.3 + Glibc 2.11" because some
sources of glibc are that defined with GPLV2+ are as
Executable Linking File(ELF) binary for debugging and
configuration setting only without shared object(’x.so’).

When compiling the Glibc source files that GPLv2 is
applied in Glibc 2.11 source, ’x.so’ files for library use
in rootFS(root file system) don’t exist. However, as they
are ELF Binary files for debugging and test, license is-
sue for application codes open doesn’t come out when
using glibc 2.6.1 version or higher to embedded prod-
uct. The source that requires GPLV2 license applied for
shared library(’x.so’) files has not been used so far, as
seen in Table 3. If GPLV2 is adopted to some shared
library(’x.so’) files of the specified version that was up-
dated for new feature and bugfix in the future, another
C library like uClibc, eGlibc, BSD C library should be
considered in order to protect the application codes de-
veloped among the companies for commercial products
from being disclosed.

4 Needs to move the latest Linux version

We use the term backporting to describe the situation
case where we take a fix for a security flaw out of the
most recent version of an upstream software package,
and apply that fix to an older version of the package
we release for server solutions and embedded devices
like RHEL(Redhat Enterprise Linux), Montavista [26],
Windlinux.

Backporting is the action of taking a certain software
modification (patch) and applying it to an older version
of the software than it was initially created for. It is
part of the maintenance step in a software development

5

Maker Type Cap Write(Kb/s) 800Mhz 600Mhz 600Mhz 600Mhz
AudioZoom AudioZoom AudioZoom AudioZoom

Ver 1.18 Ver 1.18 Ver 1.18 Ver 1.22
GCC 4.2.0 GCC 4.2.0 GCC 4.4.3 GCC 4.4.3

(Montavista) (Montavista) (tuned) (tuned)
A-DATA SDHC 8GB 10,556 ok fail ok ok
AnyFlash SDHC 8GB 8,687 ok fail ok ok
imation SDHC 8GB 9,945 ok fail ok ok
imation microSD 8GB 5,981 ok fail ok ok

inx SDHC 8GB 5,876 ok fail ok ok
Jaydisk SDHC 8GB 8,802 ok fail ok ok

Memorette SDHC 8GB 10,343 ok fail fail ok
Memorette SDHC 8GB 7,062 ok fail ok ok
Memory4U SDHC 8GB 8,260 ok fail fail ok
Samsung SDHC 8GB 9,690 ok fail ok ok
Sandisk SDHC 8GB 8,148 ok fail fail ok
Sandisk SDHC 8GB 11,725 ok fail ok ok
Sandisk SDHC 8GB 8,148 ok fail fail ok

Timu SDHC 8GB 10,172 ok fail ok ok
Toshiba SDHC 8GB 5,873 ok fail fail ok
Toshiba SDHC 8GB 10,072 ok fail ok ok

Table 2: Recording test among the 16 SD cards

process. It’s important that we examine how the Linux
kernel source changed recently.[27]

When considering the cost for labor and total costs for
the period of development in regard to R&D for com-
mercial embedded products, change of existing released
kernel version that has been commercialized and well
working into the latest version can be a risk to compa-
nies in terms of stability. For this reason, many embed-
ded product manufacturers are hesitating to change the
existing Linux kernel version to the latest version.

However, if an existing Linux kernel version is applied
for new products, it has a drawback that debugged func-
tions and new kernel features can’t be used. If the fact
that new Linux kernel version is actually released every
couple of months is taken into account, backporting can
be a practical choice as a method for considering both
product stability and new kernel features.

4.1 Case study: BUG: swapper: xxxxxx Error mes-
sage when booting

• Problem: "BUG:swapper: 1 task might have lost a
preemption check!" message.

• Reason: When we enabled ’CON-
FIG_DEBUG_PREEMPT’ feature, Kernel
display the status of preemption mode every times
When booting.

• Solution: Backporting from Linux 2.6.30-RT

4.2 Case study: Allocation error with GCC 4.4.X

• Problem: Relocation error when we compile linux-
2.6.29 Sources with GCC 4.4.3 toolchain (Un-
defined relocation type in Linux kernel module
module.c)
Relocation section ’.rel.text’ at offset 0x1adae0
contains 1960 entries:

Offset Type Sym. Name
00000088 R_ARM_MOVW_ABS_NC jiffies
00000090 R_ARM_MOVT_ABS jiffies
000001f4 R_ARM_MOVW_ABS_NC .LANCHOR
000000200 R_ARM_MOVT_ABS .LANCHOR
000000264 R_ARM_ABS32 .text

• Reason: Linux 2.6.29 don’t define relocation type
in module.c for GCC 4.4.X

• Solution: Backporting from Linux 2.6.30

6

Source files under GPLV2+ Binary file name Description
elf/ldconfig.c, elf/readlib.c ldconfig ELF file
elf/cache.c, elf/chroot_canon.c ldconfig ELF file
nscd/*.c (22files) nscd A Name Service Caching daemon
catgets/gencat.c getcat ELF file to create formatted msg catalog
locale/programs/*.c (38 files) locale, localedef iconv config file

libBrokenLocale.so
posix/getconf.c getconf Binary to get glibc setting information
iconv/dummy-repertoire.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconv_charmap.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconvconfig.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconv_prog.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
malloc/memusagestat.c memusagestat ELF file
sysdeps/.../linux/nscd_setup_thread.c nscd To create Thread on nscd Daemon

Table 3: Glibc 2.11 source files under GPLV2+

4.3 Case study: Undefined reference to
‘_gnu_mcount_nc’

• Problem: We often enable ’ftrace(function tracer)’
feature for tracing internal behavior of Linux. But
We can’t compile Linux 2.6.29 with GCC 4.4.X

...undefined ref to ‘__gnu_mcount_nc’

...undefined ref to ‘__gnu_mcount_nc’

.../mach-c110/built-in.o: In function

...undefined ref to ‘__gnu_mcount_nc’

...undefined ref to ‘__gnu_mcount_nc’

...more undefined ref to
‘__gnu_mcount_nc’ follow
make: *** [.tmp_vmlinux1] Error 1

• Reason: Since GCC 4.4’s the name and calling
convention is changed for function profiling like
ftrace on ARM.

• Solution: Backporting from http://
marc.info/?l=linux-arm-kernel&m=
124946219616111&w=2 to support new EABI
compatible profiler __gnu_mcount_nc. With this
patch both types are supported. Since the first
submission We folded in the EXPORT_SYMBOL
changes by Anand and removed the question mark
after "gcc 4.4". (Using __gnu_mcount_nc was
introduced in r140974 to gcc- Fix ARM EABI
profiling.)

4.4 Case study: Compiler error of Linux-2.6.29-RT
with SLUB features

• Problem: We can’t boot Linux kernel that patched
Ingo’ RT-Patch with SLUB(Unqueued Allocator)
features by default.

• Reason: This reason is summarized by Jonathan
Corbet on Oct-03-2007. Quite a few other changes
can be found in this tree. The SLUB allocator is not
an option for Realtime kernels. Instead, this tree
uses a modified version of the slab allocator which
replaces interrupt-based single-CPU locking with a
set of specific per-CPU locks.

The global files_lock has been removed in favor of
tightly-locked per-CPU lists. To help with the cre-
ation of such lists, a new locked-list type has been
added. The tasklet code has been reworked for bet-
ter threading, but the tasklet elimination patch is
not present. There’s also quite a few architecture-
specific patches adding various features (such as
clock_events) needed by the Realtime tree and fix-
ing problems.

• Solution: Understanding the Realtime tree about
SLUB/SLAB[11]

5 IRQ Handler

Under Linux, hardware interrupts are called IRQ’s (In-
terrupt Requests).[17] There are two types of IRQ’s,

7

short and long. A short IRQ is one which is expected
to take a very short period of time, during which the
rest of the machine will be blocked and no other inter-
rupts will be handled. A long IRQ is one which can take
longer, and during which other interrupts may occur but
not interrupts from the same device. If at all possible,
it’s better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever
it’s doing, saves certain parameters on the stack and calls
the interrupt handler.

This means that certain things are not allowed in the in-
terrupt handler itself, because the system is in an un-
known state. The solution to this problem is for the
interrupt handler to do what needs to be done immedi-
ately, usually read something from the hardware or send
something to the hardware, and then schedule the han-
dling of the new information at a later time (this is called
the "bottom half") and return. The kernel is then guar-
anteed to call the bottom half as soon as possible – and
when it does, everything allowed in kernel modules will
be allowed.

How can we run IRQ Processing with preemptible linux
on camcorder? The realtime for Linux patchset does
not guarantee adequate realtime behavior for all target
platforms. When using realtime Linux on a new plat-
form you should expect to have to tune the kernel and
drivers to provide performance that matches your spe-
cific requirements.[3]

In our case, Camcorders have to finish hard IRQ pro-
cessing most rapidly after HARD IRQ need Realtime
characteristics obtain CPU resources above all. And, an
architect designed to work lightweight tasks as hardware
about video decoding.

If we consider realtime characteristics about entire sys-
tem in general, threaded hard interrupt is a good choice.
But, we have to proceed Hard Interrupt case most
rapidly in our Camcorder. Otherwise, our camcorder has
to support realtime responsiveness assurance that don’t
must delay Hardware Interrupt in Figure 5.

For example, when we connect interface between Dig-
ital TV and HDMI(High-Definition Multimedia Inter-
face), communication start between DDC(Display Data
Channel) and I2C. If the delay happen when IRQ hap-
pen, abnormal data transfer often happen by timeout on
Samsung Digital TV.

High Priority Task

Interrupt
Handler

Interrupt

Priority
Inheritance

High Priority Task

Interrupt

Threaded
Interrupt

wake_up(thread)

schedule()

Interrupt
Handler

Don’t delay
in our camcorder

Figure 5: Area for preventing Hard IRQ Delay in Sam-
sung camcorder

"Thread Hardirqs" option reduces the latency of the ker-
nel by "Thread Hardirqs". This means that all hardirqs
will run in their own kernel thread context. While this
helps latency, this feature can also reduce performance.
We don’t enable "Thread Hardirqs" in our Camcorder
for lightweight Hard IRQ processing at "make menu-
config" menu.[13]

We measured IRQ execution time to decide fi-
nally before we disable "Hard thread IRQ" fea-
ture in Table 4. For test, we save the execution
time with do_gettimeofday() in asm_do_IRQ, run
"target> cat /proc/interrupts" after modify-
ing show_interrupt(). At the Table 4, ’Deadline(RT-
irq)’ field means RT-irqs that don’t have to be delayed
by the higher priority task during the IRQ processing.

6 Further Enhancements

"Complete Preemption Mode" does not mix with 3rd
Party’s binary kernel modules in our development for
commercial full HD camcorder.

We selected "Preemptible Mode" because of 3rd Party’s
preemptible device driver verification issues. In order
to further reduce the impact of human error on driver
reliability, we will consider "device drivers verification
process" of third party for improved realtime character-
istics as further enhancements on next products.

8

According to the NICTA research, Figure 6 shows a
summary of their study of 500 bugs found in Linux de-
vice drivers.[12]

Figure 6: Summary of bugs found in Linux device
drivers

We focus on three types of bugs. device protocol viola-
tions, i.e when the driver behaves in a way that violates
the required hardware protocol, and concurrency bugs,
i.e. race conditions and deadlocks resulting from incor-
rect synchronization of OS threads inside the driver[10],
and OS protocol violations, i.e. situations when the
driver fails to behave the way the OS expects it to. The
common property of these types of bugs is that both
of them are related to how the driver interacts with the
OS.[20]

Where do bugs come from?

• > 70% of the kernel code is in drivers.

• Drivers contain 3x - 7x bugs per loc compared to
the rest of the kernel.

Since device specifications are independent of any op-
erating system, drivers for different systems can be syn-
thesised from a single device specification. As a result,
the likelihood of errors due to incorrect specifications
will be reduced because these specifications are shared
by many drivers[15].

7 Conclusions

In contrast to the origianl Linux for non-realtime envi-
ronment, embedded developers often need a high level
concurrency in their thread application based on real-
time priority, with predictable application response to
system events rapidly.

Camcorder system requires realtime operating system
for deterministic control and rich operating system for
running camcorder applications (e.g: wireless, tcp/ip
protocol) and exploiting legacy libraries.

Linux kernel subsystem for Camcorder’s recording is
implemented using memory unmapping approach for
realtime control of recording mode and play mode. And,
We figiured out needs to move the lates Linux and GCC
version according to the experience of backporting from
recent version for the enhancement and bug fixes we
need is always in the next revision.

Camcorder specific realtime application logic is
implemented with many threads in NPTL(Native
Posix Thread Library[25]) model based userspace
with priority queueing, robust FUTEX[24], priority
inheritance[7].

For commercial Camcorder, Linux with proper tuning
showed satisfactory performance for a preemptible linux
based Camcorder system including RT-patch of Ingo
Molnar and others. Application of low latency and pre-
emptible kernel patches make it possible to record video
files normally.

References

[1] Real-Time Linux Wiki. Project site:
http://rt.wiki.kernel.org.

[2] RT-mutex subsystem with PI support. Linux
kernel documentation:
kernel/Documentation/rt-mutex.txt.

[3] Sony Frank Rowand. Adventures in real-time
performance tuning. In Embedded Linux
Conference, 2008.

[4] FSF & GNU. GCC 4.4.4 online documentation,
April 2010.

[5] Thomas Gleixner and Douglas Niehaus. Hrtimers
and beyond: Transforming the linux time
subsystems. In Ottawa Linux Symposium, 2006.

[6] Darren V. Hart. realtime linux latency
comparisons. In Ottawa Linux Symposium, 2007.

[7] Ingo Molnar. PI-futex. people.redhat.com:
http://lwn.net/Articles/102216/.

9

[8] Ingo Molnar. remove the Big Kernel Lock, this
time for real. Linux kernel mailing list:
http://lwn.net/Articles/102216/.

[9] Ingo Molnar. RT-patch. Index of /mingo/realtime-
preempt:http://www.kernel.org/pub/
linux/kernel/projects/rt/.

[10] Jonathan Corbet. Driver porting: completion
events. Linux Weekly News:
http://lwn.net/Articles/102216/.

[11] Jonathan Corbet. What’s in the Realtime tree.
Linux Weekly News:
http://lwn.net/Articles/102216/.

[12] Ihor Kuz Leonid Ryzhyk, Peter Chubb and
Gernot Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th EuroSys Conference,
Nuremberg, Germany, 2009.

[13] Linus Tovalds. The Linux Kernel Archives.
kernel.org: http://www.kernel.org.

[14] Paul E McKenny. ’real time’ vs ’real fast’: How
to choose? In Ottawa Linux Symposium, 2008.

[15] Microsoft. Architecture of the kernel-mode driver
framework(KMDF),2006/2007, 2007.

[16] Montavista. Real-time Application Programmer’s
Guide, 2009.

[17] Peter Jay Salzman. The Linux kernel Module
Programming Guide. TLDP: http:
//tldp.org/LDP/lkmpg/2.4/html/.

[18] Redhat. Red Hat Enterprise MRG 1.2 Realtime
Tuning Guide, 2009.

[19] Steven Rostedt. Internals of the rt patch. In
Ottawa Linux Symposium, 2007.

[20] Leonid Ryzhyk. On the construction of reliable
device drivers. In PhD Thesis, School of
Computer Science and Engineering, University of
NSW, 2010.

[21] SAMSUNG. SAMSUNG Opens the Door to
PC-Level Performance on Mobile Devices with
1Ghz Low-power Application Processors.
Samsung News:
http://www.samsung.com/global/
business/semiconductor/newsView.
do?news_id=1043.

[22] Shih-wei Liao. Smaller and Faster Android.
COSCUP(Conference for Open Source Coders,
Users and Promotoers): http:
//coscup.org/2009/zh-tw/program/.

[23] Thomas Gleixsner. Cyclictest.
http://rt.wiki.kernel.org/index.
php/Cyclictest.

[24] Ulrich Drepper. Futexes Are Tricky.
people.redhat.com: http://people.
redhat.com/drepper/futex.pdf.

[25] Ulrich Drepper. The native POSIX Thread
Library for Linux. people.redhat.com:
http://people.redhat.com/drepper/
nptl-design.pdf.

[26] Klaas van Gend. Using realtime linux common
pitfalls, tips & tricks. In Embedded Linux
Conference, 2008.

[27] Wikipedia Contributors. Backporting
terminology. Wikipedia, the free encyclopedia:
http://en.wikipedia.org/wiki/
Backporting.

10

IRQ No. Deadline(RT-irq) Chip Name Action Name Description
16 - s3c-uart s5pc100-uart UART ch0 RX
18 - s3c-uart s5pc100-uart UART ch0 TX
26 - s3c-uart NULL UART ch2 TX
45 500(Passed) s3c_vic_eint hpd HDMI Hot Plug Detect
50 - sVIC PDMA0 Physical DMA Ch-0
51 900(Passed) VIC PDMA1 Physical DMA Ch-1
52 - VIC samspi-dma SPI DMA
53 - s3c-timer pwm-tick pwm timer0 for log key
54 - s3c-timer pwm-tick pwm timer1 for time-print
55 - s3c-timer pwm_timer2 pwm timer2 for hrt clock_source
57 - s3c-timer pwm_timer4 pwm timer4 for hrt tick-timer
73 - VIC Pata ATA
74 - VIC 3D 3D
76 - VIC HDMI HDMI
79 - VIC sam-spi spi ch 0
80 - VIC sam-spi spi ch 1
81 - VIC sam-spi spi ch 2
83 - VIC s3c2410-i2c.2 i2c ch2 for audio-DAc
88 - VIC s3c-udc usb OTG
93 - VIC s3c-csis MIPI
96 - VIC s3cfb LCD[0]
97 500(Passed) VIC s3cfb LCD[1]

101 100(Passed) VIC s3c-fimc0 fimc0
102 100(Passed) VIC s3c-fimc1 fimc1
103 100(Passed) VIC s3c-fimc2 fimc2
104 - VIC s3c-jpg jpeg
106 - VIC PowerVR ad converting
107 100(Passed) VIC s5p-tvout tv mixer
109 100(Passed) VIC s5p-ddc i2c ch1 for HDMI ddc
110 - VIC s3c-mfc mfc
112 - VIC s3c-i2s-v50 i2s v50 for audio ch0
113 - VIC s3c-i2s-1 i2s for audio ch1
118 - VIC s5pc1xx_spdif spdif
130 500(Passed) VIC MMC0 mmc0 for wireless lan
131 - VIC s5p-cec HDMI CEC

Table 4: Deadline measurement result of IRQs that need realtime characteristic after disabling "Hard thread IRQ"
.

11

