
Automating Virtual Machine Network Profiles

Vivek Kashyap
IBM

kashyapv@us.ibm.com

Arnd Bergman
IBM

arndb@de.ibm.com

Stefan Berger
IBM

stefanb@us.ibm.com

Gerhard Stenzel
IBM

Gerhard.Stenzel@de.ibm.com

Jens Osterkamp
IBM

Jens.Osterkamp@de.ibm.com

Abstract

With the explosion of use of virtual machines in the
data-center/cloud environments there is correspondingly
a requirement for automating the associated network
management and administration. The virtual machines
share the limited number of network adapters on the sys-
tem among them but may run workloads with contend-
ing network requirements. Furthermore, these work-
loads may be run on behalf of customers desiring com-
plete isolation of their network traffic. The enforcement
of network traffic isolation through access controls (fil-
ters) and VLANs on the host adds additional run-time
and administrative overhead. This is further exacerbated
when Virtual Machines are migrated to another physical
system as the corresponding network profiles must be
re-enforced on the target system. The physical switches
must also be reprogrammed.

This paper describes the Linux enhancements in kernel,
in libvirt and layer-2 networking, enabling the offload-
ing of the switching function to the external physical
switches while retaining the control in Linux host. The
layer 2 network filters and QoS profiles are automati-
cally migrated with the virtual machine on to the target
system and imposed on the physical switch port without
administrative intervention.

We discuss the proposed IEEE standard (802.1Qbg) and
its implementation on Linux for automated migration of
port profiles when a VM is migrated from one system to
another.

1 Introduction

A network adapter is shared across multiple virtual ma-
chines(VM) on a Linux host. To accommodate VM-VM

and VM to external network communication a virtual
bridge is included in the Linux host. The Linux vir-
tual bridge relays unicast traffic between the virtual and
physical interfaces attached to it. It further replicates
and forwards broadcast and multicast transmission re-
ceived on its port(s).

For network isolation and security, the iptables/ebtables
rules might be enforced on the system. The more com-
mon rules are to prevent ARP or IP spoofing, block
sending a link level broadcast, or to allow only specific
set of protocol traffic.

Different workloads running in the VMs might also be
specifically restricted within certain limits based on the
workload requirements, priorities and possibly based on
the bandwidth purchased by the user.

For the purposes of this paper the layer-2 forwarding,
multiplexing and filtering(ebtables) function is collec-
tively considered part of the virtual-bridge.

The per-packet processing for bridging function - packet
relaying, replicating, evaluation against filter rules, or
bandwidth control - imposes a heavy burden that takes
away CPU resources that could be utilized more gain-
fully. This problem gets more and more exacerbated as
the number of virtual machines supported on a single
host increases in the multi-core, and large memory sys-
tems being used in the data-center/cloud environments.

Another problem faced in large deployments is the need
for maintaining consistent view of the port profiles. The
switch fabric and the embedded switches in the hyper-
visor(Linux KVM host) may have different capabilities
and also be under separate administrative control.

This is further exacerbated as the VMs (running im-
portant workloads) migrate from one system to another.

• 147 •

148 • Automating Virtual Machine Network Profiles

The filter rules and QoS enforcement must follow the
VM and be quickly in place. Not all policies may be
deployable in the hypervisor and the switch must be in-
formed of the migration.

As the MAC address associated with the virtual inter-
faces migrates as well, the physical switch at the tar-
get does not know if the MAC, now visible at another
port, is a migrated VM or a different VM using the
same MAC. Thereby, it needs to be informed of the port-
profile policy to deploy.

The proposal ’Edge Virtual Bridging’ in IEEE
[802.1Qbg] addresses these issues through offloading of
the switching function to the adjacent bridge i.e. the
physical switch in the network.

1.1 Edge Virtual Bridging: IEEE 802.1Qbg

The Edge Virtual Bridging(EVB) proposal defines the
protocols, configuration and control required across the
physical end station, such as the Linux host, and the ad-
jacent switch.

This section provides an introduction to the IEEE
802.1Qbg proposal and the subsequent sections describe
our implementation of the same on Linux to configure
KVM guests in ’VEPA’ mode.

Reflective Relay

The proposed standard extends the adjacent bridge ca-
pabilities to the virtual machines by ensuring that all the
packets sent by the VM’s are first sent to the switch port.
The switch then consults its tables, and if the packet
is destined to another VM on the same host, sends the
packet back to the host. The packet is then forwarded to
the destination VM.

This packet flow enables the switch to enforce fabric
wide packet filtering and control policies across all net-
work traffic. Otherwise the policy and rules might need
to be co-ordinated and enforced across the switch and
the hypervisor leading to administrative overhead and
inefficiencies outlined earlier.

Existent switches do not reflect the packet back on the
port on which it was received. Therefore, a new mode,
referred to as the ’reflective relay’ mode is introduced in
the Edge Virtual Bridging(EVB) proposal.

Virtual Ethernet Port Aggregator

The component in the physical end-station that works
together with the adjacent switch to support EVB is
called "Virtual Ethernet Port Aggregator" or VEPA.

VM

VM

VM

VM

V
E
P
A

Port Profile
Database

vSwitch in VEPA
mode forces all
traffic to fully-
capable edge for
full policy
enforcement.

Regular vSwitch
mode allows VM-
to-VM traffic with
limited policy
enforcement.

VM

VM

VM

VM

VEB L2 net(s)

VM Edge Switch Edge

L2 net(s)

A VEPA is very simplified version of an Ethernet bridge
that allows multiple downlink ports to communicate
with a single uplink port but not with each other. Eth-
ernet frames from one of the downlink ports get sent di-
rectly to the uplink, and Ethernet frames arriving at the
uplink port get forwarded to just the destination with
the matching MAC address, or flooded to all downlink
ports in case of broadcast. A VEPA does not support
unknown unicast frames, which get silently dropped.

The VEPA component therefore, is able to provide VM
to VM communication in conjunction with an uplink
port which is configured in ’reflective relay’ mode.

Dynamic discovery and configuration for VEPA
mode

The Link-level Discovery Protocol(LLDP)[LLDP] is
used for layer-2 discovery operations. The EVB pro-
posal extends the TLVs (configuration messages) sup-
ported to include advertisement of ’reflective relay’ ca-
pabilities and setting of the adjacent bridge’s port in re-
flective relay mode. The TLV also includes additional
parameters such as the the number of virtual interfaces
(VSI or Virtual station interfaces in EVB parlance) that
a station or bridge can support. See [802.1Qbg] for de-
scription of all capabilities and parameters exchanged.

2010 Linux Symposium • 149

Station (e.g., Hypervisor)

1

Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the max
number of VSIs it can
handle.

Server
configures

itself from the
available

capabilities
according to
local policy.

But still
advertises its
full set of
capabilities.

2

3

Bridge
matches its
configuration
to the limited
capabilities
advertised by
the station.

The bridge periodically advertises its capabilities. The
Station receives the TLV, and based on its configuration,
may respond to configure the port in ’reflective relay’
(RR) mode.

VSI Discovery and Configuration

The switching function is offloaded from the end-station
with VEPA and dynamic configuration of the switch
port to RR mode. This however does not fully address
the problems outlined above. A mechanism is required
to associate the virtual interface (VSI) to specific profile
for filtering, VLAN and bandwidth control.

This is achieved by informing the switch of the MAC
address and VLAN ID pair and the profile that must be
used.

VM

VM

VM

VM

vSwitch L2
net(s)

VM
Edge

Switch
 Edge

Server
Edge

Port
Profile
Databa

se

VM
Manager

Query available port profile
types

System
Admin

Obtain a port profile instance

Network
Admin

3

1

2

4
Push VM &
vPort
Configuration
to
VM Host

VSI Discovery
and
Configuration
Protocol

Retrieve Port
Configuration

vPort Discovery &
Overall EVB
Discovery

DB Client
Interface DB-to-

switch
Interface

A

B

C

D

Port Profile DB
Schema

•CIM schema extensions

•CIM provider (libvirt-CIM)

•Extend libvirt to support
VEPA, external bridging, in
addition to host bridging

•Kernel extension to support VEPA
and VEB modes

• Implement IEEE 802.1Qbg
(proposed) and implement the
protocol for discovery, switch
configuration, and automatic profile
migration

The bridge on receiving the association request gets the
profile details from a database and configures its port

accordingly. This mechanism also addresses the issue
of ’reincarnated’ or reused MAC address and a MAC
address that has appeared on the port after a VM migra-
tion since the switch is informed of the exact profile to
impose.

The VSI Discovery protocol (VDP) defined by EVB,
therefore defines a set of states and commands ex-
changed between the bridge and the station. These are:

• Pre-associate: Inform the switch of the VSI and
port-profile and intention to associate

• Pre-associate with Resource Reservation: Same as
Pre-associate except also reserve resources at the
switch for a future association.

• Associate: Associate the VSI. This causes all re-
sources to be allocated at the switch and the impo-
sition of the VSI port profile.

• DeAssociate: De-associate the VSI from the port
and profile

Edge Control Protocol

The discovery and exchange of bridge capabilities is
performed over LLDP. LLDP is an unacknowledged
protocol and has limitations on frequency and number
of transmissions.

For VDP, the EVB has proposed a new link-level trans-
port called the "Edge Control Protocol"(ECP) which ac-
knowledges the messages exchanged. This enables the
End Station to transmit discovery operations more fre-
quently. The VDP protocol messages will be carried in
TLVs over ECP. The TLVs carry the VDP state requests
and responses.

2 Design and Implementation

The mapping of IEEE protocol to the Linux implemen-
tation can be broken into a few distinct interlocked com-
ponents. These are:

• Extend Linux kernel to support ’VEPA’ mode

• Extend libvirt interface xml to define VEPA mode
and VSI state

• Implement user-space daemon to support EVB link
level protocols

150 • Automating Virtual Machine Network Profiles

2.1 MACVTAP: Supporting a ’VEPA’ interface

When applied to Linux, a VEPA lets us share a single
Ethernet NIC between multiple KVM guests that all get
access to the Ethernet segment, but without the need
to set up an actual bridge that has both administrative
and performance overhead associated with features like
MAC address learning, spanning tree protocol or filter-
ing.

For our needs, we developed our solution over the pre-
existing ’macvlan’ driver supported in Linux. Macvlan
provides virtual Ethernet interfaces that can be created
using the ”ip link” command and that can be used by
applications, virtual machines or containers just like any
other Ethernet interface.

One significant drawback for our needs in macvlan im-
plementation was that it cannot easily be connected to
Qemu/KVM, which expects a tun/tap device instead of
a network interface. In addition, the VEPA implementa-
tion has to ensure that broadcast and multicast frames
never get delivered to the source port but do get for-
warded to all other ports that want them.

In order to connect macvlan devices to a kvm virtual
machine, a ”macvtap” device driver was implemented.
Macvtap plugs into the macvlan device driver, and lets
each of its downstream ports show up in the system as
a character device rather than a network interface. This
character device implements a subset of the API of the
tun/tap driver that is typically used to connect a KVM
guest to the host network.

In the implementation of macvtap, a few shortcuts could
be taken compared to the combination of tun/tap with a
bridge connected to an external NIC. Most importantly,
frames sent from the guest to the tap are not injected into
the receive path of the host but directly into the transmit
queue of the outbound interfaces. Similarly, inbound
frames do not need to get received by the host and then
sent out to a tun/tap device but simply get put into the
guests receive path when they get intercepted by the re-
ceive function of the uplink interface.

2.2 libvirt:VEPA interface for the KVM guest

With the necessary infrastructure for VEPA in place
with the macvtap/macvlan implementation we needed
to integrate the capability into the libvirt domain xml.

Specifying the VEPA interface

Since the macvlan/macvtap are tied specifically to an
interface that provides the uplink port for the ’VEPA’
function we decided to provide a strong linkage between
the macvtap interfaces and the backing up device.

This is therefore specified in the guest’s domain defini-
tion as described below. The example assumes the use
of ’eth0’ as the source device.

<interface type=’direct’>
<source dev=’static’ mode=’vepa’/>
<model type=’virtio’/>

</interface>

Libvirt creates a macvtap interface when a virtual ma-
chine with a direct network interface type is started or
such an interface type attached to a running virtual ma-
chine.

Libvirt opens the tap device to get a filedescriptor for
Qemu to write packets to and receive packets from. A
macvtap device works similar to a tap device in that an
interface is created on the host and a filedescriptor is
subsequently passed to Qemu. However, a macvtap de-
vice requires more active management by libvirt during
device teardown. Whereas for a tap device it is sufficient
that Qemu closes the tap filedescriptor for the tap de-
vice’s network interface in the host to disappear, libvirt
must actively tear down the macvtap device after Qemu
was detected to have terminated. Creation and teardown
of a macvtap device is done using netlink messages that
libvirt sends to the kernel device driver. The command
line parameters for Qemu are the same as for a tap de-
vice and pass the filedescriptor.

[...] -net nic,
macaddr=52:54:00:0c:dd:47,
vlan=1,model=virtio,
name=net1 -net tap,fd=15,
vlan=0,name=hostnet1
[...]

Specifying the VSI state information

The VSI state comprising of the profile to be imposed at
the switch port is specified in the interface description
as well. The VSI state along with the MAC address, and

2010 Linux Symposium • 151

the VLAN id is therefore forwarded to the user-space
daemon implementing the VDP/ECP protocols.

As of writing of this paper we are working to extend
the LLDPAD[e1000] daemon to support both the EVB
TLVs for RR mode, the ECP and VDP protocols.

The libvirt daemon is extended to send netlink messages
with the relevant details to the protocol daemon, LLD-
PAD. The daemon will then initiate the setup protocol
with the switch to enable the packet flow. For this LLD-
PAD will register the MAC/VLAN pair with the switch
along with the VSI data. The success (or failure) will
be reported back to libvirt and the guest will be brought
online (or failed). In case of failure, libvirt will not start
the VM or declare the hot-plugging of an interface to
have failed.

The VSI state is specified as in the following example:

<interface type=’direct’>
<source dev=’static’ mode=’vepa’/>
<model type=’virtio’/>
<vsi managerid=’12’
typeid=’0x123456’
typeidversion=’1’
instanceid=’insert-uuid-here’ />

</interface>

VSI states

The ongoing libvirt extensions will send the ’Associate’
command when the guest is being brought online and
will send a ’DeAssociate’ command when the guest is
shutdown or suspended or has been migrated.

3 Emulating VEPA bridge

As of this writing there are no switches in the mar-
ket that support the 802.1Qbg VEPA or reflective relay
mode. Therefore, for testing purposes, we utilized the
support for ’hairpin mode’ or reflective-relay mode al-
ready included in the Linux kernel. This enables us to
test the raw packet flow that will occur after the switch
setup protocol has been successfully completed. Testing
of the switch setup protocol will need to be done later.

brctl addif <bridge> <interface>
cd /sys/class/net/<interface>/brport
echo 1 > hairpin_mode

The VEPA enabled system was then be tested against
the Linux host configured as above.

4 Future Work

The libvirt and the LLDPAD work described above are
still in progress. The implementation will cover the
EVB TLVs, ECP and VDP protocols. The 802.1Qbg
proposal also describes ’multi-channel’ support and the
corresponding ’Channel Discovery and Configuration
Protocol’ (CDCP). We will extend our implementation
to support CDCP in the future.

A large set of management applications use the DMTF’s
CIM protocol to discover, create and manage virtual ma-
chines. There is work ongoing to implement libvirt-CIM
providers such that network profile automation can be
managed by CIM clients.

Migration of VMs

With the current implementation, at the time of the mi-
gration the target system must be put into ’Associate’
state with the switch when the migration commences
since there is no hook or mechanism to insert additional
function in the migration process as implemented by
qemu/kvm. It would be advantageous to be able to in-
sert a ’PreAssociate’ state on the target and then move
to ’Associate’ state only when the source is suspended.
This will avoid overlapping associates from two systems
at the same time since that can cause unpredictable re-
sults in the layer-2 fabric if the source and target are
connected to the same switch. This issue is mitigated
since migrating VMs are only active in one place, either
on the source or the target host, but never on both hosts
at the same time.

5 Acknowledgements

We would like to thank the EVB working group, IEEE
authors group and the Linux community members with
whom we have worked closely to define and imple-
ment the 802.1Qbg standard. We would specifically like
to thank Renato Recio, Mike Krause, Rakesh Sharma
Jeff Lynch, Daniel Berrange, Daniel Veillard, and Chris
Wright for various discussions on protocol develop-
ment, implementation and code reviews. Thanks to
Anna Fischer for enabling the "hairpin mode" in the
Linux bridge.

152 • Automating Virtual Machine Network Profiles

6 References

[802.1Qbg] http://www.ieee802.org/1/pages/802.1bg.html

[LLDP] http://standards.ieee.org/getieee802/download/802.1AB-
2005.pdf

[e1000] http://e1000.sf.net

Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

