
Mobile Simplified Security Framework

Dmitry Kasatkin
Nokia Corporation

dmitry.kasatkin@nokia.com

Abstract

Linux kernel has already several security frameworks
such SELinux, AppArmor, Tomoyo and Smack. After
some studies we found out that they are not very suitable
for mobile consumer devices such as mobile phones.
They either require too complicated administration or do
not really provide any security API, which can be used
by applications providing services to verify credentials
of their clients, and then decide if a particular client can
access the provided service or not.

In this paper we present a new platform security frame-
work developed by the Maemo security team specifi-
cally for mobile devices. The key subsystem of the Mo-
bile Simplified Security Framework is the Access Con-
trol framework, which is used to bind privileges (re-
source tokens) to the application when the application
is starting. Using a special API, different entities are
able to verify possession of those resource tokens and
allow/disallow access to protected resources. If any of
the applications require an access to protected resources,
a Manifest file with the credential request should be in-
cluded in the package providing the application. The
Manifest file is also used to declare new credentials,
which are provided by an application coming from the
package.

1 Introduction

The scope of this paper is to describe Mobile Simplified
Security Framework (MSSF). This security framework
has been developed specifically to be suitable for mobile
consumer electronics devices such as smartphones.

Smartphones usually have limited resources such as
memory, CPU power, and power supply, but at the same
time have a network connectivity and allows the user to
download and install applications. Malicious applica-
tions can pose a threat to the security of the system.

Platform security mechanisms must provide following:

• Protect the user.
It must not be possible for malicious application to
corrupt or steal the device owner’s personal data.
Also malicious application must not be able to mis-
use the device and incur costs by sending sms to
pay numbers. If device is stolen, it should not be
possible to access the user’s private data.

• Protect the device.
Device functionality and reliability must satisfy
specification requirements. It must not be possi-
ble to change critical device parameters. Changing
RF, WiFi values can cause device malfunctioning
and violate regulatory requirements.

• Protect the business.
Phones are sold via different channels. Operators
often subsidize devices. Breaking a SIM/Subsidy
lock immediately mean lose of business. Operators
want product customization - certain applications
and service should only be available on its devices,
and possibly limit what can be installed on the de-
vice.

• Enable new services.
Providing services such as Music Store or Ap-
plication Store requires device to support copy-
protection. Services like mobile payments and
billing requires secure handling of customer data.

Comparing to personal computers where users have
more control over the device and often prepared to per-
form administrative tasks, mobile device users do not
expect that they need to make complicated configuration
of the device. That requires security framework to pro-
vide protection without additional maintenance effort
and to allow applications coming from different sources
to get access to protected resource in controlled manner.

• 133 •



134 • Mobile Simplified Security Framework

2 Existing Linux Security Frameworks

Linux kernel has already several security frameworks
such as SELinux, Smack, Tomoyo. While provid-
ing Mandatory Access Control (MAC) implementation,
they do not provide end-to-end solution for security, tak-
ing into account also software distribution and develop-
ers ecosystem. Here we provide some reasons why we
decided to develop our own security framework.

2.1 Traditional Unix DAC

Unix DAC is a classical access control model which is
based on restricting access to objects based on identity
of the subjects and groups to which they belong. The
main difficulty to use Unix DAC is a lack of process
based access control.

Mobile device is normally a single user device where
all processes are either running under root account or
the same user account. Processes with the same user
ID have unlimited access to the resources of each other.
This pose a threat that malicious application can corrupt
or steal the data of other applications.

The way to work around this issue is to run processes
under different users accounts and groups. But this ap-
proach is not generic and requires administrative work
to maintain needed information.

2.2 SELinux

SELinux is LSM-based MAC implementation [1].
SELinux is very powerful, but requires very complex
and centralized policy administration. That is not prob-
lem for the servers which are usually centrally admin-
istered by professional people. Required administration
effort makes it very complicated to use in smartphone
platform.

2.3 Smack

Simplified Mandatory Access Control Kernel (SMACK)
is LSM-based, relatively simple MAC implementation
as alternative to SELinux [2]. It’s operational logic is
simple: labels are attached to system components and
access rules between the labels are defined by the system
administrator. SMACK provides primitive security API,
but doesn’t provide the application enough granularity
to provide detailed access control.

Figure 1: Security Frameworks Layers

2.4 Tomoyo

Tomoyo is a lightweight MAC implementation [3] . It
performs pathname-based access control. TOMOYO
utilizes "process invocation history" and requires ad-
ministrative actions on the target system.

3 Mobile Simplified Security Framework

Mobile simplified security framework (MSSF) is a set
of mechanisms to protect entire platform consisting of
following layers (Figure 1):

• Chipset security.
Provides secure cryptographic services for OS
level security.

• Integrity protection.
Ensure protection of TCB, applications and data.
Provides protection against offline attacks.

• Access Control.
Limits application access to critical resources. Pro-
vides protection against runtime attacks.

• Application privacy protection. Provides integrity
and confidentiality protection for applications and
services. Provides protection against offline at-
tacks.

Security Framework relies on the secure software distri-
bution model. The goal of Secure SW distribution is to
ensure the authentication of a SW’s source.



2010 Linux Symposium • 135

4 Chipset Security

4.1 Features

Chipset security is the key subsystem on which whole
security framework relies on. It provides tamper-
resistant securure services and serves the same pur-
pose as Trusted Platform Module (TPM) [4] or Mobile
Trusted Module (MTM) [5]. It includes:

• Root symmetric devices specific key.
The root symmetric device specific key is unique
one-time programmable (OTP) key, which is used
to derive keys used for local cryptography opera-
tions. It is also used to derive a unique public iden-
tifier of the device.

• Root public key.
The root public key is OTP key and is used to verify
that software components are coming from trusted
source.

• Provides trusted boot (chain of trust).
Root public key is used to verify integrity of the
bootloader and SW image.

• Secure services.
Secure key management and cryptography ser-
vices.

• Provides Secure Execution Environment (SEE).
SEE consists of secure ROM and RAM which is
isolated from reset of the system. It allows execu-
tion of integrity protected applications, which can
utilize secret device keys and provide specific se-
cure services for the OS. Protected applications are
needed by Protected Storage and DRM framework.

4.2 Operation modes

Nokia MeeGo 1.0 N device will have two operation
modes: normal and open mode.

Devices shipped by Nokia come with original Nokia
SW having device configured for normal mode Security
functionality such as access control and integrity pro-
tection are enabled and enforced. Applications and ser-
vices are able to use device keys and cryptographic ser-
vices. In normal mode authorized applications are given

access to copy protected content. Unauthorized modifi-
cation of the security policy is impossible.

Developers who want to have unrestricted access to the
platform resource, might turn the device into open mode
by flashing an ”open mode” image.

Open mode is mostly needed only for low-level develop-
ment and deep device customization. Ordinary applica-
tion developers test their applications with normal mode
as well. Open mode provides the same functionality as
in normal mode except that there is no access to copy
protected content. In open mode image security is en-
forced but allows developers to modify the policy and to
allow their applications to access more device resources
without the need of application certification process. In
open mode it is possible to use own kernel. However
in open mode, chipset security generates different keys
which are incompatible with normal mode keys. This
makes it impossible to get an access to copy protected
content.

4.3 Boot process

Boot process is shown on figure 2.

Bootloader image is verified with Root Public key.

If bootloader verification fails, device is automatically
resetted.

In the case when kernel verification fails, device either
restarted or booted to open mode. If device is SIM
locked, it is not allowed to boot into open mode unless
explicitly allowed by the device customization.

5 Integrity Protection

MSSF has an integrity protection subsystem called Val-
idator, which protects the integrity of kernel modules,
executables and libraries and data files. The primary
goal is to protect integrity of SW components which be-
longs to Trusted Computing Base (TCB). Trusted Com-
puting Base includes all hardware, firmware and soft-
ware components that are critical to the security of the
entire platform.

The integrity subsystem is shown on Figure 3.

Validator is implemented as LSM kernel module and is
based on the DigSig project [7]. The difference is that



136 • Mobile Simplified Security Framework

Figure 2: Boot process

Figure 3: Integrity Protection Subsystem

instead of using ELF header, device maintains a refer-
ence hash list (/var/lib/mssf/refhashlist) of
all protected binaries. Integrity of the reference hash list
is also protected by the device signature.

Reference hash list includes SHA1 hash of the file, file
attributes, and AC related data.

Debian package contains sha1 hashes of all executables
and important data files. Package manager updates ref-
erence hash list upon package installation, removal or
upgrade.

Use of single reference hash list instead of ELF signed
binaries and EA has certain advantages. It allows to
have protection for scripts and data files, which do not
have ELF header. It does not require to verify integrity
of EA itself for every file using digital signatures. In-
tegrity verification of reference hash list is more mobile
device friendly. Also EA is a subject to offline removal
attack, which cannot be detected.

Installation includes following steps:

1. Package Manager installs new binaries and updates
reference hash list.

2. Validator loader loads new or updated hash list into
the kernel.

3. Validator calculates and compares hash and file at-
tributes upon execve() call. It also verifies hashes
of shared libraries upon mmap() call.

Integrity protection policy defines action when integrity
verification fails. Currently it only blocks the execution.

Validator also has a support for integrity protection of
non-modifiable data files. That is used for protection of
critical configuration files.

Source code of this module is located in:
linux/security/mssf/validator

6 Access Control

6.1 Introduction

Access Control framework provides runtime protection.

We had following design goals for access control:



2010 Linux Symposium • 137

• Process-based access control to protected re-
sources.

• Minimal changes to the default Linux model.

• No need for centralized security policy administra-
tion.

Access control framework includes following compo-
nents:

• Manifest file.
Manifest file is included to the package and con-
tains a list of executables and its credentials.

• Device Security Policy.
Located on the device and defines repository trust
level and credentials, which can be granted to pack-
ages coming from that repository.

• Credentials Policy.
It is a file which contains mapping of credentials
to executables. Package Manager updates this file
when packages are installed, upgraded or removed.

• Package Manager.
In addition to installing the application, Package
Manager updates Credentials Policy database.

• Credentials Policy loader.
It is called during boot to read and import creden-
tials policy into the kernel.

• Credentials Manager.
Provides credentials management and assignment
to the process. It is implemented as a set of kernel
modules (see Implementation Details).

6.2 Credentials

Access control in Linux is based on credentials. Con-
ventional credentials in Linux are UIDs, GIDs and
POSIX capabilities.

MSSF access control framework uses term protected
resource to denote any virtual object which represents
some functionality or data, such as tasks, files, sockets,
devices.

MSSF access control framework extends credential set
with resource tokens and application identifier.

6.2.1 Resource Tokens

Each protected resource is assigned a resource token,
which is just a string representation of the resource, for
example Cellular, UserData. Other security frameworks
often use the term ”label”.

Applications or services need to declare requested or
provided resources. For that purpose, package, which
hosts those executables, must include the Manifest file.

Resource tokens can either be global or package spe-
cific. Global tokens comes from special package. Pack-
age specific tokens are declared as pkgname::token.

Access Control model does not define subject labels, ob-
ject labels and access control rules, such as ’subjectlabel
objectlabel access’, but resource tokens play the role of
both subject and object labels. Resource tokens are as-
signed to the process subjective context upon startup.
Enforcement mechanism just needs check if a process
possess a token.

Rules are not enforced by MSSF access control model
automatically, but processes need to perform enforce-
ment manually when task is being accessed by retriev-
ing client tokens. Currently supported access method is
via Unix domain sockets.

API is provided to get credentials of the process.

6.2.2 Application identifier

Application identifier is used to derive application spe-
cific keys (see Privacy Protection). Application identi-
fier is defined as:

AppID =
{SourceID, Package Name, Application Name}

for example {ovi.com, CoolTools, AddressBookPlu-
gIn}.

Application name is defined in manifest file.

Application identifier has following properties:

• Unforgeable & Trustworthy.
SourceID is defined in Device Security Policy and
protected by repository keys.



138 • Mobile Simplified Security Framework

• Unique.
System can only have one package with the same
name.

• Persistant.
It remains the same between reboots, application
updates, and for different instances of the same ap-
plication.

6.3 Device Security Policy

Software packages are distributed via Debian-like
repositories. Repository contains a package list, which
is signed with repository private key and verified by the
package manager using repository public key. Package
based signing using PGP and X.509 is also supported.

The purpose of the Device Security Policy is to de-
fine repository trust level and credentials, which can be
granted to packages coming from that repository.

Device Security policy contains entries which have fol-
lowing format:
{SourceID : Trust Level : Public Key : Allowed cre-
dentials}, where:

SourceID is a meaningful name for the origins of the
repository, for example in a form of domain name.

Trust Level is an ordinal number and defines reposi-
tory ranking. During update, package can only
be updated from repository which has the same or
higher trust level. It will prevent possibility for
some 3rd party repositories by mistake or on pur-
pose to replace trusted package with untrusted one.

Allowed credentials is a list of credentials, which can
be granted by this repository.

Public Key is a repository public key which is used to
verify repository package list.

Example of policy entry can look like:
{nokia.com : 1 : ABCDEF : UserData, Cellular}.

Package Manager uses device security policy when
packages are installed or upgraded. Granted credentials,
which is added to the Credentials Policy, are the result of
’intersection’ operation over credentials set from Man-
ifest file and security policy. Only allowed credentials
are added to the Credentials Policy.

Figure 4 shows the concept of distribution model.

Figure 4: SW Distribution Model

6.4 Manifest File

If an application requests or provides some credentials,
the package is expected to ship with the Manifest file
<package>.mssf with description of credentials.

Package manager updates Credentials Policy based on
the manifest file and constraints from the device security
policy as described in the previous section.

Manifest file is written in XML and defines following
tags:

• <request>
requested credentials

• <provide>
provided credentials

• <credential name="credential name">
credential name

• <for path="path">
absolute path to the program executable

• <dbus name="dbus service name">
D-bus service name

• <bus="bus type">
D-bus type (system or session)

• <own="credential name">
Credential to bind to a specific d-bus service name

• <interface name="interface name">
D-Bus interface name

6.4.1 Manifest file for client-server example

In the example bellow, server defines resource token
UserData, which is needed by the client to access the
server.



2010 Linux Symposium • 139

<mssf>
<provide>

<credential name="UserData"/>
</provide>

</mssf>

In the example bellow client declares that it requires a
token UserData and Cellular

<mssf>
<request>

<credential name="UserData"/>
<credential name="Cellular"/>
<for path="/usr/bin/userdatamanager">
<for path="/usr/bin/userdataclient">

</request>
</mssf>

In this example both applications userdatamanager
and userdataclient will get the same credentials.

6.4.2 Manifest file for traditional credentials

Manifest file can be used also to assign conventional cre-
dentials such as UID, GID and POSIX capabilities.

<mssf>
<request>

<credential name="UID::email"/>
<credential name="GID::email"/>
<credential name="CAP::cap_sys_rawio"/>
<for path="/usr/bin/mssf-dbus-server"/>

</request>
</mssf>

6.4.3 Manifest file for policy update

Manifest file is also used to update device security pol-
icy. Policy update is done via the special authorized
package.

<mssf>
<domain name="MyDomain" rank="30">

<allow>
<credential match="*"/>
<deny>

<credential name="drm"/>
</deny>

</allow>
<origin>
<keyinfo>
mQGiBE...O6XB

</keyinfo>
</origin>

</domain>
</mssf>

6.4.4 Manifest file for DBUS

We implemented a DBUS extension which uses creden-
tials API to verify client credentials. Manifest file may
have dbus specific tags, which are used by the Package
manager to generate DBUS policy.

Manifest file for DBUS-server is shown on Figure 5.

Generated DBUS policy file is shown on Figure 6.

DBUS client uses the same manifest file as with peer-
to-peer access control (Figure 7).

6.5 Package Installation

Installation of new applications and services is done via
packages (Figure 8).

Package installation includes following steps:

1. Package arrives to the Package Manager together
with Manifest file.

2. Package Manager checks the Device Security pol-
icy for the information.

3. Package Manager updates the Credentials Policy
according to the ”Intersection rule”.

4. Package Manager possibly updates D-Bus policy.

5. Package Manager updates runtime credentials pol-
icy in the kernel.

6.6 Startup

Startup process is shown on Figure 9.

1. At a boot, Credentials Policy loader reads Creden-
tials Policy and loads it into the kernel.



140 • Mobile Simplified Security Framework

<mssf>
<provide>

<credential name="access"/>
<dbus name="com.meego.mssf.example" own="mssf-dbus-server" bus="session">

<node name="/">
<interface name="mssf.Example">

<annotation name="com.meego.secure.Access" value="access"/>
</interface>

</node>
</dbus>

</provide>
<request>

<for path="/usr/bin/mssf-dbus-server"/>
</request>
</mssf>

Figure 5: DBUS server manifest

Figure 8: Package instllation Figure 9: Startup



2010 Linux Symposium • 141

<busconfig>
<policy context="default">

<deny own="com.meego.mssf.example"/>
</policy>
<policy creds="mssf-dbus-server::mssf-dbus-server">

<allow own="com.meego.mssf.example"/>
</policy>
<policy context="default">

<deny send_destination="com.meego.mssf.example" send_interface="mssf.Example"/>
<deny receive_sender="com.meego.mssf.example" receive_interface="mssf.Example"/>

</policy>
<policy creds="mssf-dbus-server::access">

<allow send_destination="com.meego.mssf.example" send_interface="mssf.Example"/>
<allow receive_sender="com.meego.mssf.example" receive_interface="mssf.Example"/>

</policy>
</busconfig>

Figure 6: DBUS policy

<mssf>
<request>

<credential name="mssf-dbus-server::access"/>
<for path="/usr/bin/mssf-dbus-client"/>

</request>
</mssf>

Figure 7: DBUS client manifest

2. Upon application startup, Policy Manager modifies
process’ credentials according to the received cre-
dentials.

3. File AC.
Validator checks process credentials using kernel
API.

4. D-Bus.
D-Bus daemon checks client credentials using lib-
creds (see DBUS Integration).

5. Client-server.
Application checks client credentials using lib-
creds.

6.7 Credentials APIs

When a client issues a request to a server, the server may
wish to check whether the client is authorized for the re-
quested operation. It is done using the libcreds library,

which gives the server a way to read the credentials of
the client process and to permform the desired credential
checks.

Kernel credentials API is also available.

Example of using API is shown on Figure 10.

creds_str2creds() converts token string to internal for-
mat.

creds_getpeer() retrieves credentials of the client pro-
cess.

creds_have_p() checks if the client process has re-
quired credential.

6.8 DBUS support

6.9 File System Access Control

Debian packages often contain installation scripts which
runs under the root. It allows them to modify any files



142 • Mobile Simplified Security Framework

creds_value_t value;
creds_type_t type;
require_type = creds_str2creds("UserData", &require_value);
fd = accept(sockfd, &cli_addr, &clilen);
ccreds = creds_getpeer(fd);
allow = creds_have_p(ccreds, require_type, require_value);
if (allow)

write(fd, MESSAGE("GRANTED\n"));
else

write(fd, MESSAGE("DENIED\n"));

Figure 10: Code example

on the system which can make device unusable. In order
to prevent that is necessary to protect access to certain
files and folders.

Validator reference hash list also contains list of tokens,
required to access files and folders. Validator uses re-
source tokens kernel API to verify process’s permission
to access the file.

6.10 Kernel implementation details

Credentials Manager is implemented as set of kernel
modules: restok, credp, and creds.

6.10.1 restok

restok module provides a persistent mapping of strings
to unique dynamically assigned identifier numbers.

The generated identifiers are used as supplementary
group numbers in the task structure and provide ad-
ditional, dynamically configured credentials for pro-
cesses. An access to service is protected by requiring a
presence of specific credential in the task context (sup-
plementary groups).

Although these numbers are used as supplementary
groups, they are not persistent and cannot be used as
file system groups in permanent storage.

Once the string has been assigned an identifier, this
assignment cannot be changed while restok module is
loaded. If the module is compiled into the kernel, the
assignments are permanent until the next boot.

To provide different name spaces, the strings form a for-
est of trees. The string corresponding the identifier, is

the path from the ground up to the node that defines the
identifier. Within the path "::" is used as a separator.

The module creates a special default tree with an empty
string as a name of the root. A string without any "::" is
assumed to be a direct child of this default root. For any
other identifiers, the string must be a full path from one
of the roots to the defining node.

The above rule would make it impossible to address any
other root nodes. Thus, the module implements a special
case, where a string containing "name::name" collapses
into "name". Some examples:

foo -> "::foo" (symbol under default root)
foo::foo -> "foo" (root level symbol, different from pre-
vious)
foo::foo::foo -> "foo" (a repeated name is reduced to
single instance)
::foo -> "::foo"
:: -> "" (= default root)

The purpose of the "default root" is to provide appli-
cations a place to define simple symbols, which do not
conflict with the root names, which are used for identi-
fying different name spaces.

The string used in resolving an identifier (function
’restok_locate’) is always a full path or a string under
the default root.

Strings are defined one level at a time (function
’restok_define’). The identifier of the parent must be
supplied. A zero as parent creates a new root.

A malicious application could create a huge number of
mapped strings. This is the only reason for limiting the
capability of creating new mappings.



2010 Linux Symposium • 143

For debugging purposes, restok can be compiled as a
module, but real usage requires that it is built in.

Source code of this module is located in:
linux/security/mssf/restok

6.10.2 credp

credp module provides credentials management and as-
signment to the process.

This module maintains a runtime credentials policy,
which is a mapping of credentials to an executable or
identifier. The module provides a user space API via se-
curityfs entry /sys/kernel/security/credp/policy, which
is used by tools to add and remove rules from the run-
time policy. When adding a new rule, kernel performs
translation of resource token strings to identifiers using
kernel API provided by the restok module.

Credentials Policy database is located in the
/var/lib/mssf/restok/restok.conf file. During boot,
the policy loader mssf-loader reads rules from the
policy database and imports them into the kernel. Upon
installing a new package, package manager, in addition
to updating the policy database, imports new rules into
the kernel.

To perform credentials assignment, the credp mod-
ule registers a hook that is called when new ex-
ecutable is about to be started. To achieve
that, we implemented a small patch for secu-
rity/commoncap.c:cap_bprm_set_creds(), which al-
lows modules to register credentials assigner operations.

Operations has apply() function, which is called from
cap_bprm_set_creds() upon executables startup via ex-
ecve.

Source code of this module is located in:
linux/security/mssf/credp

6.10.3 creds

creds module provides an API for user space ac-
cess control in client/server architecture. The mod-
ule provides a user space API via securityfs entry
/sys/kernel/security/creds/read, which is used by lib-
creds library.

This module gives the server a way to read the creden-
tials of the client process and to perform the desired cre-
dential checks. Because this is targeted for access con-
trol, the returned credentials are the *effective* creden-
tials.

Without this service, getting information about the cre-
dentials of another process, is only possible by parsing
the "/proc/<pid>/status" content, which is fragile to for-
mat changes and it only provides maximum of 32 sup-
plementary groups.

In addition to credentials retrieval, this also provides
translations between string and numeric values of cre-
dentials. Currently only capabilities names need to be
provided and handled by the kernel.

If a companion module ’restok’ is compiled, this pro-
vides a gateway for translations of symbols defined
there. The restok defined symbols are currently mapped
into credentials via use of supplementary groups. Other
mappings, like defining a totally new credential type for
those, are possible in future.

Source code of this module is located in:
linux/security/mssf/creds

7 Privacy Protection

7.1 Protected Storage

Protected Storage provides protection against offline at-
tacks.

Mobile device can be lost or stolen. For that reason it
may be a good idea to store sensitive data such as con-
tacts in encrypted form.

Also some security related configuration data such as
security policies, credentials policy, reference hash list,
certificates, and other configuration data requiring pro-
tection against unauthorized modifications.

For that purpose MSSF provides Protected Storage ser-
vice. Protected storage can be global (G), private (P) or
shared between applications (S). It can be used for in-
tegrity protection (s) or also for confidentiality (e) pro-
tection.

Protected storage implementation uses chipset crypto-
graphic services, and is based on application id and re-
source tokens.



144 • Mobile Simplified Security Framework

Global Private Shared
Signed Gs Ps Ss

Encrypted Ge Pe Se

Table 1: Protected Storage types

Private storage uses an application specific key, which is
derived from an application id: K(device key, AppID).
Global and Shared storages use a shared key, which is
derived from a resource token: K(device key, Resource
Token). Keys are device specific and ensure copy pro-
tection.

If the protected storage is based on a resource token,
only those applications that have the resource token can
manipulate the store. If the protected storage is based
on an application id, only those binaries that share the
same application id can manipulate the store.

Applications need to use special API in order to use pro-
tected storage.

7.2 Security FS

In order to provide easy-to-use protected storage for
such applications, where it doesn’t make sense to use
proprietary API, MSSF provides a FUSE-based user
space file system for similar functionality through the
normal POSIX file handling API.

This means in practice that the encryption is transpar-
ent for each application, in a similar way with a nor-
mal block-device (disk partition) encryption. But unlike
with partition-wide encryption, applications cannot see
and/or decrypt each other’s files unless they have proper
credentials, regardless of whether they are running in the
same or different user-id.

Manifest file is extended to describe mount points and
type of the storage.

Security FS is under heavy development now.

8 Performance

MSSF has slight effect on system performance. Boot
time, application startup, runtime performance are af-
fected.

8.1 Integrity protection

Integrity protection (Validator) has most significant im-
plication to system performance. Binary startup time in-
creases, because Validator needs to calculate the SHA1
hash. Verification is done only when binary is loaded
for the first time.

Performance of Validator is heavily depends on use and
performance of SHA1 HW accelerator. Nokia MeeGo
1.0 N device has SHA1 HW accelerator which is, ac-
cording to our measurements, quite CPU and power ef-
ficient. In our case, application startup time increases by
5 to 10%, and total boot time by 2 to 3%.

8.2 Access Control

Performance penalties given by Access Control frame-
work is insignificant.

Credentials Policy is loaded during boot and requires
time insignificant to the total boot time.

Access Control affects application startup time, because
Credentials Manager needs to find a policy, and to as-
sign credentials if one exists. It increases startup time
by 2.5% (or 6ms in our case).

9 Conclusions and Future work

Mobile Simplified Security Framework is a comprehen-
sive, light-weight alternative to heavy security frame-
works for mobile devices. Secure SW distribution
model is a important part of MSSF end-to-end security
model.

Latest Linux kernel provides integrity subsystem called
IMA [6], but verification module (EVM) has not been
integrated yet. We will consider possibility to use it
when all components are available in the kernel.

MSSF Access Control has similarities to SMACK and
we currently investigating possibility for co-operation.

MSSF project can be found on [8]. There libraries, tools
and patches for the Linux kernel can be found.



2010 Linux Symposium • 145

10 Acknowledgements

I would like to thank my Nokia colleagues Ilhan Gurel,
Vesa Jaaskelainen, Janne Karhunen, Markku Kylanpaa,
Juhani Makela, Janne Mantyla, Elena Reshetova, and
Markku Savela for some material, suggestions and re-
view of the article.

References

[1] SELinux - Security Enhanced Linux,
http://www.nsa.gov/research/
selinux/index.shtml

[2] SMACK - Symplified Mandatory Access Control
Kernel for Linux,
http://schaufler-ca.com/

[3] TOMOTYO Linux - MAC implementation for
Linux,
http://tomoyo.sourceforge.net/

[4] Trusted Computing Group, TPM main
specification, https:
//www.trustedcomputinggroup.org/
specs/TPM/

[5] TGG Mobile Trusted Module specification, 2006,
https:
//www.trustedcomputinggroup.org/
specs/mobilephone/

[6] Linux kernel integrity subsystem,
http://linux-ima.sourceforge.net/

[7] DigSig project,
http://disec.sourceforge.net/

[8] Mobile Simplified Security Framework Project,
http://meego.gitorious.org/
meego-platform-security



146 • Mobile Simplified Security Framework



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


