
Twin-Linux: Running independent Linux Kernels simultaneously on
separate cores of a multicore system

Adhiraj Joshi
LinSysSoft Technologies

adhiraj@linsyssoft.com

Swapnil Pimpale
LinSysSoft Technologies

swapnilp@linsyssoft.com

Mandar Naik
LinSysSoft Technologies

mandarn@linsyssoft.com

Swapnil Rathi
LinSysSoft Technologies

swapnilr@linsyssoft.com

Kiran Pawar
LinSysSoft Technologies

kiranp@linsyssoft.com

Abstract

There are three classes of common consumer and en-
terprise computing - Server, Interactive and Real-Time.
These are characterized respectively by the need to ob-
tain highest throughput, sustained responsiveness, and
hard real-time guarantees. These are contradictory re-
quirements hence it’s not possible to implement an op-
erating system to achieve all these goals. Most operating
systems are designed towards serving only one of these
classes and try to do justice to the other two classes to a
reasonable extent.

We demonstrate a technique to overcome this limitation
when a single hardware box is required to fulfill multiple
of these computing classes. We propose to run differ-
ent copies of kernels simultaneously on different cores
of a multi-core system and provide synchronization be-
tween the kernels using IPIs (Inter Processor Interrupts)
and common memory. Our solution enables users to run
multiple operating systems each one the best for its class
of computing. For ex., using our idea we can configure a
quad core system with 2 cores dedicated for server class
computing (database processing), 1 core for UI applica-
tions and remaining 1 core for real-time applications.

This idea has been used in the past, primarily on non-
x86 processors and custom designed hardware. Our pro-
posal opens the doors of this idea to the off-the shelf
hardware resources. We present Twin-Linux, an imple-
mentation of this scenario for 2 processing units using
Intel-Core-2-Duo system. This idea finds applications
in - Filers,Intelligent Switches, Graphics Processing En-
gines, where different types of functions are performed
in a pipelined manner.

1 Introduction

Consider an application that requires huge data compu-
tations and responsiveness simultaneously. In this case,
an operating system with server kind of computing will
only be able to handle data processing part and it lacks
in responsiveness. while realtime system will be able to
handle responsiveness but throughput will be very low.
Hence there is a need to provide different operating sys-
tem environment within the same hardware box.

We have implemented this concept on a Intel Core 2
Duo architecture. In current scenario (On a Intel Core
2 Duo system), there are two cores (processors) on a
single chip, a SMP Kernel and a single copy of RAM.
In normal case, a single copy of kernel boots up on
core 2 duo machines in SMP (Symmetric Multi Pro-
cessing) mode. At the boot time one of the cores
boots the Linux Kernel and other keeps spinning till
the Kernel boots up. The booting core is termed as
the BSP(Bootstrap Processor) while the other cores are
termed as the APs(Application Processor). After the
booting process scheduler assigns the task to both cores
in parallel so that there could be simultaneous execution
of different threads on respective cores.

By replicating kernel code and by making performance
boundaries explicit, Twin-Linux removes the kernel as
a bottleneck to scaling up performance in large multi-
processor systems. Each kernel loaded on the cores is
composed of a scheduler, a memory manager and code
to coordinate communication between other kernels.

The rest of the paper is organized as follows: Section 2
provides background of SMP systems. Details of pro-
cessor classification, ACPI tables and IPI messages are

• 101 •



102 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

covered in section 2. Section 3 covers the motivation
behind the project and the innovation of Twin-Linux.
Section 4 covers the Twin-Linux design. It covers the
implementation details and the algorithms used to lo-
cate the MADT and IPI communication. It provides an
insight into the issues involved in loading the kernel on
the respective cores. A concise description of the ap-
plications and marketability of the project is included in
Section 5. Finally section 6 summarizes the conclusions
of the project and the last section lists the References.

2 Features of SMP Systems

2.1 Processor Classification

The Intel Specification classifies Processors into two
types: the bootstrap processor (BSP) and the application
processors (AP). The BSP is chosen by the hardware or
by the BIOS in conjunction with the hardware. The BSP
is responsible for initializing the system and for booting
the operating system.

The BSP executes the BIOS’s boot-strap code to con-
figure the APIC environment, sets up system-wide data
structures, and starts and initializes the APs. When the
BSP and APs are initialized, the BSP then begins ex-
ecuting the operating-system initialization code. Fol-
lowing a power-up or reset, the APs complete a mini-
mal self-configuration, then wait for a startup signal (a
SIPI message) from the BSP processor. Upon receiving
a SIPI message, an AP executes the BIOS AP configu-
ration code, which ends with the AP being placed in halt
state. APs are activated only after the operating system
is up and running. Once the MP operating system is up
and running, the BSP functions as an AP.

2.2 ACPI Tables

For a multiprocessor system, the BIOS performs the fol-
lowing functions :

• Pass configuration information to the operating
system that identifies all processors and other mul-
tiprocessing components of the system.

• Initialize all processors and the rest of the multi-
processing components to a known state.

The BIOS fills the ACPI system description tables and
hands over the control to the Boot loader. In a mul-
tiprocessor system, multiple local and I/O APIC units
operate together as a single entity, communicating with
one another over the ICC bus. The APIC units are col-
lectively responsible for delivering interrupts from in-
terrupt sources to interrupt destinations throughout the
multiprocessor system.

The local APIC units also provide interprocessor in-
terrupts (IPIs), which allow any processor to interrupt
any other processor or set of processors. There are
several types of IPIs. Among them, the INIT IPI and
the STARTUP IPI are specifically designed for system
startup and shutdown. Each local APIC has a Local Unit
ID Register and each I/O APIC has an I/O Unit ID Reg-
ister. The ID serves as a physical name for each APIC
unit. It is used by software to specify destination infor-
mation for I/O interrupts and interprocessor interrupts,
and is also used internally for accessing the ICC bus.

0
1
2
3
4
5
6
7
8
9
11
10
12
13
14
15

0
1
2
3
4
5
6
7
8
9
11
10
12
13
14
15

I/O
APIC

I/O
APIC

Interrupt
requests

Interrupt
requests

ICC Bus

Local
APIC

1

Local
APIC

2

Local
APIC

3

CPU
1

CPU
2

CPU
3

BSP AP1 AP2

Figure 1: SMP System with APIC Configuration

2.3 Using INIT IPIs

The primary local APIC facility for issuing IPIs is the
interrupt command register (ICR). INIT IPI is an Inter-
processor Interrupt with trigger mode set to level and
delivery mode set to “101” (bits 8 to 10 of the ICR).

The ICR consists of the following fields :



2010 Linux Symposium • 103

• Vector: The vector number of the Interrupt being
sent.

• Delivery Mode: Specifies the type of IPI to be sent.
This field is also know as the IPI message type
field.

101 – INIT IPI message to all the local APICs in
the system to set their arbitration IDs to the values
of their APIC Ids, the level flag must be set to 0 and
trigger mode flag to 1.

110 – Start Up IPI Sends a special “start-up” IPI
(called a SIPI) to the target processor or processors.
The vector typically points to a start-up routine that
is part of the BIOS boot-strap code

• Destination Mode:

• Delivery Status (Read Only)

• Level

• Trigger Mode

• Destination Shorthand

• Destination

An INIT IPI is an IPI that has its delivery mode set
to RESET. Upon receiving an INIT IPI, a local APIC
causes an INIT at its processor. The processor resets its
state, except that caches, floating point unit, and write
buffers are not cleared. Then the processor starts execut-
ing from a fixed location, which is the reset vector loca-
tion. To cause the processor to jump to a different loca-
tion, the INIT IPI must be used as part of a warm-reset.
By putting an appropriate pointer in the warm-reset vec-
tor, setting the shutdown code to 0Ah, then causing an
INIT, the BIOS (or the operating system) can cause the
current processor to jump immediately to any location.

2.4 Using Startup-IPIs

STARTUP IPIs are used with systems based on Intel
processors with local APIC versions of 1.x or higher.
These local APICs recognize the STARTUP IPI, which
is an APIC Interprocessor Interrupt with trigger mode
set to edge and delivery mode set to “110” (bits 8
through 10 of the ICR).

The STARTUP IPI causes the target processor to start
executing in Real Mode from address 000VV000h,

where VV is an 8-bit vector that is part of the IPI mes-
sage. Startup vectors are limited to a 4-kilobyte page
boundary in the first megabyte of the address space.

For an operating system to use a STARTUP IPI to wake
up an AP, the address of the AP initialization routine
(or of a branch to that routine) must be in the form of
000VV000h. Sending a STARTUP IPI with VV as its
vector causes the AP to jump immediately to and begin
executing the operating system’s AP initialization rou-
tine.

3 Twin-Linux Applied

Consider a network services application. We describe
the performance benefits that can be realized from the
utilization of multiple processing cores for the applica-
tion.

Functional pipelining is a technique that sub-divides ap-
plication software into multiple sequential stages and as-
signs these stages to dedicated execution cores. Pipelin-
ing can increase locality of reference since each execu-
tion core runs a subset of the entire application, poten-
tially increasing the cache hit rate.

In case of a 2-core system, we can have one core dealing
with the network I/O requests that will process them par-
tially and the other core will handle all the disk I/Os and
remaining processing. Thus the first kernel will handle
the networking part where it accepts requests from other
systems, processes them partially for the other core and
then the other kernel takes care of the storage part and
processes those requests completely (as shown in the
Figure 2). Distributing network processing to multiple
cores can be achieved using multiple network interfaces
(NICs) on a system, or affinitizing interrupts of NICs
to different cores. This approach can be generalized to
apply to other types of network connections between
devices such as IPSec flows or IP header compression
contexts. Since there is typically little or no locality of
reference between different traffic flows like these, re-
ducing the number of different traffic flows processed
by each core can improve cache efficiency. Each execu-
tion core services a subset of the flows which confines
memory accesses to a smaller set of memory addresses
and potentially increases cache efficiency.



104 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

3.1 Innovation

Multi-core Processors have been adopted in various
computer systems from commodity machines to embed-
ded systems. To utilize these multi-core machines more
efficiently, a promising way is to run multiple applica-
tions on one machine or share resources among different
users. In such a situation, instead of using a single op-
erating system, we can run multiple operating systems
each one the best for its class of computing. This ben-
efits the applications which demand different operating
system environments.

This approach is the first of its kind and is most suitable
for computation-intensive and responsive applications.
This idea can be easily scaled for quad core and eight
core architectures with minimal modification.

IPIsCore 0 Core 1

Network driver Storage driver

RAM

Communication among 
2 cores

Incoming request

ACK / return path

Disks

Figure 2: Twin-Linux applied to Filers

4 Design

4.1 Implementation Details

In the current scenario, The BIOS (Basic Input/Output
System) selects the Bootstrap Processor (BSP) from a

set of processors and the rest are Application Proces-
sors. The BIOS, initially, puts the APs in halted state,
so that they do not try to execute the same BIOS code
as the BSP. The BSP performs all the booting sequence
and loads the Operating System after the POST (Power
On Self Test). When the control is handed over to the
boot loader, GRUB (GRand Unified Boot loader) in our
case, only the BSP is active whereas the APs are in a
halted condition with interrupts disabled. This means
that the AP’s local APICs are passively monitoring the
APIC bus and will react only to INIT or STARTUP in-
terprocessor interrupts (IPIs).

In our project, the GRUB code is modified in such a
way that it will bring up all the APs unlike the normal
scenario where only the BSP is up and the APs are in
a halted state. Thus we provide SMP support to GRUB
making it SMP compatible.

Our project involves the following steps::

4.1.1 Locating and Parsing the MADT (Multiple
APIC Description Table)

The MADT is one of the ACPI (Advanced Configura-
tion and Power Interface) tables which furnish informa-
tion about Multiple Processors.

After locating the Root System Description Pointer
(RSDP) structure, we locate the Root System Descrip-
tion Table (RSDT) or the Extended Root System De-
scription Table (XSDT) using the physical system ad-
dress supplied in the RSDP. The MADT is then located
by walking through the RSDT. The MADT contains the

• Header

• Local APIC Address

• List of APIC Structures - This list contains all of
the I/O APIC, Local APIC, Interrupt Source Over-
ride, Non-Maskable Interrupt Source, Local APIC
NMI Source, Local APIC Address Override struc-
tures needed to support the platform. The APIC
structures are searched for identifying the number
of processors and their respective Local APIC IDs.



2010 Linux Symposium • 105

Figure 3: Overview of ACPI Tables

We obtain the Processor ID and the Processor Local
APIC ID from the Processor Local APIC Structure
which has the following format:

Figure 4: Processor Local APIC structure

4.1.2 Bringing up the APs

The APs will be activated by sending the IPIs using the
local APIC IDs of the APs. We follow the “Univer-
sal Algorithm” for awaking the Application Processors
mentioned in the Intel Multiprocessor Specification Ver-
sion 1.4.

Figure 5: Universal Algorithm

The following pseudo code Broadcasts an INIT-SIPI-
SIPI IPI sequence to wake up and initialize the APs:

Figure 6: INIT-SIPI-SIPI IPI sequence



106 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

4.1.3 Loading Kernel on the APs

After bringing up all the APs, independent copy of the
kernel will be loaded on each of them. Before loading
of the kernel on the individual cores, following issues
are taken care of:

1. Division of RAM:

The RAM memory will be divided symmetrically
according to the number of cores available, in our
case, two. Thus, For a Intel Core 2 Duo processor
running at 2.66 GHz with 2 GB RAM , Each kernel
will be given 1 GB RAM memory and some prede-
fined shared memory will be reserved for IPI com-
munication. The similar approach can be followed
for multi-core systems with some extensions.

2. Disabling SMP support:

The SMP support needs to be disabled before load-
ing of the kernels otherwise the kernel would also
attempt to wake up the application processors.

3. Sharing the Hardware:

One kernel will mask all PCI devices and other ker-
nel will mask all the PCI-X devices. Both kernels
will get one network adapter each (one PCI and
other gets PCI-E cards) so that both are connected
to the network.

4. User access to the OS:

The video RAM will be divided into two halves so
that the one kernel displays messages in the upper
half and the other one uses the lower half for dis-
play.

5. Communication between Application processors:

Communication between APs will be done through
IPIs (Inter-Processor Interrupts) and some prede-
fined common memory.

5 Applications

The project can be deployed in Linux environment for
Intel core 2 duo architecture to efficiently utilize both
the cores simultaneously.

Examples of systems where this method works are - fil-
ers (storage devices), SCSI targets, and graphics pro-
cessing engines.

Intelligent switches: Intelligent switches do the job of a
regular switch and filtering the data being transmitted.
Filtering of data could be for identifying security threats
or masquerading. This requires a combination of two
classes of computing - real time computing for switch
functionality (control plane) and server computing for
filtering (data plane). Building an efficient switch us-
ing a single operating system kernel running on mul-
tiple cores could be a challenging task. The resultant
switch may either waste computing resources or may
not provide adequate responsiveness to connected de-
vices. This situation can be improved with our proposal
to run an operating system suitable for control plane on
a single core while the rest of the cores run another op-
erating system suitable for heavy server class computing
in data plane.

6 Road Ahead

6.1 Enhancements

In future this idea can be implemented for architectures
other than x-86 and for different boot loaders. This idea
can be easily scaled for quad core and eight core archi-
tectures with minimal modification.

6.2 Conclusion

We suggested Twin-Linux an approach of running in-
dependent Linux kernels on multiple cores simultane-
ously. This approach opens the doors of mixed kind of
computing to the x86 and open-source community. It
enables users to run applications that require different
operating system environments. It also provides separa-
tion of multiple environments for users. In addition, it
reduces contention in operating systems kernels by re-
ducing the synchronization costs.

It extensively takes advantage of the abundance of cores
of multi-core systems. This project is a working proto-
type for systems which demand a combination of data-
processing, real-time processing and UI processing. It
also provides SMP support to GRUB.

References

[1] Intel’s MP specification Version 1.4 [Online]
Available http:
//www.intel.com/design/archives/
processors/pro/docs/242016.htm



2010 Linux Symposium • 107

[2] Intel’s ACPI specification Revision 4.0 [Online]
Available
http://acpi.info/spec40.htm

[3] Intel’s 64 and IA-32 Architectures Software
developer manual Volume 3A [Online] Available
http://www.intel.com/products/
processor/manuals/

[4] Intel Architecture Software Developers Manual
Volume2: Instruction Set Reference [Online]
Available http:
//developer.intel.com/design/
pentiumii/manuals/243191.htm

[5] Prof. Godfrey C. Muganda, North Central
College, Intro to GNU Assembly Language on
Intel Processors [Online] Available
scr.csc.noctrl.edu/courses/
csc220/asm/gasmanual.pdf

[6] Danel P. Bovet, Marco Cesati, Understanding The
Linux Kernel

[7] Robert Love, Linux Kernel Development



108 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


