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Abstract

The NFS reply cache, also known as the Duplicate Re-
quest Cache, was first described over twenty years ago
[Juszczak] as a way to help a server give correct re-
sponses to certain types of replayed operations. Some
operations, called idempotent, can be safely repeated
and will do no harm. Other operations, called non-
idempotent, can only succeed once [Callaghan]. For ex-
ample, a request to read a certain block of a file will
produce the same result each time. But an operation
such as rename will succeed the first time, but a sub-
sequent retry will result in an error being reported to
the client. The reply cache keeps track of responses to
recently performed non-idempotent transactions, and in
case of a replay, the cached response is sent instead of
attempting to perform the operation again. In addition to
avoiding these client-visible errors, performance is also
improved by avoiding unnecessary work.

The trouble begins when the size of the cache is inad-
equate to deal with the rate of incoming transactions.
Now the mechanism breaks down, and replayed requests
may result in duplicate work being done and erroneous
results generated. Even modest workloads can result
in an enormous rate of non-idempotent requests which
would necessitate enlarging the reply cache to unaccept-
able levels. Heavy workloads can cause network con-
gestion and delays that can foil attempts to cache enough
transactions to maintain correctness. Simply increasing
the cache size, even by large factors, isn’t effective.

We address these problems by making the cache smarter
instead of larger. First, we add the concept of pro-
tecting a cache entry, which temporarily makes it ex-
empt from the usual replacement process. Next, we add
some heuristics that grant or revoke the protection of a
cache entry. Finally we eliminate automatic expiration
of cache entries. Taken all together, this scheme dras-
tically reduces the number of errors reported by clients
on a large network.
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1 Traditional Design

Linux drew strongly from its predecessors in its imple-
mentation of the NFS reply cache, and despite occa-
sional rumors of being rewritten [Kirch], it has changed
very little since its inception. In addition to the actual re-
ply data, each cache entry contains other essential infor-
mation about one NFS transaction, including the client’s
IP address, the transaction ID (XID), NFS procedure
number, timestamp, etc. As entries are created, they
are placed onto hash chains indexed by the XID to en-
able faster searching. When a new request is received,
the cache is searched. If a match is found (a hit) then
the cached reply is sent back to the client. Otherwise,
a new entry is made, replacing an existing entry via a
least-recently-used policy. An entry “expires” after two
minutes, which excludes it from searches, even if other
cache entries have not replaced it. This is to avoid issues
with transaction ID re-use [Werme]. The cache entries
are also kept on an additional linked list that is ordered
by time of use. When an entry is created or touched, it
is moved to the head of this list. This makes the least re-
cently used entry instantly accessible when replacement
is invoked.

The size of the NFS reply cache is critically important,
since it directly affects residency time of a cache entry.
If entries are replaced too quickly, then a replayed trans-
action will not be found in the cache and a client visible
error will result. We call this a critical reply cache miss.
A worse consequence of a critical reply cache miss is
the “lost write due to replayed truncate” problem [Sun]
which can cause data loss.

The design and sizing of the reply cache dates back
to 1989 [Juszczak] when processing power and net-
work bandwidth were rather limited, which in turn con-
strained the rate of incoming NFS requests. The power
of a modern server makes configurations possible which
were probably not envisioned twenty years ago. Nowa-
days it is not uncommon for a server to handle requests
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from hundreds, or even thousands of clients simultane-
ously, so it is not a huge leap to realize that the reply
cache must be sized appropriately for the expected load.

The number of entries in the reply cache has been sub-
ject to many changes over the years, with various imple-
mentations (i.e., BSD, DEC Unix, HP-UX, Solaris, etc)
employing widely differing sizes, and the Linux code
settling on 1024 entries. The paucity of data to jus-
tify any particular choice suggests that some guesswork
was involved in each implementation. A clever scheme
to dynamically resize the reply cache based on demand
was described in [Banks], and this work will probably
be incorporated into the Linux kernel in the very near
future. Our experiments with a reply cache 16 times
larger than normal (16384) showed cache entries surviv-
ing for mere seconds. With typical RPC replay timers
being multiples of minutes [Eisler], we were convinced
to look at possibilities that did not involve enlarging the
cache.

In addition to the sizing dilemma, the cache replace-
ment algorithm is rather unintelligent. The simple least-
recently-used policy doesn’t take into account any sta-
tistical data available. For instance, busy clients may
consume many cache entries, but this should not have
adverse effects on less busy clients. Network conges-
tion can cause replies to be lost and wreak havoc on the
simplistic cache replacement algorithm. Since there is a
practical limit to how much memory should be devoted
to the cache, a solution more appropriate for today’s en-
terprise environments is needed.

2 Is this a problem worth solving?

A human operator may not notice, may not care, or very
likely will not know how to interpret the symptom of
a critical reply cache miss. All that will be seen by a
user is a puzzling failure of a mkdir command, for in-
stance, when in fact the directory was created success-
fully. A user faced with this scenario is likely to pre-
tend the whole thing was a dream, and move on. Conse-
quently, problem reports are rare, and unlikely to iden-
tify the true source of the problem. This line of reason-
ing might explain why we haven’t seen many efforts to
correct the problem.

Now envision a different type of scenario. There’s a file
server with hundreds or even thousands of active clients.
The clients are running applications that are updating

databases, or something equally critical. Perhaps client
applications exit prematurely when they see unexpected
failures of simple file operations. In these scenarios,
critical reply cache misses are likely to be noticed, since
applications are much less forgiving than human oper-
ators when faced with unexpected results. At best, this
will result in customer complaints, and at worst, there
may be data corruption.

New file serving protocols, such as NFSv4.1 [Noveck]
[Shepler], do not suffer from this problem. But history
has shown that emerging technologies do not instantly
displace old ones, and NFSv3 will likely be around for
many more years.

3 New Paradigms, New Problems

A High Availability NFS server coupled with a clustered
filesystem [CITI] [Bhide] creates new problems for the
NFS reply cache. Although high availability and cluster
issues are not the focus of this paper, the myriad prob-
lems that they expose provided much of the impetus to
design new methods. These new ideas are completely
applicable to a standalone server.

Transient service disruptions, such as failover events,
often exacerbate networking back-off mechanisms and
can cause extended replay delays. In practice, a failover
may require several seconds or more to complete, but
may incite transaction replay delays of a minute or
more. Failover events are hot spots of trouble for the
reply cache because of the greatly increased probability
of a lost reply and a subsequent replayed transaction.

For example, when a failover event is initiated for ad-
ministrative reasons, i.e. maintenance, load balancing,
etc., the contents of the reply cache from the failing
server must be transported to the takeover server. Vari-
ous schemes for doing this have been suggested [Bhide]
and the straightforward method we use is to simply have
the failing server write out the contents of the reply
cache to some network accessible location, and then
have the takeover server read it back. This approach im-
mediately caused a new problem, as the flood of new
cache entries from the failing server displaced more
recent cache entries that were already resident on the
takeover server. New logic had to be created to deal
with these competing sets of cache entries.



4 Evolution and Implementation of a New Ap-
proach

The cache entry competition caused increased client-
visible errors right after a failover event. As a first step,
acquired cache entries should not displace existing en-
tries on the takeover server, but rather should be merged
with them as space allows. Since clients of the fail-
ing server are victims of a transient service disruption,
they are more likely to retry requests, and thus their re-
ply cache entries are more important than existing ones.
This led to the first major change to the reply cache
logic. A protected_until field was added to the
cache entry structure, signifying that this entry is exempt
from replacement and reuse until a certain time in the fu-
ture. This gave the acquired entries a survival advantage
over normal entries, and greatly eased the problem of
failover related client request errors.

Once this protected status was available for cache en-
tries, other opportunities arose to implement policies
that could be applied to grant or revoke this special sta-
tus, and thus help in other problematic scenarios. For
instance, when a cache hit is found, the lookup code
checks to see if it’s for a transaction that is still being
processed by the filesystem. If so, we have no answer
to give the client, so RC_DROPIT is returned, which
has the effect of sending no reply whatsoever. It’s not
clear why the client sent a duplicate request. Perhaps the
original request was delayed due to a media problem,
disruption in connection to a SAN or RAID, filesystem
repair, etc. In any case, no response has yet been sent for
the original request, and now the code is dropping the re-
ply to the duplicate request. It seems like a sure bet that
the client is going to try the request again! As such, the
cache entry is a perfect candidate for “protected” status.

A similar piece of logic in the lookup code discards the
reply for a request received too soon after the previous
identical request. Again, it’s not clear what could cause
this to happen, but if it does, we know that the client
may not have received a response to its previous request,
and it won’t receive a response to the current one ei-
ther. Likewise, this cache entry ought to be protected
since it is very likely that the client will try again soon.
These hints were very successful in reducing critical re-
ply cache misses.

The two minute cache entry expiration came under
scrutiny next. If extreme conditions could cause re-
plays to be delayed for long periods, then the two minute
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expiration time would foil any attempt to do anything
more sophisticated. The best explanation available for
the existence of the expiration period is that it prevents
false positive cache hits when a client reuses XIDs with-
out cycling through the entire 32-bit space available
[Werme]. This may happen, for instance, when a client
reboots or when multiple NFS clients originate from the
same IP address [Oracle]. Though XID reuse could well
be considered a client bug, with the fix belonging in the
client code, a responsible server should attempt to han-
dle this better. Our reply cache code stores a simple
checksum of some of the data payload along with the
traditional cache keys and requires a match of the check-
sum before declaring a cache hit. This substantially re-
duces the probability of a false positive cache hit. Given
this new logic, the two minute expiration logic was elim-
inated entirely, thus paving the way for cache entries to
have extended lives in the system.

Following the successes of the previous hints, an ex-
ploration was made of other available information that
could be used to predict which cache entries are likely
to be needed in the future. One predictor seemed to be
very powerful: a client running a single threaded NFS
application generally does not issue a new request un-
til it receives a reply to the last one. This means that
a replayed transaction is very likely to be the last one
received from that client. This suggests that the cache
hit rate can be greatly increased by simply remembering
each client’s most recent transaction. This rule for single
threaded clients only seems to fail when the client appli-
cation writes lots of data, since write operations may be
reordered, delayed, or grouped by the client.

Storage is allocated to keep essential information about
the most recently used transaction for a fixed number of
clients. This new structure is called the Most Recently
Used (MRU) list. It is indexed using a standard hashing
function of the client’s IP address and keeps track of
the XID of the most recent transaction, the time that the
transaction occurred, and a pointer to the actual reply
cache entry for the transaction.

When a cache entry is being made, the MRU list is up-
dated with the information describing the new transac-
tion. The reply cache entry itself is marked with a pro-
tect time in the future using the previously described
protected_until cache entry field. If there is an
existing most recently used cache entry associated with
the client, its protection time is cancelled, thus making
it eligible for replacement.
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5 Test Environment and Results

During the course of rigorous product testing, our
servers are routinely subjected to extremely high loads
and unusual configurations. It was in this harsh environ-
ment that many subtle problems came to light. Most of
the problems can be boiled down to critical reply cache
misses, and so for this paper, test data was generated
using a relatively small network and artificially inject-
ing transaction reply losses into the traffic. These losses
caused the clients to retry after 60 seconds. Ten clients
were doing nothing but generating a non-idempotent
workload on the server, while two other clients ran the
well known test suite, Connectathon [CTHON]. Con-
nectathon encompasses a large variety of tests, each de-
signed to exercise some particular aspect of function-
ality over NFS, but only the “special” tests were run
since those emphasize operations that are sensitive to
reply cache behavior. This setup generated roughly 450
non-idempotent transactions per second. Linux kernel
version 2.6.29 was used, changing only the reply cache
size from its original value of 1024.

Critical reply cache misses are reduced to zero for sin-
gle threaded NFS clients, which also brings the num-
ber of client visible errors on unlink, rename, etc. to
zero. The graph (Figure 1) shows the number of criti-
cal reply cache misses for several easily observed non-
idempotent operations using a variety of reply cache
sizes (1024, 4096, and 16384) on the stock Linux kernel.
Increasing the cache size to 16384 makes essentially no
difference in the number of client visible errors. The
cache size must be increased to over 27,000 entries be-
fore a significant improvement in behavior is seen. Also
shown is the result for a reply cache modified with our
MRU logic. Note that this modified reply cache only
had 128 entries.

Do be aware that although the Connectathon test suite
is not sensitive to the subtle corrupting effects of re-
played write operations, the MRU list has the same
power to deal with these as it does with other replayed
non-idempotent operations.

6 Potential problems and opportunities for
further development

The MRU list only keeps track of one transaction per
client. If there is more than one thread on a single client
that is making requests, the scheme breaks down. If one
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Figure 1: Results

thread gets stuck waiting for a lost reply, the other is
not impeded and keeps sending requests. This could re-
sult in multiple outstanding RPC transactions, of which
only one will be recorded by the MRU list. Ignoring
multiple applications running on a client, this primarily
affects user space NFS client implementations, such as
Oracle’s Direct NFS [Oracle], and clients that connect
from a private network using network address transla-
tion [NAT]. The latter includes some configurations of
virtual machines [Xen] [VMware] [VirtualBox].

Is it possible somehow to distinguish between two par-
allel streams of requests from the same client? Parallel
userland NFS clients (such as Oracle DNFS) must each
maintain their own TCP connections, each with a unique
source port. Keeping an MRU entry for each unique (IP
address, source port) pair might solve the problem for
this particular case. Parallel userland NFS clients also
probably generate different continuous streams of XIDs,
so it may be workable to detect this and remember the
last XID for each stream. It also may be possible to dis-
tinguish different client threads through their credentials
(i.e., different UIDs).

When the MRU fails to provide a matching cache entry,
there are some hints we can use to attempt detection.
XIDs from each client are often monotonically increas-
ing with respect to the client’s host byte order. If the
XID of a new request is numerically less than that of
the most recently used one, that indicates that it might
be a replay. Though information beyond the single most
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recently used transaction is not saved, this situation can
be flagged and a log may be kept of how often it oc-
curs. Similarly, if a transaction arrives with an XID
that matches the XID in the MRU list, but misses in the
cache, then it must be because the protection time given
to the cache entry wasn’t long enough, and it got re-
placed by a newer entry. Once again, this situation can
also be recorded for later analysis. Although the RPC
specification [RFC1831] explicitly prohibits treating the
XID as a sequence number as we do here, our use of it
in this way is only a heuristic for failure detection and
has no effect on the semantics of the NFS server.

Another problem is that the MRU list must keep track
of at least one datum for each client. If the number of
clients exceeds the size of the MRU list, we’re back at
square one. So another opportunity for improvement is
a dynamically expanding MRU list, or at least a dynam-
ically sizable list that an administrator could configure.

Finally, along with the addition of new data structures
and code comes complexity, and subsequently the po-
tential for bugs and performance loss. This is especially
important since the reply cache can already be some-
what of a bottleneck, and at least one good effort has
been made to remedy this [Banks]. The actual perfor-
mance implications of the MRU list have not been thor-
oughly analyzed and there is the potential that improv-
ing correctness in this fashion hurts performance in an
area where it cannot be afforded. For instance, the MRU
list search algorithm is simplistic. A hash of the client’s
IP address is used as an index into the list, but if there
is a collision, then a linear search algorithm takes over.
Clearly this could be made better with a more sophisti-
cated hashing scheme, but this tradeoff was made after
brief analysis showed that the linear search has to tra-
verse more than a few entries only when the MRU list is
nearly full.

7 Conclusions

The current NFS reply cache implementation is not suf-
ficient for today’s enterprise environments. The fixed
size cache is not large enough and there may not be
a practical way to make it large enough to deal with
heavy workloads without client visible errors. The logic
of the existing solution only takes into account the age
of a cache entry when deciding on an entry to replace.
There is abundant information available that could help
to make more intelligent replacement decisions, but

none of it is utilized. Our contribution is to make use
of some of this data, and make better decisions about
which cache entries to keep and which to throw away.
By making the reply cache algorithm smarter instead of
simply larger, we have minimized the likelihood of er-
rors in both the clustered/HA environments as well as
the single server node environments.
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