
GStreamer on Texas Instruments OMAP35x Processors

Don Darling
Texas Instruments, Inc.
ddarling@ti.com

Chase Maupin
Texas Instruments, Inc.

chase.maupin@ti.com

Brijesh Singh
Texas Instruments, Inc.
bksingh@ti.com

Abstract

The Texas Instruments (TI) OMAP35x applications pro-
cessors are targeted for embedded applications that need
laptop-like performance with low power requirements.
Combined with hardware accelerators for multimedia
encoding and decoding, the OMAP35x is ideal for hand-
held multimedia devices. For OMAP35x processors
that have both an ARM R©and a digital signal processor
(DSP), TI has created a GStreamer plugin that enables
the use of the DSP and hardware accelerators for encode
and decode operations while leveraging open source el-
ements to provide common functionality such as AVI
stream demuxing.

Often in the embedded applications space there are
fewer computation and memory resources available than
in a typical desktop system. On ARM+DSP systems,
the DSP can be used for CPU-intensive tasks such as
audio and video decoding to reduce the number of cy-
cles consumed on the ARM processor. Likewise, addi-
tional hardware accelerators such as DMA engines can
be used to move data without consuming ARM cycles.
This leaves the ARM available to handle other opera-
tions such as running a web browser or media player,
and thus provides a more feature-rich system. This pa-
per covers the design of the TI GStreamer plugin, con-
siderations for using GStreamer in an embedded envi-
ronment, and the community project model used in on-
going development.

1 GStreamer Overview

GStreamer is an open source framework that simpli-
fies the development of multimedia applications, such as
media players and capture encoders. It encapsulates ex-
isting multimedia software components, such as codecs,
filters, and platform-specific I/O operations, by using a
standard interface and providing a uniform framework
across applications.

The modular nature of GStreamer facilitates the addi-
tion of new functionality, transparent inclusion of com-
ponent advancements and allows for flexibility in ap-
plication development and testing. Developers can join
modular elements together in a pipeline to easily create
custom workflows.

GStreamer brings a lot of value-added features to
OMAP35x, including audio and video synchronization,
interaction with a wide variety of open source plugins
(muxers, demuxers, codecs, and filters), and the ability
to play multimedia clips such as those available from
YouTube. Collaboration with the GStreamer commu-
nity exposes many opportunities for code reuse, which
aids in the stabilization and enrichment of existing com-
ponents rather than replicating existing functionality.
New GStreamer features are continuously being added,
and the core libraries are actively supported by partic-
ipants in the GStreamer community. Additional infor-
mation about the GStreamer framework is available on
the GStreamer project site [3].

2 The TI GStreamer Plugin

One benefit of using GStreamer as a multimedia frame-
work is that the core libraries already build and run
on ARM Linux. Only a GStreamer plugin is re-
quired to enable additional OMAP35x hardware fea-
tures. The TI GStreamer plugin provides elements for
GStreamer pipelines that enable the use of plug-and-
play DSP codecs and certain hardware-accelerated op-
erations, such as video frame resizing and accelerated
memory copy operations.

In addition to enabling OMAP35x hardware features,
the following additional goals needed to be addressed
when writing the TI GStreamer plugin:

• The plugin should provide a robust, portable base-
line implementation that serves as a stable starting
point for customer application development.

• 69 •

70 • GStreamer on Texas Instruments OMAP35x Processors

• The plugin should be easy to build and install.

• Certain performance requirements need to be met
beyond the basic utilization of the DSP and hard-
ware accelerators. More detail on performance
considerations will be addressed in section 3.

• The amount of custom TI code should be kept to a
minimum by using open source solutions wherever
possible.

• There should not be any additional restrictions im-
posed by the TI GStreamer plugin on the types of
pipelines created. For example, the video decode
elements should be able to interface with existing
video sinks—not just the video sink from our plu-
gin. Likewise, our video sink should also accept
buffers from open source ARM video decoders.
All elements in the plugin should be interchange-
able with ARM-side equivalents when needed.

• The open source community should be able to use
the plugin, customize it to meet their needs beyond
what is provided in the baseline implementation,
and contribute back where it makes sense.

The TI GStreamer plugin provides baseline support
for eXpressDSPTM Digital Media (xDM1) plug-and-play
codecs and a video sink for using video drivers not sup-
ported by any open source plugin. Multiple xDM ver-
sions are supported, making it easy to migrate between
codecs that conform to different versions of the xDM
specification.

TI is not supporting the productization of the GStreamer
plugin or GStreamer-based solutions. Complete prod-
ucts may require additional development for custom
boards, features not specific to TI hardware (i.e., vi-
sual effects) or the implementation of applications that
provide multimedia functionality through GStreamer.
However, many components such as demuxers, media
players, and other common features and applications are
already available in various open source projects.

3 Considerations for Embedded Systems

When working in an embedded system there are usually
fewer computation and memory resources available than

1TI’s xDM specification defines a uniform set of APIs across var-
ious multimedia codecs to ease integration and ensure interoperabil-
ity. xDM is built over TI’s eXpress DSP Algorithm Interoperability
Standard (also known as xDAIS) specification [7].

in the typical desktop system. Following are some of the
key resource considerations while implementing the TI
GStreamer plugin.

Limited CPU Resources:
In an ARM+DSP system, the ARM is sufficient for
running Linux, driving the peripherals and perhaps
running a simple interface application or browser.
However, in CPU-intensive multimedia applica-
tions that perform operations on complex media
streams, the ARM is simply not powerful enough
to do all of the work and still achieve real-time
playback or encoding. To meet real-time require-
ments, the TI GStreamer plugin must utilize the
DSP and other hardware accelerators to off-load
the work required to process audio and video from
the ARM processor.

Memory Copies are Expensive:
When processing audio and video it is often nec-
essary to copy data between buffers. For example,
when displaying a video frame on a display sub-
system such as the frame buffer, it may be neces-
sary to copy data into buffers provided by the de-
vice driver. Video frames can be quite large. If the
normal system memcpy routine is used, it would
create a significant load on the ARM processor
since real-time playback can require 30 frames to
be copied every second. Hardware acceleration for
buffer copies must be used to keep the ARM load
low enough to perform other tasks such as demux-
ing a stream or managing a media playback inter-
face.

Parallelizing I/O Operations:
In an embedded system the I/O devices available
are often slower than those available on a typical
desktop system. Audio and video files may be
stored on media such as NAND flash or SD/MMC
cards. This means that the I/O wait times are longer
and have more of an impact on real-time perfor-
mance. On embedded systems, the I/O operations
must be performed while the DSP is performing
encode or decode operations to ensure the DSP al-
ways has available data.

4 Software Stack

Figure 1 depicts what the software stack looks like on
an OMAP35x system running a GStreamer-based ap-

2009 Linux Symposium • 71

Codec
Package

Codec
Package

Codec
Package

ARM

ARM Linux Application

GStreamer Libraries
TI Plugin

DMAI
Vdec Adec Framecopy Display

Device Drivers

Linux KernelCodec Engine
VISA APIs

DSP

Link
DSP

Other Application

Support Libraries

Framework Components

DSP/BIOS Kernel
TM

Figure 1: Software Stack for a GStreamer-based application using the TI GStreamer plugin.

plication. At the highest level there will be an ARM
Linux application, such as a media player that is us-
ing the GStreamer library. At this level, developers
familiar with Linux do not need to know a lot about
programming for an embedded system. Other than
cross-compiling their application, there are not a lot of
differences between developing a GStreamer-based ap-
plication on an OMAP35x and on a desktop system.
The GStreamer library loads and interfaces with the TI
GStreamer plugin, which handles all the details specific
to the entitlement of OMAP35x hardware acceleration
and use of the DSP. The core GStreamer library does not
need to be aware of anything specific to the OMAP35x.

The TI GStreamer plugin interfaces with OMAP35x
hardware using software components from the Digital
Video Software Development Kit (DVSDK2). DVSDK
components are all system tested for interoperability,
providing a stable baseline for development. In the
DVSDK software model, the DSP is mostly treated as
a "black box" for running codecs—all peripherals are
controlled using ARM-side Linux device drivers.

As part of the GStreamer framework, the TI GStreamer

2DVSDK release notes and documentation are available from the
TI web site [5].

plugin also gains the ability to interface with many other
open source GStreamer plugins that provide features
such as:

• Demuxers for AVI, TS, and MP4 containers

• OSS and ALSA audio output

• V4L2 video capture

• ARM codecs including MP3 and AAC decoders

4.1 Portability and Reusability through the
DaVinciTM Multimedia Application Interface
(DMAI)

The most vital DVSDK component used by the TI
GStreamer plugin is the DMAI [1], which enables porta-
bility to multiple TI platforms and newer DVSDK re-
leases with minimal changes to the plugin code base.
The interface with DMAI is also the boundary between
the generic ARM Linux components and the DVSDK.
DMAI directly and indirectly interfaces with all of the
other software components of the DVSDK, providing a
clean interface for interacting with hardware accelera-
tors and DSP-side codecs. It should be noted that the

72 • GStreamer on Texas Instruments OMAP35x Processors

0%

20%

40%

60%

80%

100%

0 s 10 s 20 s 30 s 40 s 50 s 60 s

A
R

M
 U

til
iz

at
io

n
(%

 lo
ad

)

Time (seconds)

ARM Utilization during MPEG-2 Video Decode (720x480)

High Motion Video @ 10000 kb/s
No Motion Video @ 200 kb/s

Figure 2: ARM utilization during MPEG-2 video decode.

TI GStreamer plugin also works on other TI platforms
through use of the DMAI library. There is a single code
base for the TI GStreamer plugin that is shared by all
supported platforms.

The DMAI library provides a simple software inter-
face but implements the many details of device driver
and codec handshaking under the hood. It also pro-
vides a buffer abstraction that allows for the easy trans-
fer of data between codecs, hardware accelerators and
device drivers. Hardware acceleration is often pro-
vided without requiring developers to understand the
platform-specific implementation details. For example,
when using DMAI to perform a hardware-accelerated
frame copy, DMAI can use a DMA operation on the
OMAP35x, but will use the hardware resizer to perform
a copy on platforms where a resizer could give better
performance.

DMAI interfaces directly with the xDM interfaces of
the available codecs and mostly abstracts out the dif-
ferences between different xDM API versions. Where
needed, it also abstracts out differences between device
drivers and in some places, differences between kernel

versions. For example, DMAI provides a display mod-
ule that is configurable to use either the frame buffer or
V4L2 API. The TI GStreamer plugin does not need any
specialized code depending on the type of display it is
using. Finally, DMAI aids in the error handling of low-
level DVSDK components.

Since platform-specific code is abstracted by the DMAI
library, the TI GStreamer plugin is mostly free of
platform-specific code, making it extremely portable.

5 Performance

The graph in Figure 2 shows the ARM CPU utilization
while decoding video files using the OMAP35x MPEG-
2 DSP decoder. In this experiment, the decoder is run
with two different NTSC-resolution video clips. The
first video clip is designed to have zero-motion and a
low bitrate to demonstrate the best-case ARM load. The
second video clip is designed to have high-motion and
a high bitrate to stress the system and demonstrate a
worst-case ARM load.

2009 Linux Symposium • 73

Creation of MPEG-2 Test Files

No Motion @ 200kb/s:

$ gst-launch videotestsrc pattern=9 num-buffers=3600 ! \
’video/x-raw-yuv, format=(fourcc)I420, width=720, height=480’ ! \
filesink location=sample_m2v.yuv

$ ffmpeg -pix_fmt yuv420p -s 720x480 -i sample_m2v.yuv -vcodec mpeg2video \
-b 200000 sample_staticimage.m2v

High Motion @ 10000kb/s:

$ gst-launch videotestsrc pattern=1 num-buffers=3600 ! \
’video/x-raw-yuv, format=(fourcc)I420, width=720, height=480’ ! \
filesink location=sample_m2v.yuv

$ ffmpeg -pix_fmt yuv420p -s 720x480 -i sample_m2v.yuv -vcodec mpeg2video \
-b 10000000 sample_snow.m2v

Decode of MPEG-2 Test Files

No Motion @ 200kb/s:

$ gst-launch filesrc location=/mnt/sample_staticimage.m2v ! \
TIViddec2 codecName=mpeg2dec engineName=decode ! fakesink

High Motion @ 10000kb/s:

$ gst-launch filesrc location=/mnt/sample_snow.m2v ! \
TIViddec2 codecName=mpeg2dec engineName=decode ! fakesink

Figure 3: Steps to create and decode video test files for performance measurements.

Focus is put on MPEG-2 since it has a lower compres-
sion ratio than other video codecs. Since the ARM
load is directly affected by the rate of data through-
put, MPEG-2 is an upper-bound on the ARM load re-
quired to feed video data to the DSP codec. The same
tests were performed with H.264 and MPEG-4 decoders
yielding similar results at the same bitrates. Please note
that H.264 and MPEG-4 exhibit better compression and
their typical bitrate tends to be lower than MPEG-2.

On average, the ARM is not loaded more than 60 per-
cent while decoding the high-bitrate video clip, and
rarely went above 20 percent while decoding the low-
bitrate clip. The decoders are allowed to run at maxi-
mum speed, and are not slowed down for real-time play-
back. This explains why the low-motion clip takes less
time to decode than the high-motion clip, even though
both clips are two minutes in duration. It should be
noted that the video clips are read from an SD card,

which contributes to part of the ARM load.

Figure 3 shows how GStreamer and FFmpeg3 are used
to create and decode the clips used for ARM load mea-
surements.

6 Community Model

The TI GStreamer plugin is an open source project
located at http://gstreamer.ti.com [4]. The
project site provides a collaboration environment that
includes:

• Source control using Subversion

• A wiki for documentation
3FFmpeg is a command-line utility for recording and convert-

ing audio and video streams. More information is available on the
FFmpeg web site [2].

74 • GStreamer on Texas Instruments OMAP35x Processors

Detect File

(typefind)
Type

(mpegtsdemux)

Demux Audio
and Video Streams

Queue Video

(queue)
Buffers

Queue Audio

(queue)
Buffers

Decode Video

(TIViddec2)

Decode Audio

(TIAuddec1)

Adjust Audio

(volume)
Volume

Play Decoded

(TIDmaiVideoSink)
Video

Play Decoded
Audio
(osssink / alsasink)

Read File

(filesrc)

gst−launch filesrc location="video.ts" ! typefind ! mpegtsdemux name=demux \

 demux. ! ’video−x−h264’ ! queue ! TIViddec2 ! TIDmaiVideoSink \

 demux. ! ’audio/mpeg’ ! queue ! TIAuddec1 ! volume volume=5 ! alsasink

Figure 4: Example GStreamer pipeline. Shaded pipeline elements are provided by the TI GStreamer plugin.

• A package release system

• An issue and feature tracker

• Forums for support and discussion

An IRC channel (#gst_ti) is available on
irc.freenode.net for developers interested
in GStreamer on OMAP35x as well as other TI
processors.

Anonymous access to the project and Subversion repos-
itory is supported. Account registration on the project
site is optional but is needed for the submission of bug
reports and patches. Developers interested in participat-
ing in the project can find answers to frequently asked
questions, getting started guides and other project par-
ticipation guidelines on the project site.

The TI GStreamer plugin project is community sup-
ported. TI is committed to enabling the community in
their efforts to develop multimedia applications on TI
processors using GStreamer. Community members are
encouraged to use the forums and IRC channel to ask
questions and discuss future development. For develop-
ers that want or need more support, a commercial sup-
port option is available from RidgeRun4.

7 Plugin Design

Before diving into the design of the TI GStreamer plu-
gin, an overview of the GStreamer pipeline model and
how GStreamer plugins integrate into the framework
should be discussed first.

4More information on RidgeRun is available on the RidgeRun
web site [6]. Information on RidgeRun support for GStreamer
is located at http://www.ridgerun.com/products/
gstreamer.shtml.

7.1 The GStreamer Pipeline

A typical GStreamer pipeline starts with one or more
source elements, uses zero or more filter elements and
ends in a sink or multiple sinks. The example pipeline
shown in Figure 4 demonstrates the demuxing and play-
back of a transport stream. An input file is first read
using the filesrc element, parsed by the typefind
element to ensure the input file is a transport stream,
and then processed by the mpegtsdemux element,
which demuxes the stream into its audio and video
stream components. The video stream is sent through
the TIViddec2 element to decode the video using
the DSP on the OMAP35x. Then it is finally sent to
the TIDmaiVideoSink sink element to display the
decoded video on the screen. The audio stream is
processed by the TIAuddec1 element to decode the
audio on the DSP and reaches its destination at the
alsasink or osssink element to play the decoded
audio, depending on if the system uses an OSS sound
driver or an ALSA sound driver.

Note that in the example pipeline, the TI GStreamer plu-
gin is only contributing the TIViddec2, TIAuddec1
and TIDmaiVideoSink elements. All other elements
in the pipeline come from available open source plugins.

The main GStreamer distribution includes an applica-
tion called gst-launch, which is a simple command
line utility that allows you to construct and execute
an arbitrary pipeline. It provides a flexible way to
test pipelines without having to write entire GStreamer-
based applications. The bottom half of Figure 4 shows
the gst-launch command that would be used to con-
struct and execute the pipeline shown.

2009 Linux Symposium • 75

libgstcoreelements.so
(source: GStreamer)

Read File

(filesrc)

Queue Video

(queue)
Buffers

Detect File

(typefind)
Type

(source: GStreamer)
libgstvolume.so

Adjust Audio

(volume)
Volume

libcompanyX.so
(example 3rd Party)

Demux Audio
and Video Streams
(example only)

(source: GStreamer)
libgstossaudio.so libgstticodecplugin.so

(source: TI)

Decode Video

(TIViddec2)

Decode Audio

(TIAuddec1)

Play Decoded

(TIDmaiVideoSink)
Video

Play Decoded
Audio
(osssink)

Figure 5: GStreamer pipeline elements and the the Linux shared objects that contain them. Shared object libraries
may contain additional elements not shown here.

7.2 Shared Object Libraries

GStreamer filter elements are interchangeable, making
it easy to perform different operations on a data stream.
Further, GStreamer only needs to load into memory the
plugins that contain elements for the desired pipeline,
saving valuable system resources.

A GStreamer plugin typically maps to one or more
shared object libraries on the Linux file system (see Fig-
ure 5). A single shared object library contains one or
more pipeline elements. When a GStreamer-based ap-
plication starts, it searches the shared object libraries
for available elements. These shared object libraries can
come from GStreamer itself or from other parties that
provide custom GStreamer elements. The TI GStreamer
plugin provides a shared object library that contains all
of the pipeline elements that use the DSP and other hard-
ware accelerators on the OMAP35x. These elements
can connect and interact with pipeline elements from the
main GStreamer base and from other third parties.

7.3 Decode Element Design

DSP decode algorithms require input buffers to be lo-
cated in physically-contiguous memory and to have a

full frame available for processing prior to being in-
voked. Physically-contiguous memory is allocated from
memory regions shared by the ARM and DSP, allow-
ing data to be passed between them without additional
copy operations. However, these requirements also pose
a problem as input buffers to the decode elements can
be allocated from regular system memory and in some
cases do not hold a complete frame. In order to use the
decoder the input data must be prepared first so it is in a
form usable by the DSP.

The TIViddec2 decode element is implemented using
two sub-threads (see Figure 6). The queue thread is in
charge of preparing the input data for the DSP, and the
decode thread invokes the DSP decoder when data is
available for processing. The decode thread is a real-
time thread to minimize the DSP idle time when there is
data available for it to process. The queue thread copies
incoming buffers into a physically-contiguous buffer for
the DSP decoder. When there is enough data available to
satisfy the DSP, the decode thread is signaled and DSP
decoder is invoked. Since the code driving the DSP is
in a separate thread, the queue thread continues to copy
additional buffers into the physically-contiguous buffer
while the DSP is running. When the DSP is finished,
the decode thread pushes the decoded video frame to
the downstream pipeline element.

76 • GStreamer on Texas Instruments OMAP35x Processors

Invoke DSP

Decoder

Video Decode Thread (REAL−TIME Priority)

Buffer Queue Thread (Regular Priority)

FIFO
Video Buffer

Encoded

Decode Video (TIViddec2)

Decoded

Video Frame

Physically−Contiguous Circular Buffer

Complete frame or worst−case size given by codec

Figure 6: TIViddec2 decode element design.

In some cases it cannot be determined when enough in-
put buffers have been received to guarantee a complete
frame is available for calling the DSP decoder. In these
cases, the decoder specifies the worst-case amount of
data needed before it can be invoked. If more data is
passed to the decoder than is actually needed, the de-
coder returns how much data was consumed so the next
time it is invoked the remaining unprocessed data can
be given again, along with additional data queued up
since the last invocation. To effectively handle this sce-
nario, the physically-contiguous buffer is managed as a
circular buffer. This allows the plugin to simply pass the
location where the DSP should start processing the next
frame and eliminates any need to copy unprocessed data
into a new buffer.

All audio, video and imaging decode elements operate
in the same manner as the TIViddec2 video decode
element.

7.4 Encode Element Design

The design of the TIVidenc1 encode element is very
similar to the TIViddec2 decode element, but it has
one minor difference. When performing an encode op-
eration, there is a potential opportunity for a hardware-
accelerated copy of the input buffer when it is known to
come from a capture source element. In this case, the in-
put buffer is already physically-contiguous in memory,

which allows a hardware-accelerated copy into the el-
ement’s physically-contiguous buffer. Input buffers re-
ceived from a capture source also meet the requirements
to be passed directly to the DSP. However, a copy is
still needed as the capture source has few resources, and
there is a risk of starvation if the input buffer is not re-
leased as soon as possible.

Although a capture source will typically give a complete
frame in each input buffer, the physically-contiguous
buffer in the encode element is still managed as a cir-
cular buffer. This enables support for encoding a stream
from a file or network source where input buffers do not
contain full frames. In this case, the encode element
operates in an almost identical manner to the decode el-
ement.

All video and imaging encode elements operate in the
same manner as the TIVidenc1 video encode ele-
ment.

7.5 Video Sink Design

When the TIDmaiVideoSink element receives its
first decoded frame, it uses the metadata in the buffer to
configure the display device. Several display sink prop-
erties are also configurable by GStreamer-based appli-
cations to control the selection of frame buffer or V4L2
output, display resolution, video standard and others.

2009 Linux Symposium • 77

TI GStreamer Plugin Elements
Element Name Description
TIAuddec1 Audio decoder for xDM 1.x codecs
TIAuddec Audio decoder for xDM 0.9 codecs
TIDmaiVideoSink Display sink for frame buffer and V4L2 display subsystems
TIImgdec1 Image decoder for xDM 1.x codecs
TIImgdec Image decoder for xDM 0.9 codecs
TIImgenc1 Image encoder for xDM 1.x codecs
TIImgenc Image encoder for xDM 0.9 codecs
TIViddec2 Video decoder for xDM 1.x codecs
TIViddec Video decoder for xDM 0.9 codecs
TIVidenc1 Video encoder for xDM 1.x codecs
TIVidenc Video encoder for xDM 0.9 codecs

Table 1: TI GStreamer Plugin Elements. DSP codecs currently available for OMAP35x all use the xDM 1.x specifi-
cation, so a typical GStreamer pipeline on OMAP35x would use TIViddec2, TIAuddec1 and TIImgdec1 for
decode and TIVidenc1, TIImgenc1 for encode.

If no configuration parameters are specified to the
TIDmaiVideoSink element, it uses reasonable de-
faults for OMAP35x based on recommendations from
the DMAI library. It can optionally calculate the best
supported resolution to fit the video clip being played.

Input buffers that come from the TIViddec2 ele-
ment can be detected by the video sink, in which case
means the input buffers are physically-contiguous and
hardware-acceleration is used to copy the input buffers
into display buffers. If the input buffers do not come
from TIViddec2, a regular memcpy is used to copy
the input buffer.

8 Feature Summary and Future Work

A complete list of the elements provided by the TI
GStreamer plugin is shown in Table 1. Support for
audio encode is still missing but will be addressed in
a future release. DSP codecs currently available for
OMAP35x all use the xDM 1.x specification, so a
typical GStreamer pipeline on OMAP35x would use
TIViddec2, TIAuddec1 and TIImgdec1 for de-
code and TIVidenc1, TIImgenc1 for encode. Ele-
ments that support xDM 0.9-based codecs are listed for
completeness. Future work may eliminate the need for
GStreamer-based applications to know which xDM ver-
sion is used by the codecs. The TI GStreamer plugin
should be up-to-date with support for new TI processors,
updated DVSDK components and updated GStreamer
base components. The complete list of planned work is
available on the project site.

References

[1] DaVinciTM Multimedia Application Interface.
Project site: https:
//gforge.ti.com/gf/project/dmai/.

[2] FFmpeg. Project site:
http://www.ffmpeg.org/.

[3] GStreamer Open Source Multimedia Framework.
Project site:
http://gstreamer.freedesktop.org/.

[4] GStreamer on TI DaVinciTM and OMAPTM

processors. Project site:
http://gstreamer.ti.com/.

[5] OMAP3530 Digital Video Software Development
Kit (DVSDK) 3.00.00.29 Release Notes. Online
documentation:
https://www-a.ti.com/downloads/
sds_support/targetcontent/dvsdk/
oslinux_%dvsdk/v3_00_3530/exports/
omap3530_3_00_00_29_release_notes.
pdf. Free login account required for viewing.

[6] RidgeRun – Embedded Solutions. Company site:
http://www.ridgerun.com/.

[7] Texas Instruments, Inc. xDAIS-DM (Digital
Media) User Guide, January 2007. Literature
Number: SPRUEC8B.

78 • GStreamer on Texas Instruments OMAP35x Processors

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

