How to (Not) Lose Your Data

Linux as a Reliable Storage Platform

Ric Wheeler
Red Hat

rwheeler@redhat.com

Abstract

Increasingly, Linux is the platform that major vendors
use to implement everything from consumer grade NAS
devices that you can buy at your local electronics store
up to expensive, enterprise grade storage systems. This
paper aims to present a high level overview of how some
of these systems are put together, how to tune Linux for
storage applications and what functionality is either on
the horizon or yet to be started in the open source space
that will enhance Linux as a storage system. The tech-
niques presented are are also applicable to normal home
users who would like to enhance data integrity.

1 Why Care about Data Integrity

Taking care of digital data used to be the worry of sys-
tem administrators. If a computer went down without
a backup, few people would ever notice any disrup-
tion. Today, the sheer mass of digital data that normal
people have makes this a problem for just about any-
one with a digital camera or a collection of digital mu-
sic. Many commercial businesses use Linux-based sys-
tems for storing data about their customers like bank-
ing records, airline tickets and other critical data. Home
users who turn to online sites for storing their photos,
music and email on the web also, more than likely, end
up using Linux-based systems indirectly.

Linux strives to maintain a unified version of its code,
which means that there is just one storage and file sys-
tem stack that is used by both casual end users and for
servers at corporate data centers. The challenge is to
provide a system that can leverage high-end storage and
its features when possible, without imposing complexity
and performance penalties for non-data critical applica-
tions. Given the deeply personal nature of the types of
data that people store today on Linux, like digital pho-
tographs, it is really critical to give users a framework
for how to store data reliably.

When designing a reliable storage system, enterprises
usually invest in both reliable local storage and a way to
replicate their data to storage at a remote site which must
also be reliable. This paper aims to provide Linux devel-
opers a framework for thinking about how to provide re-
liable components for people building Linux based stor-
age systems and weigh the trade offs appropriately. The
conclusion presents a brief overview of key research in
storage systems and a summary of upcoming features in
the Linux storage and file system stack that will enhance
both enterprise and end user’s data integrity.

2 Common Causes of Data Loss in Systems

Anyone who deals with storage of digital data, espe-
cially long-term storage, understands that even the best
storage systems can and will suffer data loss occasion-
ally. This section gives a very high level overview of the
most common causes of data loss.

2.1 User Errors

The most common errors are typically user errors; for
example, accidentally deleting a file, forgetting where
you put a specific file, upgrading your system or refor-
matting a whole disk. Rather than write off this class
of data loss as “stupid human errors,” the challenge is
to design systems that are easy to use, have safe default
settings and do not require expensive infrastructure like
UPS backup for the servers’ power needs.

At the system level, there are a few basic techniques that
Linux provides which help mitigate against these types
of user errors. A common practice in enterprise data
centers is to create periodic snapshots of a file system,
say once a day. Snapshots do not protect against storage
failure at the block level, but they do give you a point in
time picture of the state of your file system that can be

e 303 o



304 e How to (Not) Lose Your Data

referenced if you accidentally delete a file or do some
other regrettable action to your data. In addition, users
can create a snapshot of a live file system and use that
snapshot as the basis for a local backup or to kick off a
consistent remote copy.

2.2 Confusing Semantics for Key System Calls

Application writers need to have crisp and clear seman-
tics for basic operations like fsync() and rename() sys-
tem calls and clear documentation and guidance about
how to use them to provide their users reliable data stor-
age. How does an application know with absolute cer-
tainty that data that it writes or a new file that it has
renamed will survive a power outage or system reboot?
To make the challenge more interesting, different appli-
cations need different levels of granularity.

At one end of the spectrum, a database typically wants
to have this type of clear promise after each commit of
a transaction. At the other end of the extreme, it would
usually be sufficient for an application like rsync to pro-
vide this promise that all of the data is safely stored
on the remote system at the end of its execution which
would allow the system to flush caches and so on only
once for the entire set of files. In the rsync case, the user
would be able to simply redo the rsync if the something
fails during the initial run without being exposed to any
data loss.

Somewhere in the middle of this spectrum are com-
mon tools like editors which want to provide atomic
updates to files being processed. The rename() system
call has long been used to provide this level of atomic-
ity for updating files. For example, an editor that wants
to overwrite all or part of file “foo” can do this safely
by first creating a temporary copy of the contents of
“f00” to a separate file, say “foo.temp.” All changes are
written to the temporary copy until the editor is ready
to persist its changes to disk. At this point, it calls
rename ("foo.temp", "foo") with the expecta-
tion that, even in the face of a system crash or power
outage, the rename will be atomic. Specifically, after a
crash, the user will see either the new contents in file
“foo” or the old contents, not some random mix of old
and new data or an empty file.

To make this sequence really robust in a generic way,
the application should issue one fsync() system call for
the new “foo.temp” file and potentially a second fsync()

system call on the directory that “foo” lives in to insure
that the changes in the name space survive. File systems
could automatically insert the appropriate fsync() calls
internally, but this could degrade performance for appli-
cations that are less concerned about data integrity. How
to get the balance right between data integrity and per-
formance is an active debate in the file system developer
community.

Clearly, using “fsync()” and “rename()” on every indi-
vidual file while doing batch updates like the rsync ex-
ample mentioned above, or when using tar to extract a
large number of files, will have a large impact on per-
formance. For some popular file systems like ext3, an
effective way to avoid the performance impact of the
fsync() per file technique is to have applications break
up the extraction into a writing phase in which each file
is written to disk without any special promises, and then
a second fsync() phase in which the application iterates
back over all of the files written and fsync()’s each one
in turn in the reverse order that the files were written
originally. This technique mitigates the heavy fsync()
performance impact since the first fsync() in that second
phase will push out the data for all of the preceding files
that have just been written.

Different types of storage will show vastly different re-
sults since the performance is directly tied to how ex-
pensive seek operations are and whether or not the de-
vice has a volatile write cache. Testing the various meth-
ods on a common 1TB S-ATA disk can give the reader a
sense of the impact using common hardware today. Us-
ing FedoralO on a quad core desktop system and ext4,
the best rate for writing 40KB files without doing any
fsync() calls is around 2,600 files/second. Note that this
test basically measures how quickly the file system can
write to the page cache and is highly variable.

With the barrier support properly enabled on ext4,
the slowest, most cautious method writes only 25
files/second by doing an open, write and and fsync on
each file in turn. This rate is roughly half the rate that
the drive’s seek latency dictates, which corresponds well
to the two cache flush operations per fsync that the fsync
calls produce when running with barriers.

Finally, using the two phase technique, first writing all
of the files in a batch and then iterating back over the
batch of files in the reverse order to fsync them one at a
time, the rate returns back up to around 143 files/second.
If this is not convoluted enough, issuing a sync() system



2009 Linux Symposium e 305

call before doing the fsync() phase will bring the rate up
to around 900 files/second. Looking at the twists and
turns required to get reasonable performance and data
integrity clearly shows that we need to provide some-
thing better if we would like to get application program-
mers to improve their code.

Clearly, there is a lot of room for reducing the com-
plexity, and giving application writers more intuitive
and powerful tools. Over the past few years, file sys-
tems developers have been debating several possibilities
ranging from some complex mechanisms like expos-
ing transactional semantics to user space applications or
providing a robust asynchronous fsync primitive. Like
other async calls, the application would use the async
fsync interface on each file in a fairly straight forward
way and then have a second interface to use when it
needs to wait for completion. The advantages of this
async approach would be that the file system could op-
timize the fsync calls internally over a larger set of files.

2.3 10O Stack Bugs and Configuration Errors

System software, like the file system or the 10 stack,
can also be a common cause of data loss when it fails
to persist data correctly before a power outage or sys-
tem crash. Modern file systems and data bases often
use journaled transactions as a way to provide robust
storage. Transaction based systems need to be able to
have a few promises from storage in order to make their
transactions robust including the ability to store some
information, like a transaction commit block, in a reli-
able way. Storage devices, including disk drives, have
large, volatile write caches which is typically tens of
megabytes in size. On power loss, the data stored in
that cache will be lost.

To provide robust support for transactions, Linux has
supported a fairly brute force mechanism called “write
barriers” which effectively give the file system the abil-
ity to flush the target device write cache before sending
a write with the commit block. A second flush is then
initiated in order to make sure that the commit block
itself is safe on persistent storage. This technique has a
clear performance impact for applications that cause lots
of transactions. Most file systems have mount options
which enable the barriers correctly, but work is ongo-
ing to make sure that all of the various bits of the block
layer like device mapper and the more advanced RAID

levels supported by MD will correctly handle barriers
operations.

If the system has one of the configurations that do not
support barriers properly and it has storage devices with
volatile write cache devices, the only safe option is to
disable the write cache on the storage devices which can
be done with the hdparm command.

Note that external storage arrays typically have large,
non-volatile write caches which do not require these
barrier operations.Some of these arrays will silently ig-
nore the cache flush commands issued by the Linux bar-
rier operations, but others will honor them by flushing
their potentially very large caches which is a gigantic
performance hit. To prevent this overhead, file systems
mounted on this class of device should be mounted with
the barriers disabled.

The preceding set of considerations makes doing the
right thing extremely confusing. If a system is using
device mapper, the barrier operations will log an error
and be disabled which leaves users exposed to poten-
tial data loss on power loss. The same story happens
with RAIDS or RAID6 and MD devices. Several things
need to be fixed in order to reduce the confusion. One
very promising set of patches, recently posted by Mar-
tin Petersen, exports several characteristics of devices
through /sys interfaces. Unfortunately, the nature of the
write cache is not currently one of these characteristics,
but this is a positive first step. Also, work is ongoing in
the device mapper community to properly handle bar-
rier operations. For MD users who use anything but the
basic MD1 RAID, the only safe option is to disable the
write cache on the individual component devices cur-
rently.

2.4 Hardware Failures

Hardware failures, specifically disk failures, are what
most users would associate with data loss. Single disk
drives are relatively reliable components, but can suf-
fer from both hard failures when all data is lost or par-
tial failures where only a portion of data is lost. Other
types of hardware failure, like bad memory components,
can cause data loss as well. RAID schemes, discussed
briefly below, reduce the exposure to data loss by stor-
ing the data on multiple components which are assumed
to have independent failures. New types of devices, like
the increasingly popular SSDs, are largely immune from



306 e How to (Not) Lose Your Data

some of the causes of failure of traditional drives, but
bring their own unique ways of failing that system de-
signers and users will learn more about as the devices
increase in number and age.

3 Data Loss Timeline

One useful way to think about keeping data safe is as
a timeline. Assuming the application has figured out
how to properly navigate the confusing maze detailed
previously and has correctly stored the data on a stor-
age device, a clock starts counting down for each hard-
ware component in your system. Time runs out when
the component actually sustains an error or fails com-
pletely. Designing a reliable storage device requires un-
derstanding the expected failure rates of the components
used to make a system and being able to balance the cost
of those components against other considerations like
cost, performance and power consumption.

The high level overview of this timeline is:

Data Creation The application performs a write of data:
for example, the “cp” application is used to create a copy
of a file but has not called fsync(). The data is not pro-
tected against a power outage or system failure at this
point in time.

Persistently Stored The data is stored and acknowl-
edged by the storage subsystem: the data is moved from
the page cache out to the storage system and the trans-
action is acknowledged back to the server. At this point,
all is right with the data and the storage system has all
of the redundant copies it needs to overcome a partial
failure.

Component Failure A component of the storage sys-
tem fails partially or completely: failures could be par-
tial failures like a single bad sector on a drive, total fail-
ure of a drive or possibly a software or user error that
corrupts a file. This error alone might not cause data loss
or data unavailability to a user if the data is protected in
a RAID group, but it does expose the user to permanent
data loss if not repaired before a second failure in the
same data stripe. The key consideration in building a
robust storage system is to minimize the amount of time
spent in this state.

Failure Detection The failure is detected by the sys-
tem: an application tries to read a file back or the RAID

software detects a partial or total failure. In RAID ar-
rays, these errors are often detected by the firmware
which will continually scan the surface of the individu-
als drives, searching for partial errors. The critical trade
off here is that over aggressive scanning, while reduc-
ing the window of time that the system is exposed to
a potential data loss, has a negative impact on the per-
formance of the system’s normal workload, can prema-
turely age the components and can consume more power
since the devices are kept from entering an idle state.

Data Repair Initiated Examples include a new drive
is inserted into the RAID group, a file system repair is
initiated or a file is restored from tape. Note that there is
a potential lag between the detection of the partial error
and being able to initiate a repair. In the worst case, if
you are repairing a RAID group with one completely
failed drive and no spare, this repair phase is blocked
until a new drive is physically inserted into the array to
replace the failed component.

Data repair completed The original file is back and us-
able by the user. Just like the fourth stage above, there
is a trade off here between completing the repair in an
aggressive way by consuming the full bandwidth of the
device and impacting the foreground workload.

Note that a related class of problem is data unavailabil-
ity which can be caused by something as common as a
power outage or by a long running, offline repair like an
invocation of fsck. For time critical data, this can be as
critical as permanent data loss.

The next section gives some details about common com-
ponents used to build storage and gives some measure of
how they rate in the time line sketched out here.

4 Reliability Building Blocks

A general principle of design for reliable systems is to
build systems that tolerate a given number of failures. If
you have a system with one drive, your data stands to
disappear whenever that single drive fails. If you have
two disks in a RAID1 mirror, your system can tolerate
the failure of one disk but would still suffer failure if
your CPU or DRAM fail. For this reason, enterprise
class arrays have redundancy for all critical components:
no single failure of a power supply, CPU, DRAM or disk
would cause data loss but might cause degraded perfor-
mance.



2009 Linux Symposium e 307

In a similar way, a single location like your home of-
fice or a data center is a single failure component which
could be destroyed by a fire or other disaster. In order
to reduce data loss for these catastrophic events, busi-
nesses commonly use long distance replication to store
data on a remote site.

This section presents a summary of common features in
storage and reviews the status of these features in Linux
today.

4.1 RAID Level Tradeoffs

RAID is the most common form of data protection used
today. RAID is normally done at the level of a block de-
vice, for example, a file system will send a write down
to the block level which will do the appropriate RAID
computations transparently. A simple, robust and ineffi-
cient RAID level is RAID1—all data is written to each
member of the RAID group. For example, a system with
four storage devices will write to each of the four de-
vices on every 10. This gives the storage system great
fault tolerance since the system could have as many as
three of the four drives fail without incurring data loss.
The down side of this scheme is that it is horribly ineffi-
cient with only 25% of the total capacity of the storage
components available for storing user data. This ratio
will be referred to as effective capacity.

Other RAID levels, with the same number of drives, im-
prove the effective capacity. For example, RAIDS will
break each IO into fragments, three data fragments and a
fragment which contains parity information. Any single
drive can fail and the other disks can be used to regen-
erate the data from the failed component. In this 4 drive
system, a RAIDS scheme provides the user an effective
capacity of 75%. In a similar way, RAID6 computes two
different parity computations and will be able to survive
any dual failure of storage devices, but decreases the ef-
fective capacity to 50% in our four drive example above.

Commercial RAID arrays offer a wide range of config-
urations. Low end systems aimed at consumers start
with as few as 2 drives configured into a RAID1 de-
vice. Higher end consumer devices move up to a 4 drive
RAIDS configuration. Enterprise class RAID arrays
provide shelves full of disks. A typical mid-range stor-
age system would have 12 to 15 drives per storage shelf
with high-end systems ranging up to a couple thousand
drives per array. Clearly, these larger systems present
more than one RAID set out to hosts.

One type of failure that can foil any RAID system is an
undetected partial failure. The above examples used the
common assumption that a storage device would either
work correctly or fail completely. While complete fail-
ures are not uncommon, it is also relatively common to
have storage get corruption that impacts only a few sec-
tors of storage. For example, rotational storage might
have localized loss of data due to contamination like
dust or lubricant on the platter while SSD devices might
have localized data loss due to overuse. Regardless of
the cause, the problem is the same—these partial fail-
ures can lie undetected for a very long time. In the worst
case, they are detected only when a second total failure
happens to a different storage device in the same RAID
group. As the system tries to rebuild the RAID group,
it needs to read data from all of the other components
and will invariably detect all latent errors. Each of these
latent errors will cause the RAID rebuild to fail for one
stripe. In this case, the basic assumption about having
independent failures does not protect the user since we
notice the latent errors concurrently with the total failure
of the other device.

The way to reduce the likelihood of failure during criti-
cal times like a RAID rebuild is to do periodic scans of
the individual storage devices. For example, once ev-
ery two weeks, the system will do a full surface scan of
each storage device in a RAID group. If you detect an
error during the scan, you can attempt to repair the data
immediately by recomputing the data from the other de-
vices in the RAID group and attempting to overwrite
the failed sector. In many cases, this write will work by
either correcting the data in place or by remapping the
failed sectors to a pool of extra sectors kept for failures.
If the data cannot be recovered, it is time to replace the
failed device. In current Linux MD RAID, we have the
capability to do this period scan for example.

There are some techniques used by high-end storage
systems to make their RAID systems more robust. A
very common technique is to have a spare device that
is not an active participant in any RAID group. When
a drive fails fully, the spare can be used to immediately
start rebuild the contents of the missing storage compo-
nent which decreases the window of time that the RAID
group needs to be exposed to a possible second failure.
A second trick is to suck as much data as possible from
the failed component if it is still partially readable, since
it allows the RAID rebuild only the data for stripes that
cannot be read.



308 e How to (Not) Lose Your Data

If the system needs to tolerate more than two compo-
nent failures, there is a generic set of techniques called
erasure encodings that can tolerate k failed components
out of the n devices in your system. An example for
the mid-level arrays might be an encoding that would
survive any 4 failures in a 15-device system.

4.2 Remote Replication

Remote replication is another important tool for data
protection and provides a remote copy of data that
would survive any catastrophic event like a fire or a
flood that would destroy any local storage. This section
details several varieties of remote replication.

Block level replication can be built using something as
simple as a RAID1 device, where one of the components
is a remote device like an iSCSI target. Each write will
be sent synchronously to the remote site which, depend-
ing on distance, can introduce substantial performance
hurdles. A more sophisticated scheme could use LVM
snapshots to avoid this performance penalty: snapshot
a volume and then do the replication to the far site of
the snapshot copy while local file system IO is left un-
hindered. Block level replication is also a feature that
is frequently implemented inside of storage arrays that
can use either dedicated storage links to the remote sites
or direct the replication over normal connections. Block
level replication is fairly common in high end data cen-
ters but can be a bit challenging to use in an intuitive
way.

A more pedestrian way to replicate data is by replication
at the file system layer. For anyone who is familiar with
rsync, the technique is fairly intuitive: iterate over the
entire file system and send the files that have changed
to a remote server which will store it on disk. From the
point of view of the source file system, the operation
should be a fairly straight forward sequence of calls to
getdents() in order to build a list of files followed by the
application reading and then transmitting the file over
the network to the target system. Unfortunately, there
are several complications that get in the way of doing
this in a straight forward manner.

Some file systems, specifically ext3, can return the file
names via getdents() calls in an arbitrary order which,
in turn, causes a lot of seeking as the application reads a
series of small files in non-sequential order with regards
to the disk layout. To improve this performance, appli-
cations can sort the list of file names by the inode order.

Using a similar test, putting 1 million 40KB files in one
directory results give a rate of 55 files/second when read
in getdents() order and a rate of 1,381 files/second when
read in sorted by inode number. Given that applications
can write new files at a rate of 1277 files/second, the
sorted remote replication is the only way to keep pace
with ingest. Other file systems, like XFS, do a good job
of returning the file names in a reasonable order. For
these file systems there is no benefit from this technique
but the cost of using it is not high. All of this complexity
just continues to make the life of application program-
mers miserable. Note that doing full file system level
iteration at full speed for any file system depends on
minimizing head movement for traditional disk drives,
so any other file system activity can have a severe im-
pact on the performance of the replication.

4.3 Data Migration

Data migration is a special form of remote replication in
which the intention is to decommission the source stor-
age system once the data is successfully replicated at the
target system. Data migration might involve a local mi-
gration from a single disk drive which has started to fail
to a new drive, or be done from one high end storage
array to a second one over a long distance link. It is a
fairly common operation both for consumers who rou-
tinely replace or upgrade their personal systems and for
data centers where high end storage is often rotated out
of service after a fixed period, say every three years.

Key points of this class of replication include making
absolutely certain that the remote system has a full and
persistently stored copy of the data since the source will
be taken offline. In the earlier rsync example, it is criti-
cal to make sure that the data is not just stored in the re-
mote page cache. One other key consideration is that the
source system is typically not new and can be in fairly
rough shape, so the iteration can encounter more IO er-
rors than a normal system would encounter. To migrate
from an unhealthy source, the 10 stack needs to be tuned
properly to handle IO errors in a quick and deterministic
way and avoid excessive retries. Applications doing the
migration need to be able to be equally robust in face of
errors: log any failures and keep moving good data to
the new system.

Cloud storage can be thought of as another variation on
remote replication at the file system layer. The differ-
ence is that the target system is normally not a typical



2009 Linux Symposium e 309

file system or block device that users can access directly.
Rather, for each file a user stores in the cloud, that user
gets back a object reference that can be used to retrieve
the file when needed.

5 Research in Reliable Storage Systems

File and storage system research has become one of the
more active areas of academic research. One of the
highlights of the year for researchers engaged in this
area is the USENIX Association’s annual FAST con-
ference, where open source, industrial, and academic
researchers meet to present key results. The USENIX
Association has all of its papers online and freely avail-
able, along with recordings and videos of recent presen-
tations. This section presents a very brief summary of
key results presented recently.

Some key areas for storage are the analysis of what
really fails and how frequent those failures are. For
many years, storage companies have collected that data
for their own deployed products and guarded that infor-
mation as an important part of their intellectual prop-
erty which made it extremely difficult to build either
research or real systems based on facts. Two ground-
breaking works were presented in FAST in 2007. The
first paper was presented by Bianca Schroeder and Garth
Gibson from Carnegie Mellon’s Parallel Data Labora-
tory and presented the first large-scale analysis of real-
world disk failures [6]. The second work at FAST that
year was from Eduardo Pinheiro and his coauthors from
Google [2] who shared similar data collected from the
huge number of systems in Google’s data centers. These
works were followed in proceeding years by significant
contributions by NetApp [1] and others.

For those interested in coding open source RAIDG6, or
more robust erasure encoded systems, James Plank from
the University of Tennessee and his coauthors presented
an overview of open source friendly RAID6 [3] and gen-
eral erasure encoding [4] algorithms. He took careful
note of which algorithms he believed to be free of the
known patents.

File systems also have received a fair amount of atten-
tion from the academic world, with notable contribu-
tions to Linux file systems reliability coming from the
University of Wisconsin’s group, which did an analy-
sis of failures in commodity file systems and produced
the prototype code used in ext4’s journal checksum-
ming [5]. Several other universities have active Linux

based research projects, including Erez Zadok’s group
and their work on stacking file systems and the scalable
file system work being done at the University of Cali-
fornia, Santa Cruz.

6 Conclusion

The scale of storage systems is increasingly dramati-
cally, both for home consumers and certainly for high
end data centers. Current capacity for a single S-ATA
drive is 2TB.In the examples used previously in this pa-
per, this single drive will hold over 50 million 40KB
files. Migration from a 2TB drive at 25 files/second
would take close to 600 hours as compared to just under
12 hours running at the sorted rate of 1,300 files/second.
The author has recently been testing Linux file sys-
tems on a relatively “small” 80TB LUN exported from
EMC’s newest Symmetrix, which can hold over two
thousand drives. Clearly, scale makes using and improv-
ing the techniques discussed above an important chal-
lenge.

7 References

References

[1] Weihang Jiang, Chongfeng Hu, and Yuanyuan
Zhou. Are Disks the Dominant Contributor for
Storage Failures? A Comprehensive Study of
Storage Subsystem Failure Characteristics. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies, February 2008.

[2] E. Pinheiro, W. D. Weber, and L. A. Barroso.
Failure trends in a large disk drive population. In
FAST-2007: 5th Usenix Conference on File and
Storage Technologies, February 2007.

[3] J. S. Plank. The RAID-6 Liberation Codes. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies, February 2008.

[4] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. Wilcox-O’Hearn. A Performance Evaluation
and Examination of Open-Source Erasure Coding
Libraries For Storage. In FAST-2009: 7th Usenix
Conference on File and Storage Technologies,
February 2009.



310 e How to (Not) Lose Your Data

[5]

[6]

Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP "05), pages
206-220, Brighton, United Kingdom, October
2005.

Bianca Schroeder and Garth Gibson. Disk failures
in the real world: What does an MTTF of
1,000,000 hours mean too you? In FAST-2007: 5th
Usenix Conference on File and Storage
Technologies, February 2007.



Proceedings of the
Linux Symposium

July 13th—17th, 2009
Montreal, Quebec
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP

Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron

Chris Dukes, workfrog.com
Jonas Fonseca

John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



