
Converged Networking in the Data Center

Peter P. Waskiewicz Jr.
LAN Access Division, Intel Corp.

peter.p.waskiewicz.jr@intel.com

Abstract

The networking world in Linux has undergone some sig-
nificant changes in the past two years. With the expan-
sion of multiqueue networking, coupled with the grow-
ing abundance of multi-core computers with 10 Gigabit
Ethernet, the concept of efficiently converging different
network flows becomes a real possibility.

This paper presents the concepts behind network con-
vergence. Using the IEEE 802.1Qaz Priority Group-
ing and Data Center Bridging concepts to group mul-
tiple traffic flows, this paper will demonstrate how dif-
ferent types of traffic, such as storage and LAN traf-
fic, can efficiently coexist on the same physical connec-
tion. With the support of multi-core systems and MSI-
X, these different traffic flows can achieve latency and
throughput comparable to the same traffic types’ spe-
cialized adapters.

1 Introduction

Ethernet continues to march forward in today’s comput-
ing environment. It has now reached a point where PCI
Express devices running at 10GbE are becoming more
common and more affordable. The question is, what do
we do with all the bandwidth? Is it too much for today’s
workloads? Fortunately, the adage of "if you build it,
they will come" provides answers to these questions.

Data centers have a host of operational costs and upkeep
associated with them. Cooling and power costs are the
two main areas that data center managers continue to an-
alyze to reduce cost. The reality is as machines become
faster and more energy efficient, the cost to power and
cool these machines is also reduced. The next question
to ask is, how can we push the envelope of efficiency
even more?

Converged Networking, also known as Unified Net-
working, is designed to increase the efficiency of the

data center as a whole. In addition to the general power
and cooling costs, other areas of focus are the physical
amount of servers and their associated cabling that re-
side in a typical data center. Servers very often have
multiple network connections to various network seg-
ments, plus they’re usually connected to a SAN: ei-
ther a Fiber Channel fabric or an iSCSI infrastructure.
These multiple network and SAN connections mean
large amounts of cabling being laid down to attach a
server. Converged Networking takes a 10GbE device
that is capable of Data Center Bridging in hardware,
and consolidates all of those network connections and
SAN connections into a single, physical device and ca-
ble. The rest of this paper will illustrate the different
aspects of Data Center Bridging, which is the network-
ing feature allowing the coexistence of multiple flows
on a single physical port. It will first define and describe
the different components of DCB. It then will show how
DCB consolidates network connections while keeping
traffic segregated, and how this can be done in an effi-
cient manner.

2 Priority Grouping and Bandwidth Control

2.1 Quality of Service

Quality of Service is not a stranger to networking setups
today. The QoS layer is composed of three main com-
ponents: queuing disciplines, or qdiscs (packet sched-
ulers), classifiers (filter engines), and filters [1]. In
the Linux kernel, there are many QoS options that can
be deployed: One qdisc provides packet-level filter-
ing into different priority-based queues (sch_prio); An-
other can make bandwidth allocation decisions based
on other criteria (sch_htb and sch_cbq). All of these
built-in schedulers run in the kernel, as part of the
dev_queue_xmit() routine in the core networking
layer (qdisc_run()). While these pieces of the QoS
layer can separate traffic flows into different priority
queues in the kernel, the priority is isolated to the packet

• 297 •



298 • Converged Networking in the Data Center

QoS Layer

dev_queue_xmit()

sch_prio

sch_multiq cls_u32

sch_cbq

Network device driver (invoked
via hard_start_xmit() )

Figure 1: QoS Layer in the Linux kernel

scheduler within the kernel itself. The priorities, along
with any bandwidth throttling, are completely isolated
to the kernel, and are not propagated to the network.
This highlights an issue where these kernel-based prior-
ity queues in the qdisc can cause head-of-line-blocking
in the network device. For example, if a high priority
packet is dequeued from the sch_prio qdisc and sent to
the driver, it can still be blocked in the network device
by a low priority, bulk data packet that was previously
dequeued.

Converged Networking makes use of the QoS layer of
the kernel to help identify its network flows. This identi-
fication is used by the network driver to decide on which
Tx queue to place the outbound packets. Since this
model is going to be enforcing a network-wide prioriti-
zation of network flows (discussed later), the QoS layer
should not enforce any priority when dequeuing pack-
ets to the network driver. In other words, Converged
Networking will not make use of the sch_prio qdisc.
Rather, Converged Networking uses the sch_multiq
qdisc, which is a round-robin based queuing discipline.
The importance of this is discussed in Section 2.2.

2.2 Priority Tagging

Data Center Bridging (DCB) takes the QoS mechanism
into hardware. It also defines the network-wide infras-
tructure for a QoS policy across all switches and end-

stations. This allows bandwidth allocations plus priori-
tization for specific network flows to be honored across
all nodes of a network.

The mechanism used to tag packets for prioritization
is the 3-bit priority field of the 802.1P/Q tag. This
field offers 8 possible priorities into which traffic can be
grouped. When a base network driver implements DCB
(assuming the device supports DCB in hardware), the
driver is expected to insert the VLAN tag, including the
priority, before it posts the packet to the transmit DMA
engine. One example of a driver that implements this is
ixgbe, the Intel R© 10GbE PCI Express driver. Both de-
vices supported by this driver, 82598 and 82599, have
DCB capabilities in hardware.

The priority tag in the VLAN header is utilized by both
the Linux kernel and network infrastructure. In the ker-
nel, vconfig, used to configure VLANs, can modify the
priority tag field. Network switches can be configured to
modify their switching policies based on the priority tag.
In DCB though, it is not required for DCB packets to
belong to a traditional VLAN. All that needs to be con-
figured is the priority tag field, and whatever VLAN that
was already in the header is preserved. When no VLAN
is present, VLAN group 0 is used, meaning the lack of
a VLAN. This mechanism allows non-VLAN networks
to work with DCB alongside VLAN networks, while
maintaining the priority tags for each network flow. The
expectation is that the switches being used are DCB-
capable, which will guarantee that network scheduling
in the switch fabric will be based on the 802.1P tag
found in the VLAN header of the packet.

Certain packet types are not tagged though. All of
the inter-switch and inter-router frames being passed
through the network are not tagged. DCB uses a pro-
tocol, LLDP (Link Layer Discovery Protocol), for its
DCBx protocol. These frames are not tagged in a DCB
network. LLDP and DCBx are discussed in more detail
later in this paper.

2.3 Bandwidth Groups

Once flows are identified by a priority tag, they are allo-
cated bandwidth on the physical link. DCB uses band-
width groups to multiplex the prioritized flows. Each
bandwidth group is given a percentage of the over-
all bandwidth on the network device. The bandwidth
group can further enforce bandwidth sharing within it-
self among the priority flows already added to it.



2009 Linux Symposium • 299

Priority 1
30%

of BWG

Priority 3
40%

of BWG

Priority 6
10%

of BWG

Priority 7
20%

of BWG

Bandwidth Group 2:
 60% of link bandwidth

Priority 2
70%

of BWG

Priority 4
30%

of BWG

Bandwidth Group 3:
30% of link bandwidth

Bandwidth Group Layout

Priority 5 
80% of BWG

Priority 8 
20% of BWG

Bandwidth Group 1: 
10% of link bandwidth

Figure 2: Example Bandwidth Group Layout

Each bandwidth group can be configured to use certain
methods of dequeuing packets during a Tx arbitration
cycle. The first is group strict priority: It will allow a
single priority flow within the bandwidth group to grow
its bandwidth consumption to the total of the bandwidth
group. This allows a single flow within the group to
consume all the bandwidth allocated to the group. This
would normally be applied to flows that would run off-
hours, and would be in groups that ran on-hours. An ex-
ample of such a flow is a network backup. The second
configuration is link strict priority: This allows any flow
from any bandwidth group to grow to the maximum link
bandwidth. Obviously this configuration can be danger-
ous if misconfigured, which could result in the starva-
tion of other flows. However, this mode is necessary to
guarantee flows that require maximum bandwidth to get
the maximum bandwidth, without needing to reconfig-
ure all bandwidth group layouts [2]. Refer to Figure 2
to see an example Bandwidth Group Layout.

2.4 Using TC filters to identify traffic

Now that all the priority flows are distributed into band-
width groups, traffic flowing down from userspace must
be filtered into the underlying queues. There are a few
mechanisms that can be used to filter traffic into differ-
ent queues.

• select_queue The network stack in recent ker-
nels (2.6.27 and beyond) has a function pointer
called select_queue(). It is part of the net_
device struct, and can be overridden by a net-
work driver if desired. A driver would do this if
there is a special need to control the Tx queueing
specific to an underlying technology. DCB is one
of those cases. However, if a network driver hasn’t
overridden it (which is normal), then a hash is com-
puted by the core network stack. This hash gener-
ates a value which is assigned to skb->queue_
mapping. The skb is then passed to the driver for
transmit. The driver then uses this value to select
one of its Tx queues to transmit the packet onto the
wire.

• tc filters The userspace tool, tc, can be used
to program filters into the qdisc layer. tc is part of
the iproute2 package. The filters can match essen-
tially anything in the skb headers from layer 2 and
up. The filters use classifiers, such as u32 match-
ing, to match different pieces of the skbs. Once
a filter matches, it has an action part of the filter.
Most common for qdiscs such as sch_multiq is the
skbedit action, which will allow the tc filter to mod-
ify the skb->queue_mapping in the skb.

DCB needs to make use of both of these mechanisms to
properly filter traffic into the priority flows. First, the
network driver must override the select_queue()
function to return queue 0 for all traffic. DCB requires
that all unfiltered traffic (i.e. traffic not matching a
tc filter) be placed in priority flow 0. The select_
queue() call is executed prior to the qdisc tc filter sec-
tion in the core network stack, so if no filter is matched,
then the value of select_queue() is retained.

tc filters are then added for each network flow that needs
to be filtered into a specific priority flow Tx queue.

3 Priority Flow Control

In a converged network, various traffic types that nor-
mally wouldn’t be on an Ethernet-based network are
now present. Some of these traffic types are not toler-
ant of packet loss. Fiber Channel is a good example,
and is added to a converged network using Fiber Chan-
nel over Ethernet [4]. Fiber Channel is not as tolerant of
congestion and packet loss as Internet protocols. There-
fore, it must have some form of flow control present to



300 • Converged Networking in the Data Center

ensure the frames can be paused, prior to some overrun
causing dropped frames.

Using traditional Ethernet flow control is a viable option
for these traffic flows. However, the point of Converged
Networking is to provide separate, independent network
pipes to traffic flows, and not allow one pipe to affect
another pipe. Link-based flow control would cause all
traffic flows to stop. This is not desired for DCB and
Converged Networking.

Priority Flow Control (also known as per-priority pause
or PFC) was designed to solve this issue by utilizing uti-
lizes a different packet type from the traditional Ethernet
pause. It passes a bitmap of all eight priorities to the link
partner, indicating which priorities are currently paused.
This way an XOFF/XON pair can be sent for each indi-
vidual priority flow, while all other flows can continue
transmitting and receiving data [3].

4 MSI-X and interrupt throttling for latency

4.1 Latency requirements

Each priority flow in a DCB network most likely has dif-
ferent latency considerations for the traffic in that flow.
For example, high-availability management traffic re-
quire very low latency to operate correctly. On the other
hand, bulk data transfers, like an FTP transfer, do not
require low latency. Other examples of network traf-
fic that have varying latency requirements include Voice
Over IP, computer gaming, web surfing, audio stream-
ing, p2p networks, etc. Each of these traffic types treat
latency differently, where it either negatively effects the
traffic, or doesn’t make much difference whatsoever.

4.2 Interrupt rates vs. latency

The easiest way to affect the latency of a network de-
vice’s traffic is to change the interrupt rate of the receive
flow interrupt. For example, receive processing running
at 8,000 interrupts per second will have a much higher
latency than a device running at 100,000 interrupts per
second. The trade-off is that the more interrupts a de-
vice generates, the higher your CPU utilization will be.
Interrupt rates should be tuned to meet the target flow’s
latency considerations, and will vary based on the con-
tents of that flow.

Rx
Priority

Q0

Rx
Priority

Q1

Rx
Priority

Q2

Rx
Priority

Q3

CPU 0 CPU 1 CPU 2 CPU 3

MSI-X V1
Rate 8k int/sec

MSI-X V0
Rate 100k int/sec

MSI-X V2
Rate 50k int/sec

MSI-X V3
Rate 2k int/sec

Figure 3: Example MSI-X mapping with variable inter-
rupt rates

4.3 MSI-X interrupts

Each traffic flow in DCB may require a unique latency
target, therefore requiring a unique interrupt rate. On de-
vices that only support legacy pin interrupts, this cannot
be achieved. Rather, the lowest latency must be chosen,
and that interrupt rate must be used for the device. This
will cause much more CPU overhead than is required
for the other flows in your converged network.

MSI-X interrupts (Messaged Signaled Interrupts, Ex-
tended) provide the ability to have separate interrupt
vectors for each traffic flow. Each vector can be assigned
to a receive queue and transmit queue on the network
device. Each of those vectors can then be assigned a
different interrupt rate, which allows separate traffic la-
tencies for each flow. Refer to Figure 3 to see a sample
MSI-X layout with variable interrupt rates.

For another example, the ixgbe’s EITR (Extended Inter-
rupt Throttle Rate) registers control the interrupt rates
for each interrupt vector. When the device is in MSI-
X mode, the device enables an individual EITR register
for each MSI-X vector [5]. The driver can then program
each EITR separately, accomplishing the need to have
fully independent interrupt rates among flows.

5 Data Center Bridging Exchange Protocol

DCB has a number of parameters that define how the
link operates. The priority group configuration, the



2009 Linux Symposium • 301

bandwidth allocations, and the priority flow control set-
tings are all part of the overall DCB configuration.
Since DCB is a network-wide configuration, there needs
to be a mechanism between link partners to negotiate
these configuration settings. Data Center Bridging Ex-
change Protocol, or DCBx, is the protocol that defines
how DCB configuration parameters are negotiated on a
link. This is a very similar mechanism used to nego-
tiate link parameters, such as auto-negotiated speed, or
auto-negotiated flow control settings [6].

5.1 LLDP vehicle

DCBx uses the Link Layer Discovery Protocol, or
LLDP, to transfer the DCBx configuration frames be-
tween link partners. The LLDP frames carry the config-
uration required to successfully negotiate a DCB link.
The protocol also requires that a DCBx negotiation that
cannot be resolved (i.e. configuration mismatch) mark
the link as failed to negotiate, and disable DCB on the
port.

LLDP also carries an application TLV (meaning type,
length, and value [6]). This includes information re-
quired for applications needing to negotiate parameters
with DCBx outside of the stack DCBx parameters. An
example is FCoE: FCoE needs to find on which prior-
ity it will be resident in DCB. This way, FCoE knows
which queues to configure in the base network driver,
plus it can make software stack adjustments to properly
feed the underlying network driver.

5.2 dcbd userspace tools

Linux has a set of userspace tools that implements the
DCBx protocol. These tools also push the DCB config-
uration parameters into the registered network drivers.
These tools are part of the dcbd package, which include
the dcbd daemon and the dcbtool command line util-
ity. dcbd runs in the background and listens for rtnetlink
events on devices that it is managing.

rtnetlink is a Linux kernel interface that allows
userspace tools to send messages to kernel components.
It is similar to traditional ioctls. Other implementations
of rtnetlink interfaces include network interface con-
trol (ifconfig commands), VLAN control (vconfig), and
Qdisc manipulation (tc).

dcbd learns about network devices when it starts, and
when any new device is brought online by listening to
link up events from rtnetlink. dcbtool can be used to dis-
play the current DCB configuration of a device, manage
the configuration of a device, and also toggle DCB mode
on and off on a device. The dcbd userspace tools are
available on Source Forge at http://e1000.sf.
net.

6 DCB support in the Linux kernel

Data Center Bridging is fully supported in the Linux
kernel as of 2.6.29. To date, the only driver making
use of DCB features is ixgbe, using the DCB support
found in the 82598 and 82599 devices. The main piece
of DCB that is resident in the kernel is the configuration
API used by dcbd utilities. The layer is called dcbnl,
and is an rtnetlink interface. The interface has a full
complement of get/set commands to configure each pa-
rameter of a DCB device. dcbd uses this interface to pull
all DCB-related configuration to feed the DCBx negoti-
ation, and in turn uses the interface to reprogram the
device with any new DCB configuration returning from
DCBx.

The other portion that DCB makes use of in the kernel
is the QoS layer, which was previously discussed. The
sch_multiq qdisc is the main workhorse, along with the
tc filter act_skbedit action mechanism. These two QoS
pieces help filter skbs into their proper priority flows in
the underlying base driver.

7 Typical DCB deployment model

Now that DCB components have been defined, it’s time
to take a look at what a DCB deployment model looks
like in the data center. The typical deployment today is a
composed of two flows, one being storage traffic (FCoE)
and the other being all LAN traffic. The LAN traffic
can be spread across the other seven priority flows, if
the traffic patterns warrant that many prioritized flows
in your network. This is a network-dependent setting.
Refer to Figure 4 for the order of startup. The steps are
numbered.

From here, the FCoE instance will query dcbd through
DCBx, using the application TLV, requesting which
802.1P priority it needs to use. Once the priority is pro-
vided (default of priority 3), the FCoE tools create tc



302 • Converged Networking in the Data Center

Userspace

Kernel Space

dcbd

Network device driver:
DCB enabled

FCoE userspace
tools

QoS Layer / TC filters

DCBx TLV exchange querying priority (4)

DCBx TLV exchange returning priority (5)

dcbnl rtnetlink interface

DCB
configuration (1)

DCB configuration
commands (2)

Apply DCBx no
tag TC filters (3)

Assign FCoE Ethertype TC filter:
Use priority from DCBx (6)

Filter skb flow from the
network stack (8)

Core Networking Layer
(dev_queue_xmit())

Transmits (7)

Figure 4: Typical DCB Deployment Model

filters that filter the FCoE ethertype (0x8906) [4]. These
filters use the skbedit action to direct the matched flows
into flow id 3. The base driver will then use the value
of skb->queue_mapping, which is set by the skbe-
dit action, to select which transmit queue the base driver
allocated for that priority.

On the LAN side, other tc filters can be added by ei-
ther dcbd or by the system administrator. A typical fil-
ter that is added is to match LLDP traffic, and skbedit
the skb->priority field to be a control frame. That
way the base driver can look for that setting, and not set
a priority tag on the frame. LLDP frames should not be
tagged with priorities within DCB, since they’re control
traffic.

Once the DCBx negotiation is finished with the switch
or link partner, the DCB hardware is ready to use. If
all the tc filters are in place, then DCB networking is
running.

8 Conclusion

Ethernet networks will continue to push the speed en-
velope. As more 10GbE (and beyond) devices continue
to pour into the market, these Ethernet networks will be
cheaper to deploy. With data centers pushing the enve-
lope to lower cost of operation with increased comput-

ing power and efficiency, Converged Networking will
help realize these goals.

References

[1] Bert Hubert, Thomas Graf, et al. Linux advanced
Routing and Traffic Control
http://lartc.org

[2] Manoj Wadekar, Mike Ko, Ravi Shenoy, Mukund
Chavan Priority Groups, Traffic Differentiation
over converged link (802.1Qaz)

[3] Hugh Barrass Definition for new PAUSE function
(802.1Qbb)

[4] Open-FCoE team Open-FCoE.org homepage
http://www.open-fcoe.org

[5] Intel Corp. Intel 82598 10GbE Ethernet
Controller Datasheet

[6] Intel Corp., Cisco Systems, Nuova Systems DCB
Capability Exchange Protocol Specification



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


