
Sandboxer: Light-Weight Application Isolation in Mobile Internet
Devices

Rajesh Banginwar
Intel Corporation

rajesh.banginwar@intel.com

Michael Leibowitz
Intel Corporation

michael.leibowitz@intel.com

Thomas Tanaka
Department of Computer Engineering

San Jose State University
thomas.tanaka@gmail.com

Abstract

In this paper, we introduce sandboxer, an application
isolation mechanism for Moblin based Mobile Inter-
net Devices (MIDs). MIDs are expected to support the
open but secure device model where end users are ex-
pected to download applications from potentially mali-
cious sources. Sandboxer allows us to safely construct a
system that is similar to the conventional *NIX desktop,
but with the assumption that applications are malicious.
Sandboxer uses a combination of filesystem names-
pace isolation, which provides a secure chroot()like
jail; UID/GID separation, which provides IPC isola-
tion; and cgroups based resource controllers, which
provides access control to devices as well as dynamic
limits on resources. By combining these facilities, we
are able to provide sufficient protection to the user and
system from both compromised applications that have
been subverted as well as malicious applications while
maintaining a very similar environment to the traditional
*NIX desktop. The mechanism also provides facility
for applications to hide the local data from rest of the
applications running in their own sandboxes.

1 Introduction

Mobile internet devices (MIDs) have become an in-
creasingly popular choice of device that people use ev-
ery day as part of their daily routines. The recent re-
leased of Intel Atom processor which targets computer
systems with small form factor such as MIDs and comes
with the capability to deliver full internet experiences
to mobile devices; further adds to a roadmap of more
powerful processors powering MIDs in the near future.

User will thus be able to enjoy high quality entertain-
ment such as game or working towards their business
related tasks on their mobile devices. With the increase
in the computational power, more complex software ap-
plications will be developed to run in mobile devices.
This could potentially lead to an increase in the secu-
rity exploit of the device due to bugs and other possible
software design flaws. Malicious software that has suc-
cessfully penetrated the device will have the available
resources to tap into user’s privacy, which could be in
the form of personal data (e.g., phone number) or sensi-
tive phone conversations.

The majority of the user groups will not be necessarily
equipped with sufficient knowledge to identify a possi-
ble malicious website or application. Therefore, design-
ing and managing a strict security measure for mobile
device is a necessary first step to ensure a safe operat-
ing environment. We have thus proposed sandboxer, the
security tool that will provide a mechanism to protect
mobile device in the event of malicious attacks. The
basic sandboxing technique provides a concealed en-
vironment in which an application can be run, and in
the event of malicious attack, damage to the system is
greatly minimized. There have been similar works in
the sandboxing design by several researchers. Never-
theless, their respective work has been focusing more on
delivering a complete and efficient sandboxing solution
that intends to minimize the possibility of an exploit in
a vulnerable desktop/server like system rather than tar-
geting specifically on mobile devices. Savitha and Ko-
lar have proposed the use of hardware base solution to
create the fine grained sandboxing by utilizing the privi-
lege level adjustment that is available in today’s proces-
sors [1]. West and Gloudon have proposed to monitor



30 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

system calls that required the modification of the kernel
codes [2]. Yee et al. have developed a novel approach
that utilizes the system interaction in terms of software
fault isolation and controlling the runtime environment
securely [11]. On the other hand, Chang et al. have im-
plemented user level sandbox that uses resource mon-
itoring and restrictions on applications specifically on
Windows platform [10].

Our implementation differs in that we specifically focus
on implementing the application sandboxing in a Linux
platform, as part of the Moblin.org open source project
[15]. Moblin is an open source Linux based operating
system specifically targeted for MIDs. The unique fea-
tures of our designs are as follows:

• The use of available and simple yet robust filesys-
tem and privilege isolation techniques that are
available as part of the Linux platform.

• User level implementation that does not require any
modification to the Linux kernel only relying on
the existence of a stable kernel and system.

• The ability to further extend the functionality of the
sandbox through the use of plugins.

• The use of cgroups as a plugin to further enhance
the sandboxing capability to include a tool that ca-
pable of enforcing a policy base resource control
mechanism on the system.

With this, we will begin our discussion of the overall
sandbox architecture design. We will then proceed on
how we isolate the filesystem and privileges. Finally,
we will proceed with the brief discussion of cgroups
and specifically which features of cgroups that is cur-
rently included in our overall sandbox design.

2 Design and Implementation

Our design principle is based on the following key ob-
jectives:

1. To guarantee that a compromised application could
not take ownership of the whole system. In other
words, an attacker will not be able to use a possible
vulnerable application as a springboard to launch a
premeditated attack.

2. To provide the ability to hide information or data
associated with an application from the rest of the
applications running on the platform.

3. To provide the way to restrict access to the part of
the system that an application does not require to
accomplish its task.

4. To provide the ability to customize extended func-
tionality of the sandbox by providing software
hooks that could be developed and installed as a
plugin.

Based on the above objectives, we have the overall high
level system architecture of our design as shown in Fig-
ure 1.

Sandbox BSandbox A

Sandboxerd
Package File 

Database

launches

launches

Launch

Un-trusted
Application

Trusted 
Application 1

Trusted 
Application 2

StubD

launches launches

DBUS

Figure 1: Architecture Overview

Our design consists of three functional components:
Package File Database, Sandboxer Daemon, and Stub
Daemon, as shown in Figure 1 above. The roles of these
three functional components are as follows:

• Package file database decides whether to create a
new sandbox or to use the existing one for the
newly invoked application.

• Sandboxerd responds to request from the new ap-
plication to execute.

• Stub Daemon is a daemon that only launches
within a sandbox that contains multiple trusted ap-
plications. It specifically handles the request from
the Sandboxerd where a new trusted application
needs to run in the existing sandbox.



2009 Linux Symposium • 31

Trusted Domains
- Packages are installed in the /usr hierarchy as per Filesystem Hierarchy Standard (FHS) recommendations
- Binary files/directories are owned by (root, root)
- Binaries are run as <unique_uid>, <unique_gid>
- Multiple binaries may be run in the same sandbox
Untrusted Domains
- Packages are installed in /opt/<package-name> as per FHS recommendations
- Files/directories are owned by <unique_uid>, <unique_gid>
- Binaries are run as <unique_uid>, <unique_gid>

Table 1: Assumptions based on trusted and untrusted domains

Notice that we emphasize the notion of trusted applica-
tions. Trusted applications are verified as safe applica-
tions and from trusted domains. The assumptions be-
tween trusted and untrusted domains are summarized in
Table 1.

The package file database’s primary role is to provide
a mapping between trusted binaries to sandbox in the
form of configuration file or database. All applications
to be run in a sandbox are configured here, both trusted
and untrusted. The distinction from trusted and un-
trusted operation is the configuration of the sandboxes,
rather than the flag in the database. Care must be exer-
cised during the creation of such entries. The format is
illustrated in Table 2 below.

[Sandbox]
SandboxName=shared_sandbox
PackageName=firefox
Users=firefox
ExecPaths=/usr/lib/firefox-3.0.8/firefox
[Sandbox]
SandboxName=shared_sandbox
PackageName=gcalctool
Users=gcalctool
ExecPaths=/usr/bin/gcalctool
[Sandbox]
SandboxName=xterm_sandbox
PackageName=xterm
Users=xterm
ExecPaths=/usr/bin/xterm.bin

Table 2: Example .package files

The application firefox and gcalctool will there-
fore share the sandbox which will be referred to as
’shared sandbox’, while xterm will use the new
sandbox referred to as ’xterm_sandbox’.

2.1 Filesystem and privilege isolation method

By filesystem isolation we mean that the sandboxed ap-
plication runs in the pre-defined subset of filesystem
that it cannot escape from. This is commonly referred
to as “jail” and is most commonly accomplished with
chroot(). Exploits that will compromise a simple
chroot() are well known [14]. Our implementation
does not use chroot() directly. Instead, we uses the
CLONE_NEWNS flag introduced in the Linux 2.4.19 as
a flag to create a new filesystem namespace with the
unshare() system call. Once a process has entered
its own namespace, mount() and umount() only af-
fect the namespace of the current process and not the
parent. Thus, manipulation to the root filesystem is pos-
sible that is specific to a certain process. Bind mounts
(Linux 2.4 onwards) allow a sub-tree of the filesystem to
be mounted as though it were a filesystem on a path. Us-
ing this mechanism, one can, for example, bind mount
/foo/bar to /baz with mount("/foo/bar",
"/baz", NULL, MS_BIND, NULL). With these
two tools, a secure jail can be constructed simply with:

chdir("/jail");
unshare(CLONE_NEWNS);
mount("/jail","/jail",0,MS_BIND,0);
pivot_root("/jail","/jail/old_root");
chdir("/");
mount("/old_root/bin","bin",0,MS_BIND,0);
mount("/old_root/usr","usr",0,MS_BIND,0);
mount("/old_root/lib","lib",0,MS_BIND,0);
umount2("/old_root",MNT_DETACH);
/* drop privilege omitted */
exec(application);

For privilege isolation, we use conventional UNIX users
and groups. It is expected that individual applications
will run with individual UID and GIDs. This allows



32 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

traditional isolation among users, which UNIX systems
provide to keep applications distinct from each other.
Several unprivileged applications will likely be put in
their own sandbox. Certain applications will remain out-
side of sandboxes. These generally include privileged
applications and daemons as well as applications that
need unfettered access to the whole filesystem to work
correctly (such as the IDS system). Of course, X is out-
side of a sandbox.

It may be desirable to put a PIM application and the
web browser in separate sandboxes because both pro-
cess’ considerable input from the outside. It would be
undesirable if an arbitrary code execution’s flaw in the
web browser exposed all of user’s email. Likewise, the
damage the compromised web browser will do should
be limited.

2.2 Sandoxerd and Stub Daemon

Sandboxerd uses D-Bus as the communication medium
among client applications. Sandboxerd exists as a dae-
mon that manages the creation of sandbox and ver-
ify the policy that comes with that particular sandbox.
It exposes an interface that is roughly analogous to
vfork() and wait() usages. Note that this is API
usage. A helper application is provided that can be di-
rectly vfork’d and waited. The helper utility is called
sandbox and the usage of such utility would be:

sandbox <cmd> [args]

The calling application can directly use vfork()/
exec() and waitpid() on this helper utility. With
such a utility, enabling the use of sandboxing to applica-
tions is a mere configuration change rather than a code
change.

The Stub Daemon exists for the case where two or more
trusted applications are to share a sandbox. This can be
determined in advance by cross-indexing the application
name to the sandbox name in the configuration database
during the mapping procedure. Because a sandbox is a
premised on a filesystem namespace (CLONE_NEWNS),
the only way to add a process to an existing sandbox
is with fork(). For this scenario, the Sandboxerd
vfork() the Stub Daemon. The Stub Daemon does
the unshare() and bind mounts filesystems available
to the sandbox and waits for commands from Sandbox-
erd. When all the children have exited, the daemon ex-
its, thus destroying the sandbox. The following pseu-
docode further illustrates the mechanism.

loop {
wait for command from Sandboxerd() {

pid= fork;
if (pid) {

children << pid;
send child pid to Sandboxerd;

} else {
setgid();
setruid();
exec();

}
}

if children is empty
exit;

}

To better understand how these blocks function together,
two flow examples are provided side by side. Note that
although we use the UML sequence notation, each life-
line represents a process rather than an object. Referring
to Figure 2, in the first use case (the left figure), one ap-
plication in a sandbox (App1), requests for the launch-
ing of a second application in a sandbox (App2), and
each application exists in its own sandbox.

2.3 Plugins architecture

Our implementation of sandbox provides strategically
placed hooks. Referring to our method of creating a
secure “jail” in the previous 2.1 section, the following
hooks in order:

• INIT – initialization state; run as sandboxer user

• PRE_FORK – state before fork() system call;
run as sandboxer user

• PRE_UNSHARE – state before unshare() sys-
tem call; run as root

• PRE_PIVOT_ROOT – state before pivot_
root() system call; run as root

• PRE_UMOUNT – state before unmounting old_
root; run as root

• PRE_SETUID – state before dropping privileges;
run as root

• PRE_EXEC – state before exec() system call;
run with privilege specified in .package file

• FINALIZE – final state; run as sandboxer user



2009 Linux Symposium • 33

Figure 2: One application run on one sandbox (left), and semantics of Stub Daemon with two applications run inside
the same sandbox (right)

Various plugins will be instantiated and registered
within the Sandboxerd and Stub Daemon through con-
figuration files. When new process is to be run,
the Sandboxerd and Stub Daemon will invoke a par-
ticular function provided by the plugins, i.e. before
unshare() a filesystem, the PRE_UNSHARE plugins
function will be called to accomplish the necessary task
related to that particular process. The hook function will
provide information of the respective parent of particu-
lar process and the sandbox environment, i.e. its con-
fined filesystem. Notice that at each of the hook, uid
(UID) and gid (GID) will be different depending on
which stage of the sandbox creation process a particular
plugin function is invoked.

With the adaption of the plugins architecture towards
our sandbox design, it enables the flexibility in extend-
ing beyond the simple “jail” mechanism that the basic
sandbox provides. The need to expand the security fea-

tures of the sandbox will be available to a developer
simply by implementing a plugin. We have chosen to
demonstrate the use of plugin to enhance our sandbox by
integrating a resource control mechanism (cgroups)
via a plugin.

2.4 Resource control

Resource control enables us to establish policy in re-
gards to memory usage or devices available in the sys-
tem. We have integrated cgroups into our sandbox
to achieve this goal. Cgroups also known as con-
trol groups is Linux kernel mechanism that is currently
a work in progress, which provides a way to partition
tasks and their respective children into a hierarchical
groups [6]. It was originally developed with the in-
tention to become a Linux container. Cgroups by
itself provides a simple job tracking mechanism avail-
able inside the kernel. It comes with several subsystems



34 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

Sandbox 1 Sandbox 2 Sandbox 1 Sandbox 2

Apps 1, Apps 2
Fs:/usr;/home;

/bin; 

Apps 3
Fs:/foo;/foo1;

/foo2; 

Apps 1, Apps 2
Fs:/usr;/home;

/bin; 

Apps 3
Fs:/foo;/foo1;

/foo2; 

Namespace: UID1
GID1

Namespace: UID3
GID3

Namespace: UID1
GID1

Namespace: UID3
GID3

Memory, CPUs, Available devices (/dev)
Memory: n bytes
CPU: 0
Devs: /dev/foo1

/dev/foo2

Memory: n+1 bytes
CPU: 1
Devs: /dev/foo3

/dev/foo4

Sandbox without Cgroups Sandbox withCgroups

Figure 3: High level comparison on sandbox design with and without cgroups

which uses this basic functionality to extend the abil-
ity to provide resource controls. Currently there are ten
or more cgroups subsystems being developed and ex-
perimented. Since this is a work in progress, more sta-
ble and new subsystems will be available in the near fu-
ture. By enabling cgroups subsystems into our sand-
box design, we are able to provide policies that capa-
ble of directly controlling the limit on the usage of sys-
tem resources. Currently, we have included only a to-
tal of three subsystems (memory, memrlimit and
devices) to be included as part of our sandbox de-
sign.

Memory subsystem provides the availability to limit
the available memory per sandbox [8]. Memrlimit
subsystem provides the same functionality as
memrlimit() system call and this limit applies
in per sandbox context (regardless of the number of
processes residing inside particular sandbox) as oppose
to per process context as in the original system call.
Device subsystem provides the ability to restrict
access to devices available in the system as available in
/dev filesystem. It provides ability to track and enforce
open and mknod restrictions on device files [7].

The memrlimit capability provides the sandbox an
ability to automatically keep tracks of the total mem-
ory limit (available address space or number of bytes
allocated via malloc(), sbrk(), mmap()). It will
automatically fail any attempt to allocate dynamic mem-
ory beyond the specified allocated limit as per sand-
box configuration policy. Device subsystem provides
a way to enable and disable the available devices (de-
vice whitelists) to a particular sandbox. Customize pol-
icy that distinguished between the availability of device
between a trusted sandbox and those which serves un-
trusted/possible malicious application.

With these three subsystems implemented in our sand-
box, we could further provide a more targeted policy
control for specific applications. One example is the
ability to enforce a strict policy to target sandbox us-
age for a potential un-trusted/malicious application. Al-
though the filesystem and privilege isolation is a de-
fense mechanism in the event of an attack; the system
resources are still available to be exploited, specifically
memory limit. As depicted in Figure 3, system’s mem-
ory and cpu(s) are shared among the sandbox in the
absence of cgroups. With cgroups, memory and



2009 Linux Symposium • 35

cpu(s) usage and access policy is enforced. The need
to always ensure sufficient memory availability is a ne-
cessity for a device that has telephonic capability. In
the event of an emergency call such as 911, we have to
provide a high level of assurance that the call will not
be interrupted in the possible event of depleted mem-
ory availability consumed by some malicious processes.
With resource control functionality, thus we are able to
create a policy that will pre-allocate sufficient system
resources to ensure the emergency call will proceed un-
interrupted.

2.5 Cgroups as a plugin

The first prerequisite in enabling the cgroups re-
source capability is to compile the Linux kernel with
required cgroups subsystem enabled. The configu-
ration for each sandbox object comes with the lists of
cgroups variable of interest. The running system is
also required by default to create a virtual filesystem
that cgroups will use to operate. The hooks for the
cgroups functionality need only to be called during
the PRE_FORK and PRE_SETUID state. Initialization
and setting up necessary parameters such as memory
limits and lists of allowable devices are accomplished at
the PRE_FORK state by reading available package files.
At the PRE_SETUID, the pid of the running process in a
particular sandbox will be registered with the cgroups
system. Cgroups will then perform an accounting and
monitoring activity.

3 Sandbox confines

For most applications, some shared variable is required
as well as some Inter Process Communication (IPC).
To the end user, the sandbox should be transparent and
they should not see individual fields of data that can-
not be merged. For most applications to work cor-
rectly, several environment variables must be set up in
the sandbox. Examples of such environment variables
are PATH, USER, HOME, HOSTNAME, and GTK+
themes. However, manipulation of environment vari-
ables by a nefarious caller can lead to compromise. As
such, the environment variables used inside the sandbox
must be taken from a source other than the caller. Since
the environment of the Stub Daemon is trusted, it serves
as the source for environment variables to be used inside
sandboxes.

Since the sandboxes are file-system based, most forms
of IPC are possible across sandboxes. Most IPC se-
mantics require some handle to be present for one ap-
plication to know the IPC method and path to be used
to connect to. For example, D-Bus uses the environ-
ment variable DBUS_SESSION_ADDRESS. For these
IPC mechanisms to be readily available inside the sand-
box, they need to be copied over. At present, Xauth
cookies and D-Bus handles are copied over. Plugin-
type architecture will allow for flexible manipulation
of the sandbox environment at creation. Mechanics
for sharing files between sandboxed applications can be
done simply for trusted applications. Standard POSIX
permissions and groups offer an appropriate method.
For example, suppose we wish for all trusted applica-
tions to be able to read and write files in the direc-
tory /usr/share/foo. If all trusted applications
are in the “trusted” group and /usr/share/foo is
set GID foo with mode 770, then all trusted appli-
cations can read, write, create, and execute files out of
/usr/share/foo.

Although the sandbox environment provides almost all
of the same functionality as a normal Linux program-
ming environment, certain exceptions and caveats are
present. The most notable difference for the program-
mer is the absence of /proc and /sys inside the sand-
boxes. The removal of proc and sys effectively limit
the visibility of sandboxed applications to see the true
environment. Most end-user applications function with-
out proc being present; however application writers
should be cognizant of this omission. Additionally, the
/dev and /etc directories are present, but are not true
copies of the respective system directories. They are
“shims” with only the relevant files or sections of files
present. Unlike the bind mounts for the other root direc-
tories, the shims are selective copies that are created on
demand, although they can be cached. In /etc, for ex-
ample, the full passwd database will not be present.
However, an abridged version will be created on de-
mand that only contains the relevant user and group in-
formation for the application(s) that run in that sand-
box. Similarly, most host information available in /etc
are not copied over. In /dev only devices that need
to be present need to be created. For most applica-
tions, only non-hardware devices will be present, such
as random, null, and zero. For trusted applica-
tions, some devices may need to be present as specified
in the package file database.



36 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

Additionally, top level directories cannot be removed
from within sandboxes. For example if there was a
top level directory /foo and it was mode 777 with a
bind-mounted directory, then it could not be removed
from either inside or outside the sandbox. Although
files can be removed from /foo, the directory /foo
itself is unremovable. There are two examples where
expected results may occur if the developer is not aware
of the sandboxed environments. The first is the unin-
tentional launching of an application within the same
sandbox. For example, if the browser wishes to launch
the email client (to handle a mailto: url), and it uses
vfork/exec of the email executable directly instead
of the convenience wrapper, it will inadvertently start
the email client within the same sandbox. This will most
likely lead to a non-functional email client, but could be
an exploitable condition. Care should therefore be ex-
ercised. Similarly, care must be exercised with D-Bus
activation. Since the session bus is shared amongst all
sandboxes outside of their respective sandbox. An ap-
plication that wishes to use D-Bus activation will use
the convenience wrappers in its activation procedure to
allow proper functionality. Failure to do so will result in
activation failing. With these sandboxing approaches,
we feel that we can limit the damage of application sub-
version, lessen the risks of disclosure of sensitive data,
as well as reduce opportunities for privilege escalation.

4 Related work

Many implementations of sandboxing technologies fo-
cused on almost many different approaches, both soft-
ware and hardware utilization. One of the hardware im-
plementations from the work of Sahita and Kolar that
proposed the use of Virtual Machine Monitor (VMM)
is included in the hardware virtualization support inside
Intel’s CPU [1]. The implementation consisted of cre-
ating a monitoring scheme that utilized a VMM and a
kernel service that will particularly monitor the request
for memory usage. The monitoring agent will allocate a
range of linear addresses for the new application. Mem-
ory access needs to be requested via a communication
with the monitoring agent that runs as VMM. Trusted
and untrusted application will run on separate isolation
of memory addressing that will be determined by a pol-
icy access of a particular sandbox. The similarity in our
implementation is in the policy that we have enforced
for a particular sandbox which has lists of variables such
as memory limit and devices white list. Our implemen-
tation is only restricting the amount of memory instead

of restricting access to a range of linear addresses. With
a fine grained control of range of accessible linear ad-
dresses, malicious application will not be able to gain
access to the protected memory regions thus reducing
the damage caused to the system. However, the tradeoff
will be the complexity in the integration with the sys-
tem hardware. Our implementation focused on provid-
ing a simple yet robust solution that provides the sand-
box properties that will work on all platforms capable of
running Linux operating system regardless of the under-
lying hardware design.

The work of Chang et al. in the implementation of
user-level resource constrained sandbox is closely re-
lated to our work [10]. The implementation covered the
ability to constrain the system usage of CPU, memory
and network. The focus of their implementation was
specifically on the Windows NT platform. Although
Linux platform was included in the experimental test-
ing, the paper lacks the discussion on the details of
the implementation. CPU resource constrained is ac-
complished by implementing a monitoring scheme that
scheduled processes based on the priority level. A pro-
cess that exceeded the limit will be penalized by low-
ering its priority level. Memory constrained is accom-
plished with the way of sampling the memory usage
by intercepting memory allocation API. Those applica-
tions that exceeded its limit will be penalized by hav-
ing the extra memory pages marked, such that access
to the marked pages will result in page fault. The dif-
ference in our implementation is that we have used the
resource constrained capability-cgroups as part of the
kernel. Cgroups provide a simple yet robust frame-
work for resource control capability within the Linux
kernel. Instead of penalizing a process that exceeded
its limit, i.e. malloc() request, cgroups will simply
return a fail for any attempt to request for resource us-
age beyond its preset sandbox limit. Instead of per pro-
cess restriction, our cgroups implementation provides
per sandbox policy restriction. Without the complexity
of monitoring each and every resources allocation API,
cgroups keep a simple accounting routine that will
check if the policy limit has been exceeded and thus re-
quires less processing overhead. It therefore translated
into a lower total power consumption. The needs for
more complex solution that involves kernel functional-
ity could always be extended as part of the cgroups
subsystem.

West and Gloudon proposed a user level sandbox to



2009 Linux Symposium • 37

provide protection for extensible system [2]. Their ap-
proach modifies a process address space to contain one
or more shared pages. The extension codes will then
be mapped into this shared page that comes with ac-
cess privilege as a protection mechanism during tran-
sition from the user to kernel space. Through changing
the access privilege of the shared page, kernel is able to
maintain the integrity over the newly implemented ex-
tension codes. Though not particularly focusing on an
extensible system, our design provides the capability of
running a completely new or existing sandbox setup, in
which a new extension of the system is desire. The sets
of policy could be reused or recreated to accommodate
the changes. It may contain a total set of filesystems
or various sandbox variables to better accommodate and
provide security isolation to the newly modified appli-
cation.

Yee et al. introduced Native Client, the protection mech-
anism to run un-trusted native code specifically on the
x86 based system [11]. Native Client provides a se-
cure runtime protection and software fault isolation. A
two layer of sandbox is introduced, with the inner layer
provides memory reference constraint through the use
of x86 segmented memory capability. The outer layer
compares each request of a system call with the database
of trusted system call. Our implementation does not in-
tercept against any system call made by an application.
However, we restrict the namespace of the particular ap-
plication, so that it could only have the visibility of a suf-
ficient set of filesystems to accomplish its task. Filesys-
tems that contain system information such as proc,
sys, etc. may not be available to the application.
The application will execute with sufficient privilege to
accomplish its task. In the event that software fault that
could trigger an attack, such as buffer overflow, the com-
promised application will be confined to its own sand-
box environment with its default privilege, thus gaining
a root access privilege will be difficult.

Most of the isolation solutions that we have seen so far
tend towards the use of restriction against access to spe-
cific memory range to protect sensitive data. With such
a fine grained control of memory access, it will be able
to prevent any unintended access towards a particular
memory area; however, a complex modification in both
hardware and software is almost a major requirement.
The cost of implementing and maintaining will increase
correspondingly with respect to the the complexity of
the system design. System call interception is also an-

other common approach. Our main goal of creating the
sandbox solution is to use the simple approach that al-
ready existed in the system especially in the Linux plat-
form and by integrating a kernel level control that is pro-
vided by a framework such as cgroups that has low
system overhead. By going with a simplistic approach
we are not sacrificing any security measure, since we
are using a Linux system mechanism that has been thor-
oughly used and tested overtime in terms of its stabil-
ity and security. Additionally, our goal is to enable the
porting of our implementation across the many different
hardware platforms with minimal difficulty.

5 Future work

We hope to get insightful feedback and contribution
from the open source community and integrate it into
our future design. With the inclusion of cgroups,
we are always capable of improving and adding the
resource control functionalities by including the new
cgroups subsystem. The plugin capability also allows
the user of our sandboxer to add an extra functionality
as required.

6 Conclusion

This paper provides an overview of our design of the
user level sandboxing design which provides filesystem
namespace isolation, flexibility to extend sandbox capa-
bility through innovative design of plugins architecture,
and utilization of a resource control capability through
Linux kernel cgroups. We have described in this pa-
per how we achieve filesystem and namespace isolation,
and how we utilized our sandbox plugin capability by
making cgroups a plugin. With the ability to contain
and run predefined sets of policy, we are thus prevent-
ing a compromised application to invoke a significant
damage in a system such as MIDs. This project is also
part of the moblin.org open source project initiative for
Linux based operating system specifically targeted for
MIDs.

7 References

[1] R. Sahita and D. Kolar, Beyond Ring-3: Fine
Grained Application Sandboxing. World Wide Web
Consortium (W3C), December 2008.



38 • Sandboxer: Light-Weight Application Isolation in Mobile Internet Devices

[2] R. West and J. Gouldon, User-Level Sandboxing: a
Safe and Efficient Mechanism for Exensibility.
Technical Report, 2003-014, Boston University, June
2003.

[3] R. West and J. Gouldon, QoS Safe’ kernel
extensions for real-time resource management. The
14th EuroMicro International Conference on
Real-Time Systems, June 2002.

[4] I. Goldberg, D. Wagner, R. Thomas and E. Brewer,
A secure environment for untrusted helper applications.
In Proceedings of 6th USENIX Security Symposium,
July 1996.

[5] S. Miwa, T. Miyachi, M. Eto, M. Yoshizumi and Y.
Shinoda, Design Issues of an Isolated Sandbox Used to
Analyze Malwares. In Lecture Notes in Computer
Science: Advances in Information and Computer
Security, Heidelberg, 2007.

[6] Cgroups documentation.
/linux-2.6.X/Documentation/cgroups/
cgroups.txt

[7] Cgroups devices documentation.
/linux-2.6.X/Documentation/
controllers/devices.txt

[8] Cgroups memory documentation.
/linux-2.6.X/Documentation/
controllers/memory.txt

[9] Robert N. M. Watson, Exploiting concurrency
vulnerabilites in system call wrappers. In 1st USENIX
Workshop on Offensive Technologies, August 2007.

[10] F. Chang, A. Itzkovitz and V. Karamcheti,
User-level Resource-constrained Sandboxing. USENIX
Windows Systems Symposium, August 2000.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula and N. Fullagar,
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. Technical paper Google Inc, 2008.

[12] S. Santhanam, P. Elango, A. A-Dusseau and M.
Linvy, Deploying Virtual Machines as Sandboxes for
the Grid. Proceedings of the 2nd conference on Real,
Large Distributed Systems-Volume 2, San Francisco
2005.

[13] B. Ford and R. Cox, Vx32:Ligthweight User-level
Sandboxing on the x86. 2008 USENIX Annual
Technical Conference, June 2008.

[14] Using chroot() Securely.
http://linuxsecurity.com/content/
view/117632/49/

[15] Moblin.
http://moblin.org



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


