
Scaling software on multi-core through co-scheduling of related tasks

Srivatsa Vaddagiri Bharata B Rao Vaidyanathan Srinivasan Anithra P Janakiraman

Balbir Singh Vijay K Sukthankar

IBM India Software Labs, Bangalore
{vatsa, bharata, svaidy, janithra, balbir, vksuktha}@in.ibm.com

Abstract

Ever increasing demand for more processing power,
coupled with problems in designing higher frequency
chips are forcing CPU vendors to take the multi-core
route. IBM R© introduced the first multi-core processor
with its POWER4 R© in 2001, that had two cores in a
chip and also 4 chips in a package. Other CPU vendors
have followed the trend with dual and quad-core pro-
cessors becoming increasingly common. It is estimated
that by year 2021, there will be chips with 1024 cores
on them [6]. Such platforms pose huge challenge on
how software effectively utilizes so many cores. One
problem of interest is how tasks are scheduled on such
platforms. The existing Linux scheduler attempts to dis-
tribute tasks equally among all CPU chips. It does not
optimize this task placement, taking into consideration
that all tasks need not be equal with respect to their use
of shared CPU resources (like L2 cache). In this pa-
per, we look at how misplacement of tasks across CPU
chips can significantly affect performance and how ex-
isting Linux interface to solve that problem is inflexible.
We present a new interface which can be used by appli-
cations to hint which threads share data closely and thus
should be co-scheduled on neighbouring1 CPUs to the
extent possible by OS scheduler. We present several re-
sults showing the inflexibility of existing interface and
how the suggested interface solves those problems.

1 Trends in modern system architecture

Modern multi-core processors have innovative and com-
plex cache hierarchy design in order to hide memory
access latency and optimize bandwidth on various intra-
chip and inter-chip interconnect buses. With faster

1Neighbouring CPUs are those that share some or all of a cache
hierarchy.

CPUs, application performance is now becoming bound
on the availability of its working data set in local CPU
cache.

Table 1 aptly illustrates this point using c2cbench [1],
a benchmark that measures the cost of data transfer be-
tween two caches. The benchmark was used to mea-
sure throughput for transferring 256KB of data between
a producer and consumer thread.2,3 By controlling the
CPUs on which two threads run, the benchmarks mea-
sures cost of cache-to-cache transfer. Best throughput
is seen when both threads are co-scheduled on sibling
cores (which share the same L2/L3 cache). The through-
put drops by a factor of 4-6 when the threads are forced
to run on cores that don’t share the cache hierarchy. An
interesting data point from Table 1 that represent typ-
ical system cache topology is that co-scheduling pro-
ducer/consumer tasks on sibling hardware threads gives
best performance since they share most of the cache hi-
erarchy. The benefit of cache sharing is outweighing the
cost of contention for shared execution resources in the
core.

Although memory and inter-chip interconnect band-
width has been increasing in each generation of proces-
sors, the trend seems to indicate that the ratio of access
latency between remote and local cache will continue to
be significant. Thus we can conclude that task place-
ment can significantly affect performance, especially
for scenarios where two or more tasks work closely
on shared data.4 Co-scheduling such related tasks on
neighbouring CPUs can improve performance by mak-
ing best use of shared cache hierarchy.

2c2cbench -P0 -C1 -prw -crd -d4096 -b256 -s8 -k1 -K0 -I1000
3The terms thread and task are used interchangeably throughout

the paper.
4The term thread cluster is used to refer to a group of tasks that

work closely on some shared data.

• 287 •

288 • Scaling software on multi-core through co-scheduling of related tasks

Relative throughput for Sibling hardware On-chip cores Off-chip cores
data sharing (GB/sec) threads
IBM POWER5 R© 3.9a 4.3a 1a
IBM POWER6 R© 6.4b 1.4b 1b
Intel R© Xeon Quad Core N/A 6.5c 1c
Intel Core i7 4.1d 2.1d 1d

Table 1: Producer-consumer throughput for 256KB transfer

Scenario No-co-scheduling case Co-scheduling case Impact of co-scheduling
(million records/sec) (million records/sec)

Two instances 8.76 9.71 +10.84%
Single instance 15.73 9.74 -38%

Table 2: Co-scheduling ebizzy instances

Scenario No-co-scheduling case Co-scheduling case Impact of co-scheduling
(seconds) (seconds)

Two instances 209.44 207.79 +0.78%
Single instance 107.42 203.92 -89.8%

Table 3: Co-scheduling kernbench instances

Metric No co-scheduling Co-scheduling Impact of co-scheduling
(million records/sec) (million records/sec)

VM1 Throughput 5.85 5.95 +1.7%
VM2 Throughput 3.64 5.65 +55.22%
VM3 Throughput 7.67 7.27 -5.22%

Table 4: Co-scheduling KVM VMs

Scenario No co-scheduling Co-scheduling Impact of co-scheduling
(seconds) (seconds)

Two instances 1x 0.8846x +11.54%
Single instance 1x 1.2339x -23.39%

Table 5: Co-scheduling Trade6 application

2009 Linux Symposium • 289

2 Co-scheduling opportunities

In this section, we look at few opportunities that exist in
real world where we can co-schedule related threads on
neighbouring CPUs for improving performance.

2.1 Multiple instances of same applications

In many cases, multiple instances of the same applica-
tion are launched. For example, multiple users launch-
ing same compiler program to compile their program,
multiple application servers launched on the same ma-
chine as a vertical cluster [2] etc. Probability of data
sharing between threads of an instance is higher than be-
tween threads across instances. Co-scheduling threads
of an instance on neighbouring CPUs could potentially
yield better performance, provided the opportunity ex-
ists to utilize remaining CPUs for other work.

Table 2 shows the results of co-scheduling for ebizzy
[3] benchmark, a workload resembling web applica-
tion server. The benchmark creates several threads that
search for a random key from the same memory region.
The memory region thus is shared between all threads
of the benchmark.

In first scenario, two instances of ebizzy are launched si-
multaneously on a machine having two dual-core Intel
Xeon R© CPUs (with 4MB shared L2 cache). In no-co-
scheduling case, they were not bound to any CPU and in
co-scheduling case, each instance was bound to a sepa-
rate dual-core CPU. Co-scheduling gives good results
in this scenario. In the second scenario, only one in-
stance is launched. Co-scheduling that single instance,
which means binding that instance to a single dual-core
CPU, does not give good results in this scenario. This is
because the single instance, being hard-bound to single
dual-core CPU, is not effectively making use of all the
available (idle) CPUs in the system.

Table 3 shows the results of co-scheduling for kern-
bench, a Linux kernel compilation benchmark. On
the same machine described above, two instances of
kernbench are launched simultaneously in first scenario.
Each instance spawns 11 threads for compiling differ-
ent source files in parallel. Each of those 11 threads
will compile its own source file and hence there is very
little data sharing between threads of an instance. Co-
scheduling in this scenario will not give any benefit and
in the second scenario of single instance is actually hurt-
ing performance.

2.2 Virtualization

Power, cooling and real-estate constraints in data cen-
ters are forcing customers to consolidate their applica-
tions on fewer and powerful machines. Advanced vir-
tualization capabilities of modern processors are being
fully utilized to carve several virtual machines (VM) out
of a single machine. Each VM gets the illusion as if it
has its own set of hardware resources (CPUs, memory
etc). The mapping of virtual resources of a VM to un-
derlying physical resources is managed by a hypervisor
software. For example, in case of CPUs, the hypervi-
sor will schedule the different virtual CPUs (VCPU) of
a VM on different physical CPUs.

Typically each VM hosts a single application, say a
database server or webserver. In such a case, data shar-
ing is more likely to occur between threads belonging
to the same VM rather than between threads of different
VMs. Thus it makes sense to consider co-scheduling
different VCPUs of a VM on neighbouring CPUs, pro-
vided the opportunity exists to utilize remaining CPUs
for other work.

In an experiment involving KVM based virtualization,
3 VMs, VM1, VM2 and VM3, were launched on a
machine having 2 quad-core Intel Xeon CPUs. ebizzy
benchmark was started simultaneously on all three
VMs. In the first case, VMs were not bound to any
CPU. In the next case, VM1 and VM2 were bound to
two different quad-core CPUs and VM3 was not bound
to any CPU. The results shown in Table 4 shows that
co-scheduling helps improve the performance of ebizzy
benchmark running inside VM1 and VM2.

2.3 Application Server

Java application servers like WebSphere R© Application
Server (WAS) are used to host business applications
written in J2EE. The same application server can host
multiple applications or multiple application instances
on the same node. Probability of data sharing is higher
between threads of the same application (instance) and
hence an application (instance) could form the basis
for co-scheduling threads. In case of applications like
YouTube or online gaming, it is possible to group
threads at a even much finer granularity. For example,
all threads serving the same video/photo-album or all
threads serving players of the same game instance could
be grouped together to form a cluster.

290 • Scaling software on multi-core through co-scheduling of related tasks

Table 5 shows the result of co-scheduling for Trade6
application on a server with two dual-core Intel Xeon
CPUs. Time taken to complete the benchmark is shown
on a relative scale, with the No co-scheduling case form-
ing the baseline to compare against. In first scenario,
two Trade6 instances are launched. Co-scheduling each
instance on a separate dual-core CPU results in bet-
ter performance compared to not co-scheduling any in-
stance. In the second scenario, a single instance is
launched. Co-scheduling that single instance (which
mean hard-binding it to a single dual-core CPU) is ac-
tually hurting performance in this case, as it does not
utilize fully all the available CPU resources.

The key observations from these experiments are:

1. Co-scheduling helps improve performance for cer-
tain workloads, where high degree of data sharing
exists between threads.

2. Co-scheduling should not be at the cost of idling
CPUs. In other words, its better to break co-
scheduling in favor of utilizing as many required
(idle) CPUs.

3 Detecting co-scheduling opportunities

In Section 2, we saw that opportunities exists in real-
world for improving performance on multi-core sys-
tems by co-scheduling related threads. How do we
detect such opportunities? In most cases, it is done
with manual intervention—after carefully studying the
workload and the platform behavior. Co-scheduling is
achieved using existing interfaces like sched_setaffinity
and cpuset. Beyond providing the raw support to co-
schedule tasks, Linux doesn’t have any capability to au-
tomatically detect co-scheduling opportunities and co-
schedule selective tasks based on that.

3.1 Automatic detection

[8] describes one mechanism to automatically deter-
mine co-scheduling opportunities on IBM Power5-
based multi-core platform, based on observing cer-
tain HPCs (Hardware Performance Counter) related to
cache-miss events. The algorithm described is however
quite complex and it remains to be seen how easily it
can be adapted to a general purpose operating system
like Linux.

 1
 2

 3
 4

 5
 6

 7
 8 1

 2
 3

 4
 5

 6
 7

 8

 90000

 100000

 110000

 120000

 130000

 140000

 150000
lock count

Warehouse lock acquisition and contention view

"./vaddagiri/lockingstats"

warehouse id

warehouse id

lock count

Figure 1: Warehouse lock acquisition and contention
view

We present below a more simpler approach which could
form the basis of automatic co-scheduling. The ap-
proach is based on the fact that data sharing between
threads generally involves them acquiring the same
locks guarding shared data access. Analyzing lock ac-
quisitions can give us a clue on threads that are closely
working on shared data. Once such threads groups
are detected, we could automatically co-schedule them
on neighbouring CPUs using the interface described in
Section 4.2.

3.2 Workload

We ran SPECjbb2000 [4] and modified the default con-
figuration of SPECjbb so that multiple threads (termi-
nals) can simultaneously access the warehouse. In our
experiments we used 8 warehouses with 4 threads per
warehouse. We instrumented the benchmark to collect
information about threads and which warehouse they
belonged to.

3.3 Results

Figure 1 shows a plot depicting the lock acquisition and
contention count for each of the threads by their ware-
house ID. The same data is show in numerical tabular
form below, Table 3.1.

As can be seen from Table 3.1, the highest locking was
seen between the threads belonging to the same ware-
house. Figure 1 displays the same graphically. The
data was obtained by instrumenting the mutual exclu-
sion paths on a per thread and a per mutex basis. This

2009 Linux Symposium • 291

Warehouse Id 1 2 3 4 5 6 7 8
1 136774 103674 91826 109088 98283 99615 105770 103254
2 103674 143964 109358 109848 96172 100722 106946 98890
3 91826 109358 136828 106294 108150 101856 107154 94878
4 109088 109848 106294 145206 109430 104000 100534 107342
5 98283 96172 108150 109430 131296 95266 102882 94316
6 99615 100722 101856 104000 95266 135796 104676 101312
7 105770 106946 107154 100534 102882 104676 149144 100070
8 103254 98890 94878 107342 94316 101312 100070 134370

Table 6: Warehouse to warehouse lock acquisition and contention count

data was then summed to extract thread to thread lock-
ing statistics by summing lock acquisition counts for
each mutex and thread pairs. The warehouse data was
obtained by summing the lock statistics for all threads
belong to the warehouse.

3.4 Observations

The results obtained from the experiments above indi-
cate that

1. Although all threads in a process share the same
address space, the working data set could be be dif-
ferent for each thread.

2. A group of threads could share the same working
set to form a thread cluster.

3. Co-scheduling such thread clusters on neighbour-
ing CPUs should help improve performance (as
proven in this case by Figure 6 and Figure 7).

4 Co-scheduling interface

Once co-scheduling opportunities are determined, either
manually or automatically, co-scheduling related tasks
together on neighbouring CPUs is accomplished using
interfaces such as sched_setaffinity or cpuset.

4.1 Hard affinity interface

Both sched_setaffinity and cpuset provide the ability to
control where tasks execute. Using these interfaces it
is possible to co-schedule threads of a cluster on neigh-
bouring CPUs. The biggest drawback with these inter-
faces is the hard-affinity it creates between tasks and

CPUs, because of which it can actually hurt perfor-
mance sometimes (as highlighted by Single instance
scenario of Table 2). What would be better is a soft-
affinity interface, which would allow threads to be soft-
bound to CPUs.

4.2 soft affinity interface

The soft-affinity interface allows applications or admin-
istrators to register thread clusters. The CPU scheduler
would then automatically co-schedule threads of a clus-
ter on neighbouring CPUs, provided other CPUs can be
used for executing other work. In case no other work
exists, then scheduler would break co-scheduling of a
thread cluster in favor of utilizing all required CPUs for
the cluster.

The interface to register thread clusters is built on top
of the cgroup process-grouping feature of Linux ker-
nel [7]. A new cgroup subsystem, called co-scheduler,
was written to mediate between user space and sched-
uler (Figure 2). The co-scheduler subsystem provides
a filesystem based API (with help of cgroup subsys-
tem) for thread clusters to be registered. The API al-
lows creation/deletion of thread clusters or movement
of threads from one cluster to another (Figure 3). The
co-scheduler subsystem closely tracks the load of each
cluster across various CPUs (Figure 4), based on which
it will automatically co-schedule threads of few clusters
on neighbouring CPUs. Co-scheduling of threads is ac-
complished by manipulating their CPU affinity. A high-
level flowchart for the working of co-scheduler subsys-
tem is shown in Figure 5.

292 • Scaling software on multi-core through co-scheduling of related tasks

cgroups Kernel Space

User spaceatt
ac

h t
as

k t
o a

 cl
us

ter

cre
ate

 th
rea

d c
lus

ter

de
let

e t
hr

ea
d c

lus
ter

register subsystem

Scheduler

Co−scheduler subsystem

Figure 2: Co-scheduler subsystem

mount −t cgroup −o coscheduler none /cgroup

mkdir cluster2

mkdir cluster1

cd /cgroup

mkdir /cgroup

/bin/echo pid1 > cluster1/tasks

/bin/echo pid2 > cluster2/tasks

Figure 3: Registering thread clusters

Increment per−cpu load of

thread cluster to which the

task belongs

timer tick

decay cpu load of all

clusters on this cpu

enqueue task on a cpu dequeue task on a cpu

Decrement per−cpu load of

thread cluster to which the

task belongs

Figure 4: Tracking cluster load

calculate load of all cluster across all cpus

Calculate per−chip load

Sleep for sometime

Unbind thread clusters which cannot be

coscheduled, but which was previously bound

Start kernel thread

Terminate kernel thread?

End kernel thread

Y

N

Y

N

Y

N

Number of registered clusters < 1

Number of clusters with

non−zero load < 2

Bind various thread cluster to chips taking into

account per−chip load and each cluster load

Figure 5: Co-scheduler operation

2009 Linux Symposium • 293

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pt

Number of threads/warehouses

SPECJbb throughput vs number of threads/warehouse

No binding
Hard Binding
Soft binding

Figure 6: SPECJbb2000—Absolute throughput

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64

R
el

at
iv

e
T

hr
ou

gh
pu

t

no
hard
soft

Figure 7: SPECJbb2000—relative throughput

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pt

Number of threads/warehouses

SPECJbb throughput vs number of threads/warehouse

No binding
Hard Binding
Soft binding

Figure 8: SPECJbb2000—Two warehouses with vary-
ing number of threads

4.2.1 Results

Some results comparing hard- and soft-affinity are pro-
vided below:

1. SPECJbb
SPECJbb [4] is a Java benchmark used to evalu-
ate Java performance. The benchmark creates sev-
eral warehouses and several threads (or terminals)
per warehouse. Threads associated with the same
warehouse will very likely access the same data
that is associated with the warehouse. The bench-
mark was modified to bind threads using both the
hard- and soft-affinity interfaces. Figure 6 shows
the results of using the interfaces on a system hav-
ing two dual-core Intel Xeon CPUs. Two ware-
houses were created and the number of threads per
warehouse was varied from 1 to 64. In case of
hard-affinity, threads belonging to first warehouse
were bound (using sched_setaffinity) to first dual-
core CPU while threads belonging to second ware-
house were bound to the second dual-core CPU.
In case of soft-affinity, threads of the both ware-
houses were registered as separate clusters. The re-
sults show that binding, through either soft-affinity
or hard-affinity, provides better results. Also soft-
affinity is giving equally good results as hard-
affinity. Figure 7 shows the same results on a rel-
ative scale (with reference to the results obtained
without binding any threads).

Figure 8 shows some results which exposes the
weakness with hard-affinity. In this case, the num-
ber of warehouse was kept constant at 2, while the
number of threads/warehouse was varied from 1 to
64. For the hard-affinity case, threads of both ware-
houses were bound to first dual-core CPU, which
causes a gross under-utilization of resources. For
the soft-affinity case, threads of each warehouse
were registered as a separate cluster. The results
show that hard-affinity gives poorer results com-
pared to not binding any threads. Also soft-affinity
is giving best performance compared to no-binding
or hard-affinity by deciding to schedule threads of
two warehouses on separate dual-core CPUs.

2. Java application server
IBM Trade Performance Benchmark Sample [5]
for WebSphere Application Server or Trade6 is the
fourth generation of WebSphere end-to-end bench-
mark and performance sample application, which

294 • Scaling software on multi-core through co-scheduling of related tasks

simulates a real-world workload. To study the im-
pact of co-scheduling threads of the same JVM in-
stance, we used up to 5 WebSphere Application
Server profiles each running its own installation
of Trade6 on a machine having two dual-core In-
tel Xeon CPUs. Each of the Trade6 instances was
configured to use its own DB2 instance as the back-
end. The Trade6 application was stressed using
the WebSphere Studio Workload Simulator engine
(iwlengine) which generates a set of requests con-
tinuously till a particular runtime is reached.

For the purpose of this experiment the iwlengine
script was modified to generate a fixed number of
requests.The number of clients was fixed at 50.
The results were first collected for 2 instances of
Trade6 that were stressed simultaneously. Perfor-
mance was measured using the iwlengine in terms
of throughput and time taken. The threads of
each WebSphere instance are likely to access the
same data that is associated with the that Web-
Sphere/Trade6 instance. This was exploited using
both the hard- and soft- affinity interfaces. In case
of hard-affinity, threads belonging to the first in-
stance were bound (using sched_setaffinity) to the
first dual-core CPU while threads belonging to sec-
ond instance were bound to the second dual-core
CPU. In case of soft-affinity, threads of both in-
stances were registered as separate clusters.This
experiment was repeated for 3, 4 and 5 application
server instances.

Figure 9 shows the results of binding on a relative
scale (with reference to the results obtained without
binding any threads). The results shows that bind-
ing improves the throughput significantly. In some
cases soft- affinity gives better results which could
be attributed to the fact that soft- affinity gives pri-
ority to CPU utilization over co-scheduling.

5 Acknowledgments

The authors thank IBM management (Premalatha M
Nair, Naren A Devaiah, Naveen Kamat, Thomas Domin,
Kalpana Margabandhu) for being supportive of this
work. A special thanks goes to Manish Gupta (Asso-
ciate Director, IBM India Research Labs) for prodding
the authors to think about multi-core issues and who was
instrumental in driving the idea of using lock-contention
to form thread-clusters.

 0

 50

 100

 150

 200

2 AppServers 3 AppServers 4 AppServers 5 AppServers

A
vg

T
ra

ns
ac

tio
n

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
)

No of Websphere Application Server Instances

No Binding
Manual Binding

Soft Binding

Figure 9: Trade6—Relative throughput

6 Legal Statement

c©International Business Machines Corporation 2009.

Permission to redistribute in accordance with Linux Sympo-
sium submission guidelines is granted; all other rights re-
served.

This work represents the view of the authors and does not nec-
essarily represent the view of IBM. IBM, IBM logo, ibm.com,
and WebSphere, are trademarks of International Business
Machines Corporation in the United States, other countries,
or both. Intel is a trademark or registered trademark of In-
tel Corporation or its subsidiaries in the United States and
other countries. Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or both. Other
company, product, and service names may be trademarks or
service marks of others.

References in this publication to IBM products or ser-
vices do not imply that IBM intends to make them avail-
able in all countries in which IBM operates. INTERNA-
TIONAL BUSINESS MACHINES CORPORATION PRO-
VIDES THIS PUBLICATION “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF NON-INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of ex-
press or implied warranties in certain transactions, there-
fore, this statement may not apply to you. This information
could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the pub-
lication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication
at any time without notice.

2009 Linux Symposium • 295

References

[1] Cache to cache producer-consumer benchmark.
http://sourceforge.net/projects/
c2cbench.

[2] Clustering with vertical cluster members.
http://publib.boulder.ibm.com/
infocenter/wchelp/v6r0m0/index.
jsp?topic=%/com.ibm.commerce.
admin.doc/tasks/tigvertcluster.
htm.

[3] Ebizzy benchmark. http://sourceforge.
net/projects/ebizzy/.

[4] Specjbb benchmark. http://www.spec.org/
jbb2005/docs/WhitePaper.html.

[5] Trade performance benchmark for websphere
application server. http:
//www.ibm.com/software/webservers/
appserv/was/performance.html.

[6] F. Allen. Fran Allen talk on parallel computing.
http://www.windley.com/archives/
2008/02/fran_allen_compilers_and_
parall%el_computing_systems.shtml.

[7] P. B. Menage. Resource control and isolation:
Adding generic process containers to the linux
kernel. http://ols.108.redhat.com/
2007/Reprints/menage-Reprint.pdf.

[8] D. Tam, R. Azimi, and M. Stumm. Thread
clustering: Sharing-aware scheduling on
smp-cmp-smt multiprocessors. In in EuroSys,
2007.

296 • Scaling software on multi-core through co-scheduling of related tasks

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

