
Online Hierarchical Storage Manager

Sandeep K Sinha
NetApp, India

sandeepksinha@gmail.com

Rishi B Agrawal
Symantec, India

rishi.b.agarwal@gmail.com

Vineet Agarwal
checkout.vineet@gmail.com

Rohit Vashist
rohit.k.vashist@gmail.com

Rohit K Sharma
mailboxrohit19@gmail.com

Sneha Hendre
sneha.hendre@gmail.com

Abstract

Intel, Sandisk, and Samsung are investing billions of
dollars into Solid State Drive technology and manufac-
turing capacity. Unfortunately due to the extreme cost
of building the manufacturing facilities, SSD manufac-
turing capacity is not likely to exceed HDD manufac-
turing capability in the near future. Most data centre
applications heavily lean toward database applications
which use random read/write disk activity. For random
read/write activity, the performance of SSDs is 10x to
100x that of a single rotational disk. Unfortunately, the
cost is also 10x to 100x that of a single rotational disk.
Due to the limited manufacturing capability of SSD,
most applications are going to remain on rotational disk
for the foreseeable future. Online Hierarchical Storage
Manager has been developed to allow SSD and tradi-
tional HDD (including RAID) to be seamlessly merged
into a single operational environment thus leveraging
SSD while using only a modest amount of SSD capacity.

In an OHSM enabled environment, data is migrated to
and from the high performing SSD storage to traditional
storage based on various user defined policies. Thus,
if widely deployed, OHSM has the ability to improve
computer performance in a significant way without a
commiserate increase in cost. OHSM being developed
as open source software also abolishes the licensing is-
sues and the costs involved in using storage solution
software. OHSM being “online” signifies the complete
abolishment of the downtime and any changes to the ex-
isting namespace.

1 Introduction

Hierarchical Storage Management is a data management
technique that uses devices in an economically efficient
manner, thus reducing the storage space and administra-
tive costs associated with managing data.

OHSM is an online hierarchical storage manager for
Linux which offers policy based transparent movement
of data from one class of storage to another. Being the
first attempt towards an open source data manager, it
provides a base platform for all further developments in
similar areas. It supports policy based migration of files
i.e. it defines a set of policies which decide the correct
placement tier for a file during its initial creation, as well
as block allocation and relocation of the file from one
placement tier to another. A placement tier is basically
a storage class, which consist of a collection of storage
devices with similar properties defined in the policy file
based on its speed, cost or any other attribute. These
placement tiers can be priority-ordered and can be over-
lapping as well. These policies are enforced on a OHSM
enabled file system through an XML based placement
policy file. A placement policy file contains a collection
of rules which decides both, the initial file location and
the circumstances under which existing files are relo-
cated. Therefore, placement policies have been broadly
categorized into placement and relocation policies.

Whenever a file is created it will be allocated in accor-
dance to the placement policy which has been enforced
on the file system. If the file fails to match any of the
rules specified in the policy file, it falls into the default
allocation method that is used by the underlying file sys-
tem. Similarly for relocation, whenever a file matches
any of the relocation policy, it is relocated from the

• 263 •

264 • Online Hierarchical Storage Manager

source tier to destination tier as specified in the reloca-
tion policy file. The migration of data is non disruptive
and completely transparent to the placement tiers. The
placement policy file also contains the mapping infor-
mation between the storage devices and the respective
placement tiers to which they belong. OHSM does not
impose constraints on the placement tiers as far as ca-
pacity, performance and availability are concerned.

OHSM also provides functionality to remove files on
certain events which can be specified through the policy
file. Defragmentation of the relocating files could also
be achieved by enabling defragmentation at the time of
triggering relocation. Though OHSM doesn’t guarantee
complete defragmentation of data blocks, it does a best-
effort attempt. Relocation is an event triggered opera-
tion based on single or multiple policies selected from
the set of relocation policies aiming to provide greater
flexibility and usability to system administrators.

2 Design

The idea here is to leverage the underlying device topol-
ogy of the block-device logical volume and use this in-
formation to optimize the block allocation methodolo-
gies used by the file system, thus achieving storage effi-
ciency. OHSM provides a framework to implement hi-
erarchy based storage in the existing environment us-
ing support from the device mapper. This requires some
modifications to the file system’s file creation and block
allocation routines.

The overall design of the system is composed of a group
of inter-operating modules implemented as shared li-
braries, daemons and kernel modules. OHSM has var-
ious components including the user interface, an XML
parser, OHSM Admin and the Kernel Driver with each
of them offering different functionality to support the
various services offered by OHSM.

2.1 User interface

Another key component of the OHSM system from an
administrator’s perspective is the administrative inter-
face. It is comprised of both a graphical as well as a
command line interface. Apart from the basic function-
ality like enabling, disabling and querying the state of
the OHSM system, it also provides the administrator an
opportunity to generate, modify and validate the XML

policy file through a graphical interface. The graphical
interface also provides various other statistical data in-
cluding state of tiers, space utilization, number of files
relocated and various other information related to the
each placement tier. Apart from these facilities both the
interfaces have a lot of services to offer such as getting
and setting various OHSM runtime tuneable features,
enforcing of placement and relocation policies on file
systems and many more. In all, both the GUI and CLI
offer a simple and easy to use interface to the adminis-
trators.

2.2 XML Parser

OHSM is a policy based hierarchical storage manager
and it uses an XML based policy file for defining all the
placement and relocation policies. The XML parser is
responsible not just for parsing the administrator defined
XML policy file but also for validating the information
provided. The XML parser takes the policy files as input
and further parses it to extract various information from
it like the tier-device mapping, placement and reloca-
tion policies. Then it validates that information against
the device topology map and checks for any conflict-
ing policies. In case of any errors or conflicts it either
reports back or else it transforms the parsed policy in-
formation into relevant data structures and passes it to
the OHSM Admin module for further processing.

2.3 OHSM Administrator

This is the central communication hub which differen-
tiates and communicates with all other components of
the OHSM system. It also helps keep the design mod-
ular and simpler. It is also responsible for all the re-
quired communications between the user space and ker-
nel driver to facilitate all the requests through the user
interface. Most of the error handling is done by the
OHSM Admin. All the communication with the user-
space device mapper library to get the device topology
mapping also goes through the OHSM Admin. The er-
rors received from the parser and the device mapper
library are processed and converted into user readable
strings and passed to the user interface.

2.4 Device Mapper API

OHSM uses the user space device mapper library in or-
der to extract the device topology beneath the logical

2009 Linux Symposium • 265

Figure 1: OHSM Architecture

volume on which the file system is already mounted.
This helps the file system to optimize its data block al-
location to provide better storage efficiency. The device
topology along with the tier-device mapping informa-
tion helps OHSM build its complete internal mapping
data structures. The final mapping information resides
in OHSM kernel driver. The library also offers certain
other callbacks providing data regarding the underly-
ing devices which can be used in later implementations
of OHSM. This will help provide a more administrator
friendly solution. This information can also be utilized
to derive certain heuristics and statistical information re-
garding the placement tiers.

2.5 OHSM Kernel Driver

OHSM kernel driver is the most important component
of the OHSM system. This is the core of the system
and helps service all the requests from the user space. It
stores various metadata and service routines associated
with OHSM. It also holds the tier-device mapping table,
placement and relocation policies associated with the

file systems. The file system scanner and the complete
mechanism of relocation have also been implemented as
a part of the kernel driver. Apart from these, it also im-
plements the various ioctl service routines. The kernel
driver is loaded in the memory during boot time, so that
the required information and functionality is available to
the file system soon after mounting. Any problem with
the kernel driver can lead to a complete freeze of the
working OHSM. Hence special care has been taken to
handle most of the error conditions gracefully. The ker-
nel driver is the core of OHSM. However, it is the file
system implementation that gives it its power. Keep-
ing the two independent allows the file system changes
to be minimally invasive and not require major OHSM
specific patches to address inode updates and preferred
data block allocation needs. The driver comes into pic-
ture once the administrator triggers relocation on the file
system.

266 • Online Hierarchical Storage Manager

2.6 File System

OHSM system can work with most of the GNU/Linux
file systems with some basic modifications to the way
a file is created and extended. OHSM broadly divides
those changes into two sub categories:

2.6.1 Inode Updater

As the name signifies, the changes revolve around the
inode allocation mechanism for a file system. In an
OHSM enabled environment, it is expected that the ini-
tial file creation be governed through some file creation
policy. OHSM changes the way the normal file cre-
ation works and imposes an additional check of the file’s
physical characteristics against the placement policies
specified. In case of any match, the home tier id is set
for that file, eventually directing the file system to serve
all the data blocks requests for that file from the pool of
blocks belonging to its home tier.

2.6.2 Preferred Block Allocator

In an OHSM enabled environment, all the data block
requests for a file are restricted to its home tier. This
might lead to a situation wherein there is no free space
left on the specified tier. In order to overcome such cir-
cumstances, OHSM offers an option for administrators
to provide the tiers in a prioritized order, with the most
desirable destination listed first. This change overrides
the normal block allocation policy of the file system and
makes sure that it follows the policies specified by the
administrator, if any. Those files that don’t qualify to
any of the file placement criteria follow the usual se-
mantics of file creation offered by the file system. Also,
all further data block requests of such files are serviced
from blocks spanning over the complete file system.

3 OHSM Value Proposition

The most broadly applicable benefit of the Online Hier-
archical Storage Manager is to reduce the average on-
line storage cost by migrating inactive files to a less-
expensive placement tier in a hierarchical based storage
environment. It should be assumed that the lower place-
ment tiers have a significantly lower per-byte cost than
storage in next higher placement tier. In most of the

Figure 2: Value Proposition

cases, the cost differential between different types of on-
line storage creates the economic justification for such
hierarchical storage environment. If the highest place-
ment tier storage costs around $5 per gigabyte and mid
range placement tier storage costs around $2 per giga-
byte, an enterprise whose online data is 50% inactive
could save around 30% of its storage acquisition cost by
moving the inactive files to mid range placement tiers.
Larger percentages of inactive files result in higher sav-
ings.

For enterprises that keep a significant amount of non-
critical data online, a multi-tier storage strategy can of-
fer substantial cost savings without adverse effects on
business operations. The challenge in attaining the ben-
efits of multi-tier storage is to get the right files on the
right storage tier at the right time. OHSM achieves it
very efficiently with the help of policy based allocation
and relocation. The purpose of OHSM is to eliminate
any administrative cost and complexity in a hierarchi-
cal storage environment by automating the relocation of
files as levels of I/O activity against them rise and fall,
as well as when their sizes, owners, or logical positions
in the file system hierarchy change.

4 Working with OHSM

Information Lifecycle Management provides effective
management of information throughout its useful lifecy-
cle. ILM also provides strategies to allow a computing
device to administer the storage systems. These strate-
gies consist of policies which differentiate and admin-
ister data based on its usage and priority. In order to
work with the Online Hierarchical Storage Manager the
administrator needs to be quite aware of the various file

2009 Linux Symposium • 267

placement and relocation policies supported by OHSM.
The administrator needs to put together all this infor-
mation along with the tier device mapping information
into a XML file. This file is passed to OHSM to enable
and enforce these policies on a file system. It should not
be forgotten that OHSM also offers a graphical user in-
terface to generate the XML policy file. The user can
either use the graphical interface or the command line
interface in order to enable OHSM. Below we examine
various file placement and relocation policies with their
respective sample XML policy grammar as supported
by OHSM.

4.1 Tier Device Map

The tier device mapping information is required in or-
der to define the set of devices that belong to a partic-
ular placement tier. Both the file placement and relo-
cation policies are validated against the tier device map
information specified in this section. All the informa-
tion provided in the tier-device map section is also val-
idated against the configuration of the system. Some
of the validations involve checks for making sure that
the specified devices exist on the system, all the devices
are part of the same logical volume over which the file
system is mounted, etc. A simple tier device mapping
information:

<DEVICES>

<DEV_TIER_INFO>
<NR_TIERS>3</NR_TIERS>
<NR_DEVICES>6</NR_DEVICES>

</DEV_TIER_INFO>

<DEV_TIER>
<TIER>1</TIER>

<DEVICE>/dev/md4</DEVICE>
<DEVICE>/dev/md5</DEVICE>

<TIER>2</TIER>
<DEVICE>/dev/md3</DEVICE>

<TIER>3</TIER>
<DEVICE>/dev/md1</DEVICE>
<DEVICE>/dev/md2</DEVICE>
<DEVICE>/dev/md6</DEVICE>

</DEV_TIER>

</DEVICES>

4.2 File Placement

Transparent and non disruptive relocation of data across
various placement tiers is undoubtedly the most obvious
use of the OHSM but it is not restricted to that. OHSM

also offers various functionality to give targeted files a
preferential placement at the time of file creation. We
have seen an enterprise using database management sys-
tem to manage their most critical data and provide that
critical data a preference over all other data. OHSM cur-
rently supports four file placement policies which can be
used individually or can be combined together to form
various new rules. If a file qualifies for multiple place-
ment policies then the first match prevails over all oth-
ers.

For special situations where the target placement tier
might run out of free blocks, the administrators have
the facility to provide the preferential order of tiers for
each such rule. This directs the file system to allocate
blocks from a lower tier in case the target placement
tier is already full. This feature is optional and can be
enabled/disabled as per administrator’s discretion. Cur-
rently OHSM supports a very primitive set of file place-
ment criterion including file type, user ID, group ID and
the logical placement of files in the file system hierar-
chy, directory name. Allocation policy based on direc-
tory name can be both recursive and non-recursive. The
file placement policy can be based on the following:

4.2.1 File Type (FTYP)

In today’s time, there is a strong likelihood that applica-
tions follow a pattern in the file name extension to de-
termine the kind of data that the file holds. This pattern
can be utilized to differentiate between different types
of files like database files, media files and log files etc.
Using the file extension we can also associate the file
with different applications most of the time and derive
its criticality based upon that. This information can be
used to provide preferential placement to various type
of files. We can also dedicate placement tiers to specific
file types based on its type.

4.2.2 User ID (UID)

In a large server environment the file systems are mostly
organized based more on the users rather than the ap-
plications. Consider the case of an enterprise, where
different users have their home directory on the same
shared file system. In such situations there can always
be reasons to allot higher placement tiers to various
users while restricting others to have a mid range or a
lower one.

268 • Online Hierarchical Storage Manager

4.2.3 Group ID (GID)

Similar to file placements based on users, various groups
in an organization can share a placement tier. This can
be based on the criticality of data they operate on and at
times the speed of data retrieval. Consider the case of
an engineering team and a marketing group; it may be
desirable to have the engineering data on a more reliable
placement tier as compared to the marketing team. The
accounting group can have opted for a separate place-
ment tier for various other reasons.

4.2.4 Directory Name (DIR)

Often we create directories based on the current time
or date. This helps us in keeping the data in a more
structured manner. For instance, if someone keeps its
reports for the last couple of years, there will be a num-
ber of directories present on the file system, for example,
report-2007, report-2008 and report-2009 and so on. It
is expected that the latest reports will be the most fre-
quently accessed one. Though it is just an assumption,
this can be used to provide placement tiers to various
structured data classified on the basis of their age. File
placement based on directory names can be recursive
and non-recursive depending on the specification in the
policy file. A simple file placement policy:

<ALLOCATION>

<ALLOC_INFO>
<NR_USERS>1</NR_USERS>
<NR_GROUPS>2</NR_GROUPS>
<NR_TYPES>1</NR_TYPES>
<NR_DIRS>1</NR_DIRS>

</ALLOC_INFO>

<USER_TIER>
<USER>0</USER> <TIER>1</TIER>

</USER_TIER>

<GROUP_TIER>
<GROUP>0</GROUP> <TIER>1</TIER>
<GROUP>501</GROUP> <TIER>3</TIER>

</GROUP_TIER>

<TYPE_TIER>
<TYPE>ora</TYPE> <TIER>1</TIER>

</TYPE_TIER>

<DIR_TIER>
<DIR>/foo</DIR> <REC>1</REC> <TIER>1</TIER>

</DIR_TIER>

</ALLOCATION>

4.3 File Relocation

One of the most desirable things to have is to store in-
active files on placement tiers of lesser quality so that it
does not affect the applications adversely. If you look
at it from the I/O performance perspective, if the file
is accessed rarely and it is mostly inactive, the perfor-
mance of the storage device underneath that holds it is
irrelevant. This makes the ability to relocate files across
placement tiers very critical and important. Also, there
are situations where you have thousands of small files in
a file system. It is seen that under such circumstances
most of these files soon become inactive. Some of the
scenarios are a document management system, a mail
server or any database application using opaque data ob-
jects stored as small files. It would be highly desirable
to have the ability to relocate data across placement tiers
under such circumstances. OHSM currently has support
for the following file relocation policy criteria.

4.3.1 File Access Age (FAA)

It signifies the time since the last access to the file which
can be one of the most appropriate qualifiers for a down-
ward relocation. Based on the time of last access to the
file, it could easily be relocated to a lower placement tier.
This can be useful in a search engines or mail server en-
vironment, where the files access rates go down as the
time increases. This would not be a good candidate as a
qualifier for relocation from lower to higher placement
tier as this can be misleading at times. There can be files
which are just accessed to know that it’s not of use and
the data is stale. Still, because of the file’s access age
being quite small, it can get relocated to a higher tier,
which would be highly undesirable. The recent intro-
duction to realtime in the kernel really changes how the
last access time is managed in a significant way. And
use of such a feature might eliminate most of the value
of FAA.

4.3.2 File Modification Age (FMA)

This is a true qualifier for a relocation to happen from
a lower to a higher placement tier. It can be fairly as-
sumed that a file which has recently been modified or
which has a smaller modification age would surely be
accessed more frequently in the near future. Hence, this

2009 Linux Symposium • 269

can be used for deciding upon the conditions for reloca-
tion from lower to higher placement tiers. Most of the
stub based implementations for HSM also use modifica-
tion age as one of the primary qualifier to bring back the
data from their archival storage to their actual placement
tier.

4.3.3 File Size (FSZ)

There may be various situations where it would be desir-
able to allow a certain size of file to reside on a specific
placement tier. The reason is the limited size constraints
of the higher placement tiers due to their higher costs.
We move the file to a lower placement tier if the file
size exceeds a specific threshold. This threshold can be
based upon the amount of space that a higher placement
tier has. So, the file size qualifier can be easily used to
prevent situations where the higher placement tiers don’t
run out of space.

4.3.4 File I/O Temp (FIOT)

File I/O temperature is defined as the average number of
bytes transferred to or from a file over a period of time.
This is independent of the file size and is one of the more
powerful qualifiers which can be used to automate the
process of relocation.

4.3.5 File Access Temp (FAT)

File access temperature is defined as the ratio of the
number of times the file has been accessed over a pe-
riod of time. This helps us to determine the average I/O
activity that is taking place on a file against all other
files in the file system. Such a measure can be useful to
find suitable candidates for relocation from both lower
to higher placement tier and vice versa.

4.3.6 FTYP, UID and GID

Relocation policies can also be based on the file type,
user ID and group ID qualifiers. Since, the initial allo-
cation can be based on these qualifiers, there is a great
chance that when these are combined with other reloca-
tion qualifiers, form a finer granularity relocation crite-
rion. A simple file relocation policy:

<RELOCATION>
<NR_RULES>1</NR_RULES>
<RULE>

<INFO>1</INFO>
<RELOCATE>

<FROM>1</FROM>
<TO>2</TO>

<WHEN>
<FSIZE>50</FSIZE> <REL>LT</REL>
<FAA>50</FAA> <REL>LT</REL>

</WHEN>
</RELOCATE>

</RULE>
</RELOCATION>

5 Prototype Implementation for ext2/ext3

The prototype of OHSM involves basic implementation
of the idea presented in the previous sections. The gen-
eral concept of OHSM involves various modules and
their relationship with the file system. OHSM consists
of roughly four components, namely the User Interface,
OHSM Admin, Kernel Driver and File system. Our pro-
totype provides functionality for creating policy files,
enabling and disabling of OHSM, and triggering relo-
cation manually. The User interface provides a set of
commands to control and monitor the various function-
ality offered. It also allows the user to create XML
based policy files and logical volumes at the same time.
In the prototype implementation the user is required to
create separate policy files for allocation, relocation and
tier device mapping. These policy files were required
to be specified at the time of enabling OHSM on a file
system. Before OHSM could be enabled, these policy
files are required to be parsed and validated for any con-
flicts. After verifying the policy files, the information is
stored in internal data structures. The OHSM Adminis-
trator uses the ioctl interface provided by OHSM kernel
driver to control and administer the system. On receipt
of the data structures the kernel driver replicates these
data structures in the kernel, and acknowledges back to
the administrator module success or errors if any. On
success, EXT3_OHSM_ENABLE flag is set inside the
file system’s super block. When OHSM is disabled all
the data structures are cleared and the flag is reset. In or-
der to achieve this, minor changes were made to struct
ext3_inode and a new flag was introduced to be used
within struct ext3_super_block.

270 • Online Hierarchical Storage Manager

struct ext3_inode {
...
...
__u8 ohsm_home_tid;
__u8 ohsm_dest_tid;
};

/*
* Misc. file system flags

*/

#define EXT3_OHSM_ENABLE 0x0008 /* OHSM enabled */

When a file is created it is intercepted by the OHSM in-
ode updater and an additional check is made against the
allocation policy enforced on the file system. In case
a file qualifies, its ohsm_home_tid is set to the corre-
sponding tier id. Otherwise, it remains zero. Later,
for any data block requests for files having a non-zero
ohsm_home_tid, the call to the block allocation rou-
tine is diverted to OHSM’s block allocation routine, if
OHSM is enabled on the file system. This implementa-
tion requires variations in the existing file system struc-
tures and its block allocation strategy also known as
ranged block allocation. Ranged block allocation im-
proves proficiency of file system in restricting alloca-
tion of data blocks to a range of block groups. A ta-
ble containing the map of tier against the block group
ranges is maintained by OHSM kernel driver. Ranged
block allocation also uses this information to allocate
new data blocks for the file in a specific tier. This block
group range table is used by the block allocation rou-
tine to identify the block group ranges of device hierar-
chy. This table is created at the time of enabling OHSM
and remains active in memory until the file system re-
mains mounted or OHSM stays enabled. At the time of
unmounting or disabling of OHSM this information is
dumped on disk to /etc/ohsm. This information is used
later to reconstruct this table back when the file system
is mounted back or OHSM is re-enabled on a file sys-
tem.

In user space, the OHSM Admin uses libdevmapper to
get the device topology and passes the extents of de-
vices to the kernel driver. The driver later maps these
extents to file system specific block group ranges. The
ohsm_home_tid field of inode is used as an index in this
table to get the specific block group range. The alloca-
tion routine bounds the data block allocation within the
selected range. Figure 3 illustrates two scenarios. The
left half of it illustrates the scenario when a file is cre-
ated. It shows that initially the ohsm_home_tid is set
to zero, which later gets updated by the inode updater

where it is qualified against the various file placement
policies. If qualified, the files ohsm_home_tid is up-
dated accordingly with the specific tier id. On the right
side, it shows the later scenario where there is block al-
location request for a file. The block allocator checks
for a non-zero ohsm_home_tid and extracts the rele-
vant block group ranges for the same. For a file having
ohsm_home_tid equal to zero, the block group range
spans the complete file system. The call to the block
allocation routine is diverted to Range block allocation
in place of file systems normal block allocation routine,
which eventually serves the purpose. In case the tier is
full, the file’s ohsm_home_tid is set to zero and the file
system’s normal block allocation routine is invoked.

Relocation currently is a triggered event and has to be
started manually by the administrator. When relocation
is triggered, OHSM kernel driver scans all the inodes
in the file system and pushes each qualifying inode to
the work queue for relocation. Prior to adding each in-
ode to the work queue, the ohsm_dest_tid is set to the
relevant tier for that inode. The workqueue handler rou-
tine is implemented in the OHSM kernel driver which
picks and does the task of relocation. After the reloca-
tion is completed, the ohsm_dest_tid becomes the new
ohsm_home_tid for the file. As an optimization, OHSM
uses a Tricky copy and swap algorithm to complete re-
location as fast as possible.

Tricky copy and swap algorithm starts by allocating a
new ghost inode and reading the source inode in mem-
ory. It then takes a lock on the source inode to stop any
further modifications to the inode in the course of re-
location. Later, it reads the data blocks for the source
inode and copies them to the destination inode’s blocks,
block by block. The reading of source block data is done
through block buffers and they are then copied to desti-
nation buffer. The destination buffer is marked dirty. Fi-
nally, when all the data is copied to the ghost inode, the
source inode is re-assigned with the contents of destina-
tion inode’s data blocks by swapping them with that of
the ghost inode. The source inode now contains point-
ers to new data blocks. At this point, the source inode
is unlocked, synced and destination inode is released.
OHSM Administrator is acknowledged of the comple-
tion of these event. See Figure 4 which illustrates the
process of relocation.

2009 Linux Symposium • 271

Figure 3: File placement and Block allocation mechanism

6 Issues and Concerns

During the course of OHSM’s prototype implementa-
tion which was done primarily for ext2/ext3 file system,
the process revealed several issues. Some of the major
ones include the following:

6.1 struct ext3_super_block

Currently both the tier-block group range map and the
allocation policies reside in OHSM kernel drivers. This
enforces a dependency of the file system on OHSM ker-
nel driver. We ensure to handle this situation currently
by starting the OHSM services before any local file sys-
tem is mounted. It required some modification to the
system startup script. Since, this information is per file
system this information should ideally reside in the su-
per block of the file system. OHSM still struggles to
find an easy way out of this. Since, this table can be
huge and number of policies can be quite high, keeping
such information in the super block is undesirable.

6.2 struct ext3_inode

Allocation and relocation are the key components of
OHSM and as the object on which OHSM operates is

a file, it is very tightly coupled with the inode structure.
So, it was required to make on-disk changes in the struct
ext3_inode in order to support allocation and relocation.
We added "ohsm_home_tid" which stores the tier ID
assigned upon allocation of a file and "ohsm_dest_tid"
which stores the tier ID assigned during relocation of a
file. Furthermore, to support different criteria of relo-
cation like File Access Temp (FAT) and File Input Out-
put Temp (FIOT) respective fields are to be added to
the inode structure of the file system. These changes
make the compact inode structure slightly bulky. These
changes might also disturb any existing file system par-
titions present on the current system. OHSM plans to
use extended attributes in order to avoid this problem
and currently lacks a concrete way to handle this.

6.3 Exporting internal functions

The complete working of Online Hierarchical Storage
Manager requires support from the file system on which
it operates. In order to provide support to OHSM a few
static functions residing inside the file system are re-
quired to be exported. This compromises the integrity of
the file system code. For recent file systems like ext4 the
required functionality (EXT4_IOC_MOVE_VICTIM)
is soon going to be present which will help OHSM to
not violate such integrity issues in the future. We are

272 • Online Hierarchical Storage Manager

Figure 4: File relocation mechanism

trying to make OHSM completely functional with the
ext4 file system during the writing of this paper. We
are also monitoring and reviewing the implementation
of the patches from Akira Fujita for restricted block al-
location.

6.4 Crash during relocation

Currently OHSM uses a temporary inode in order to re-
locate an inode’s data blocks from one tier to another. In
case, if the system crashes during this relocation, there
can be a chance of data loss. Currently we only release
the original blocks after the complete relocation is com-
pleted. This reserves some space for the time during
which relocation is going on. OHSM still needs a bet-
ter way to handle this. Journaling may be required to
overcome this problem.

6.5 Inode lock contention

During the process of relocation the inode is locked un-
til all the data blocks attached with the inode are suc-
cessfully relocated to a new destination tier. The time
taken during relocation is file size dependent. This time
would be more for large files, so any I/O pending on it
will have to wait for that period of time and the requests
may even time out. We are in the process of dividing this
whole relocation into chunks of 64K in order to reduce
this lock contention period.

7 One step Further

OHSM looks forward to a list of enhancements in-order
to make it complete and stable. Here are a couple of

them to start with:

7.1 User space implementation

The most desirable aspect with OHSM is to move as
much as possible of its implementation into user space.
This helps us remove the kernel components and other
dependencies of the file system. It will also help main-
tain the source code integrity for the file system. Such
an implementation would surely require a lot of support
from the file system. Going ahead with an ioctl based
interface would be one of the best options. Eventually
the file system would need to support the OHSM based
file creation and ranged block allocation. To achieve
this without breaking the integrity and consistency of
the code is a big challenge.

7.2 Automatic Relocation Engine

Currently relocation is a triggered event which in most
of the server based environments will not be a pleasant
experience for the administrators. Going a step further
and designing an automatic relocation engine would be
one of the most fascinating features OHSM can offer.
The most important challenge in designing such an en-
gine would be to derive the heuristics which would drive
such an engine. A very frequent invocation to reloca-
tion can damage the file systems performance to a great
extent. Also, a long interval between relocations can
affect the storage efficiency adversely. So, we need an
intelligent mechanism which could be based on the I/O
and activities on the file system. Using FAA and FMA
as criteria can impose hard restrictions with their values

2009 Linux Symposium • 273

being constant, which might not always yield optimum
results. FIOT and FAT can be the most efficient candi-
date as they are softer and can be based truly on the file
activities in real time. OHSM is still looking forward to
good heuristics and measures which would provide an
optimum and efficient methods for making relocation a
dynamic event.

7.3 Optimize mdraid Support

OHSM uses a new block allocation strategy for the file
system and also has the underlying device topology. If
OHSM is used over mdraid array, OHSM’s block al-
location strategies can be further optimized to leverage
the underlying device layout. This may enhance the I/O
speed over the devices in the mdraid array.

8 Conclusion

Online Hierarchical Storage Manager for GNU/Linux
creates a platform and opens up various opportunities
for further work in the area of Hierarchical storage for a
Linux based environment. OHSM sets up the basic in-
frastructure where we can think of systematically merg-
ing traditional and SSD based storage devices to reduce
the overall cost of the system administration and also
attaining a degree of storage efficiency. Moreover due
to the support for policy based migration of data, the
administrative cost of managing data also reduces. The
idea is to effectively reduce the cost of storage admin-
istration and at the same time keep the system efficient
and consistent. OHSM with some changes to the file
systems file creation and block allocation algorithms can
achieve its goal of implementing a complete open source
storage software solution.

9 Acknowledgment

We would like to sincerely thank all the people who
helped us in this project, especially Greg Freemyer and
Manish Katiyar for providing us their valuable time and
support on various technical and design issues. Also we
would like to thank Bharti Alatgi and Uma Nagaraj for
their keen interest in OHSM from the early beginning
and motivating us in the overall course of development.

10 References

1 Retrieving Multimedia Objects From Hierarchical
Storage Systems, Eighteenth IEEE Symposium on
Mass Storage Systems and Technologies, 2001.

2 Planned Extensions to the Linux Ext2Ext3 Filesystem,
Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference.

3 On Configuring Hierarchical Storage Structures
(1998), Ali Esmail Dashti, Shahram Gh. In
Proceedings of the Joint NASA/IEEE Mass Storage
Conference.

4 Ensuring Performance in Activity-Based File
Relocation, Wu, J.C. Bo Hong Brandt, S.A. Dept. of
Comput. Sci., California Univ., Santa Cruz, CA.

5 DHIS: discriminating hierarchical storage,
Proceedings of SYSTOR 2009: The Israeli
Experimental Systems.

274 • Online Hierarchical Storage Manager

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

