
Programmatic Kernel Dump Analysis On Linux

Alex Sidorenko
Hewlett-Packard
asid@hp.com

Abstract

Companies providing Linux support rely heavily on ker-
nel dumps created on customers’ hosts. Kernel dump
analysis is an art and it is impossible to make it fully
automatic. The standard tool used for dump-analysis,
’crash’, provides a number of useful commands. But
when we need to enhance it or to analyze several thou-
sand similar structures, we need programmatic API.

In this paper we describe Python bindings to crash1

and compare it to C-like SIAL extension language. Af-
ter a general framework discussion we look at some
practical tools developed on top of PyKdump, such as
xportshow. This tool works on kernels 2.4.21-2.6.28
and provides many useful features, such as printing rout-
ing tables, emulating netstat and summarizing net-
working system status.

1 Why Do We Need Programmatic API?

• adding new features and enhancing functionality
quickly

• there are have too many structures to look through
all of them ourselves

• running a number of useful tests — each of them
can be executed manually, but there are many of
them

• running programs on a customer’s site if for some
reason he cannot send us vmcores

• we can use an already developed tool on live ker-
nels instead of writing new DLKM or Systemtap
script

An ability to run scripted tests quickly is extremely im-
portant for support organizations. Even though in theory

1http://sourceforge.net/projects/pykdump

customers should provide a detailed description of the
problem, in reality it is not unusual to get vmcore with
just the generic description of “the host is unresponsive.”

It can mean many different things, for example:

• a critical userspace application (e.g. Oracle)
stopped responding

• network connectivity is lost

• the system is just overloaded

• the system is out of memory

• there is a bug in the kernel leading to CPUs execut-
ing kernel code forever, with interrupts disabled

In such cases it makes sense to run a number of standard
tests to narrow down the problem. For example:

• how much memory is used and whether it is frag-
mented

• check load averages and runqueues (e.g. are there
any RT processes)

• when was the last time NICs transmitted and re-
ceived data

• is syslogd hanging (this will make all processes do-
ing syslog() unresponsive)

It makes sense to run all such tests programmatically
to save time and effort. Furthermore, even those lacking
the proper skills to do dump analysis themselves can run
automated tasks.

• 251 •

252 • Programmatic Kernel Dump Analysis On Linux

1.1 Extensions Available for Crash

Crash [1] is a standard tool used for dump analysis.
There is similar another tool, lcrash but we will not dis-
cuss it here.

Crash can be dynamically extended by writing pro-
grams in C and linking them in a special way. Af-
ter that the extensions can be loaded/unloaded by us-
ing builtin extend command. But developing in C is
rather time-consuming and unpractical, especially if we
need to write a custom code quickly. It is much better
to use special extensions providing bindings of crash to
higher-level languages. Using such an “extension lan-
guage,” we can develop new programs quickly without
a need to compile/link every time we need to modify our
script. Here are some known extension languages:

• SIAL–C-like language. Very handy for writing
small tools, but problematic for big projects. Is in-
cluded as part of crash distribution

• Alicia–Perl wrapper driving crash via stdin, re-
trieving results from stdout. Quite slow, as a re-
sult. There was no activity for this project on SF
site during last 3 years

• PyKdump–Python bindings to GDB/crash inter-
nals

From these three frameworks, SIAL is probably the eas-
iest to use for kernel hackers as they already know C.
However, PyKdump provides a number of features that
makes it better than SIAL for big projects:

• better scalability–a program can be split into many
files and/or libraries and loading/execution time is
reasonable even for huge programs

• Python standard library is extremely powerful

• Python is a high-level language with efficient lists,
dictionaries and other useful classes

• error processing is easier because of exception
mechanism

• more features for making runtime decisions based
on symbolic info from vmlinux

• an ability to run crash commands and parse their
output efficiently

1.2 Writing Programs That Work With Different
Kernel Revisions

Linux kernel is a moving target. The definitions of ker-
nel structures, global variables and algorithms are dif-
ferent from version to version. If we want to write a
program that works for kernel dumps obtained from dif-
ferent kernels, this needs to be taken into account. Some
possible approaches are:

• check for kernel version explicitly, use a different
code for different versions

• check whether certain global variables exist

• check whether a structure has a specific fieldname

This means that we need to make runtime decisions. C is
a strongly typed language:the variable type needs to be
explicitly declared and cannot be changed afterwards.
Let us consider the following case. There is a global
variable. In an older kernel it was declared as

struct one var;

In a newer kernel the name of the struct has been
changed even though its definition is the same:

struct two var;

We want to access var.field

In C-like languages (e.g. SIAL) a possible approach is
the following:

{"LINUX_2_2_16",
"(LINUX_RELEASE==0x020210)"},

{"LINUX_2_2_17",
"(LINUX_RELEASE==0x020211)"},

{"LINUX_2_4_0",
"(LINUX_RELEASE==0x020400)"},

...

Then in some include file crossSupport.h:

#if LINUX_2_6_X
#define TYPEX struct one

#else
#define TYPEX struct two

#endif

2009 Linux Symposium • 253

Then in the code:

#include <crossSupport.h>
void func(...)
{
TYPEX *s=(TYPEX *)var;

if(var->field ...) {

}
}

This is not very elegant and is rather unreliable. Most
commercial distributions base their major release on
a specific kernel and then backport bugfixes/features
from recent kernels as needed. As a result, variables
and structures definition on 2.6.9-based RHEL4 might
change even though the kernel is still reported as 2.6.9.
A better approach would be to retrieve variable types
from vmlinux and use them as they are. In PyKdump
we can do the following:

var = readSymbol("var")
f = var.field

Another approach is to base runtime decisions on ex-
plicit type information. That is, to check whether a
struct has a specific member or what its type is. At this
moment SIAL lacks this functionality but it might be
added in the future.

2 PyKdump Design

Python is a very powerful and extremely popular pro-
gramming language, at least among userspace appli-
cation developers. Unfortunately, many kernel hack-
ers only know well C and assembler. There are ex-
cellent books available and outstanding documentation
provided on Python website [2]. But the syntax of
Python operators is close enough to C, so there should
be no problem in understanding all examples provided
in this paper even for those who know nothing about
Python.

2.1 Mapping C-structures To Python Objects

The Linux kernel is written in C (plus a bit of assembly).
To be able to write useful dump-analysis scripts easily,
we need as a minimum:

• to be able to read memory, global variables and
struct/union contents

• to be able to write Python code easily looking at
related C-sources

For example, if we want to write a program printing
routing tables from a dump, we start by looking at
its kernel implementation of related /proc routines. It
would be convenient to be able to copy and paste pieces
of related C-sources to our script, but even with SIAL
(using C-like syntax) this does not always work.

While developing Python bindings to crash internals we
used the following approach:

• we map C struct and union by creating Python
objects with attributes matching the respective C
field names

• we map other C types to Python types that are
close, e.g. C int to Python integer

• we map C operators to similar Python operators

Python passes everything by reference, there are no
pointers. As a result, there are no *, ->, and & oper-
ators. It is easy to mimic reading and accessing fields of
C struct/union in Python as both C and Python have the
dot . operator:

struct blk_major_name {
struct blk_major_name *next;
int major;
char name[16];

} svar;

s = readSU(’struct blk_major_name’, addr)
major = s.major
print "%3d %-11s" % (major, s.name)

Here we read struct blk_major_name from a
given address and print the major field. Python has
many built-in data types, including integers, floating-
point numbers and strings. We return properly typed
values automatically, without specifying the type ex-
plicitly every time. There is no special pointer type in
Python but we can represent pointers by integers. In the
example above we expect to get

254 • Programmatic Kernel Dump Analysis On Linux

• s.next as an integer

• s.major as an integer

• s.name as a string

There are some problems with this approach. If we
meet char name[10] declaration, how do we know
whether it is intended to be used as a string or an array
of 1-byte integers? We cannot know this from the sym-
bolic information available in vmcore. To work around
this, we introduce a special ’SmartString’ type which
mimics null-terminated strings but lets you access info
as if it was a normal array. So if name is a SmartString,
printing it will result in truncation on NULL byte but we
still be able to access any byte using array access:

name="abc\0\5\6\7\8\9\10"
print s.name # will print abc
print s.name[5] # will print 5

In most cases you can work with these SmartStrings just
like with normal Python strings, but sometimes Python
library functions check type explicitly (e.g. you can-
not pass SmartString to regular expressions functions).
You can convert SmartString s.name to a normal
string using str() function, e.g.

str(s.name)

By default, struct/union members that are defined as
char pointers or char arrays, are returned as SmartString
type. If they have explicit signed or unsigned specifiers,
they are returned as integer arrays.

2.2 Dereferencing Pointers in Structs and Unions
(Emulating * and -> Operators)

What if we want to follow the ’next’ pointer in the exam-
ple above? The attribute dereference operator -> in C
is really just a syntax sugar that combines pointer deref-
erence with attribute access:

/* The same as (*svar).next */
svar->next;
/* The same as (*(*svar).next).next */
svar->next->next;

There is neither * nor -> operators in Python but
we still can dereference using alternative approaches.
For example, for a pointer dereference we can use
Deref() function. In C:

struct blk_major_name *sptr;
int major = (*sptr).major;
in major1 = sptr->major;

In Python (assuming that sptr is an object representing a
pointer to structure):

major = Deref(sptr).major # Approach 1
major1 = sptr.major # Approach 2

Please note how we used the dot operator without deref-
erencing first. In C, it would have failed at the compi-
lation stage. In PyKdump, the framework finds that an
object is a pointer to a structure, so obviously the dot
operator is not a simple field dereference. Consequently
it interprets it as ->. That is, you can use the dot opera-
tor in both cases and it will be used in whatever way is
needed automatically. For example:

/* in C */
s->f1.f2->f3.f4-f5

In Python
s.f1.f2.f3.f4.f5

In C, using dot operator on a pointer would trigger a
compilation error. In Python, we make life easier by
trying to interpret the dot operator either as . or ->,
depending on the object type.

More than that, in PyKdump pointers to structures and
structures themselves have the same object type. It is
similar to Java’s approach where we have just references
and no pointers.

Please note that the description above is correct only for
pointers to structures. Pointers to any other type are rep-
resented with a different object class. In particular:

2009 Linux Symposium • 255

/* in C */
struct test *sptr;
struct test **pptr;

in Python
sptr is the same as Deref(sptr)
(the same type), so you can write
sptr.f1

pptr is completely different,
Deref(pptr) is not the same as pptr
Deref(pptr).f1

To emulate the missing features we can define special
attributes (usually called “properties” in OOP). Access-
ing such an attribute triggers a function call. A potential
problem exists in the shape of name collision between
internal object attributes and C-attributes as mapped to
Python. Luckily, this is a highly improbable event for
kernel structures. The “Linux Coding Style” document
[3] says: “mixed-case names are frowned upon” so us-
ing mixed-case attributes for our own purposes should
be safe enough. The “internal” methods of Python
classes are all named like __aname__ and, to reiterate,
we have never seen name collision between field names
of Linux kernel structures and Python internals.

2.3 Emulating & Operator

We can get the address of a global variable using
sym2addr() function, e.g.

addr = sym2addr("init_task")

In other cases we start from a struct/union and need to
find the address of its member. For example, we have a
field which is defined as a struct (not a pointer), e.g.

type = struct task_struct {

volatile long int state;

...

struct list_head tasks;

}

When we access tasks attribute, we obtain an object
representing a structure. For such objects we can use
Addr(obj) function to obtain the associated address, e.g.

init_task = readSymbol(’init_task’)
init_task_saddr = Addr(init_task.tasks)

This works for objects representing aggregates, strings
or pointers as they store the needed address internally.
However, for integer/floating type the objects are just
native Python integers/floats, there is no address. At this
moment the only way to get the address of such a field
is to compute it manually using low-level functions, e.g.

dev_base = readSymbol("dev_base")
off = member_offset("struct net_device",

"next")
addr_next = Addr(dev_base) + off

In the future we might wrap integers and floats so that
Addr() will work for them as well - but this is not
implemented yet. (The main reason for this is that we
still need to evaluate the impact of these extra wrappers
on performance).

2.4 Some Special Types

We map all C integer types to Python native
long integer type and we map C struct/union in-
stances to class StructResult instances. Point-
ers and arrays are normally represented by Python inte-
gers and lists. But in some cases we would like to pre-
serve additional information while returning values. As
a result, we wrap integers and strings in Python classes.
Please note that usually you do not construct objects of
these types yourself, as they will be initialized and re-
turned as needed when using readSymbol and similar
functions. Two most important cases are tPtr (to repre-
sent pointers to different C-types) and SmartString (used
for C char * pointers and char arrays). When you ob-
tain these objects from readSymbol, they internally store
additional useful information.

2.4.1 StructResult

This type represents struct/union and a pointer to
struct/union. In kernel sources we usually don’t need
to “read” structures as they are already in memory. So if
we want to access a structure at a given address, we just
use the cast operator, e.g.

256 • Programmatic Kernel Dump Analysis On Linux

struct sock *s = (struct sock *)addr;

In PyKdump we read them (ultimately reading bytes
from vmcore file...):

read from address addr
s = readSU("struct sock", addr)
similar to C s.socket
socket = s.socket
similar to C &s
addr = Addr(s)

2.4.2 tPtr - A Typed Pointer

When a variable is a pointer, it is an integer (address)
plus type information.

tPtr class inherits from long so it can be used as a normal
long integer. For example, it’s OK to use it in arithmeti-
cal expressions. In some rare cases the library functions
check for type of passed object explicitly. You can al-
ways convert tPtr to a plain long integer by doing con-
version explicitly,

i = long(tptr)

Please note that at this moment this class is intended
mainly for internal use. Objects of this type are returned
as needed, but you should not attempt to create them
yourself.

The main reason for needing this special type is preserv-
ing information while reading global variables (see the
description of readSymbol).

2.4.3 SmartString

This type is used to represent variables and structure
fields declared in C as char * or char []. This
is a subclass of the standard Python string, with addi-
tional data attached and some methods redefined. We
subclass to preserve the pointer value and address of the
variable. We might need this to access the pointer it-
self if char * is used as a generic pointer instead of
more correct void *. Another use for it is mapping
char arrays where they are used to store byte values, not
to represent an ASCII string. For example, in sources a
variable declared like this:

char *testvar;

If the first 7 bytes of it are abc\0def it probably makes
sense to interpret it as an ASCII string abc. In most
cases this would be acceptable, but sometimes we need
to access other bytes. We’ll be able to do the following
in Python:

Read the variable, return
SmartString object
s = readSymbol("testvar")
Print this string using C
NULL-terminated convention (i.e."abc")
print s
print 2 chars after NULL
print s[4:6]
Print the address of testvar
print Addr(testvar)
print the pointer value
print long(testvar)

By default, readSymbol() reads and stores just the
first 256 chars. If you need to read more, you can use
the pointer value (retrieved as shown above).

2.4.4 Supporting Different Kernels

We have already discussed this briefly in 1.2. Now let
us revise it by looking at some examples from real pro-
gram.

Each object representing a struct/union has a number
of attributes, mapped from C. In addition to those at-
tributes, we can add our own. This is usually a sensi-
ble approach to isolate the dependencies on a specific
kernel. For example, in some kernels spinlock_t is
declared as

typedef struct {
volatile unsigned int lock;

#ifdef CONFIG_DEBUG_SPINLOCK
unsigned magic;

#endif
} spinlock_t;

but in others the access to a field similar to lock is more
complicated:

2009 Linux Symposium • 257

typedef struct {
unsigned int slock;
} raw_spinlock_t;

typedef struct {
raw_spinlock_t raw_lock;

#ifdef CONFIG_GENERIC_LOCKBREAK
unsigned int break_lock;

#endif
#ifdef CONFIG_DEBUG_SPINLOCK

unsigned int magic, owner_cpu;
void *owner;

#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC

struct lockdep_map dep_map;
#endif
} spinlock_t;

We can declare a new attribute that will be equivalent
to lck.lock for the first kernel but to lck.raw_
lock.slock for the second kernel. We do this in the
following way:

sn = "spinlock_t"
structSetAttr(sn, "Slock",

["raw_lock.slock", "lock"])

This should be called only once. At the moment
when this is executed, the framework traverses the
list ["raw_lock.slock", "lock"] and verifies
whether the needed structures/fields exist, that is — does
a dereference chain specified in a list element make
sense? As soon as we find a match, we add this at-
tribute (implemented as a “property” to the class to be
used to represent this typedef). If no match was found,
structSetProcAttr returns False. In case of
success, later we can do the following:

sl = lck.Slock

The result will be the value of the function associated
with that attribute—there will be no runtime overhead
for checking structure definitions. The default function
returns the value for the dereference chain that matched.
In addition to this, we can specify an alternative func-
tion, for example:

Programmatic attrs
def getSrc6(tw):

Some code...
#
which returns this
return val

sn = "struct tcp_timewait_sock"
structSetProcAttr(sn, "Src6", getSrc6)

In this case every time we use tw.Src6 where tw is
a result of the type struct tcp_timewait_sock,
the function getSrc6 will be used

2.5 Performance

The performance of Python language itself is more than
adequate for our purpose. Python uses two-stage pro-
cess:

• compile to pseudocode (and write results to files)

• execute pseudocode using a virtual machine

This is similar to Java. There are two JIT compilers to
further increase the performance but they are still rather
experimental and not ready for production. Still, the
performance is excellent — summing 10 million inte-
gers in a loop takes less than 3s on a 2-year old lap-
top. The main performance bottleneck is due to the fact
that PyKdump sources are compiled without any knowl-
edge about symbolic information from the kernel. This
is good as everything is compiled in advance. Even if we
write a huge (> 100,000 lines) program, it will be com-
piled once for all kernels and start time in crash will be
reasonably small.

SIAL uses a different approach: the compilation to
pseudocode is done while loading the script. This means
that if SIAL script is huge (and it is unclear how scalable
is SIAL), loading it will take significant time.

With PyKdump programs, loading is very fast. After
starting crash we load a rather small extension. This ex-
tension (written in C) consists of an embedded Python
interpreter and subroutines to interface crash. Then,
when we want to execute a program, the interpreter
loads it from files that are already compiled to pseu-
docode.

258 • Programmatic Kernel Dump Analysis On Linux

Accessing symbolic information from vmlinux is rather
slow. We do it only once for each type, after which this
information stays in memory until we exit crash. This
means that if we need to run several programs using the
same structures, they will share this information.

A problem specific to PyKdump implementation is that
traversing the dereference chain is a rather expensive op-
eration. Here is what happens when we do s.a:

• we check the type information for object s and ver-
ify that it has a member s

• we find the address of member a and its type

• we create and return a new object of the needed
type

If we have a longer dereference chain such as s.a.b.c
this process is repeated. This is much longer than in C or
SIAL where all type analysis is made at the compilation
stage and not during runtime. To improve the perfor-
mance, we use a number of tricks:

• using efficient functions (“readers”) to dereference
specific member

• metaclasses to build new classes on the fly to rep-
resent specific C-type

• using pseudoattributes for long dereference
chains—they analyze all needed symbolic info and
generate an efficient function to return the result
quickly

As a result of all these optimizations, the performance
for dereference chains is on par (but still somewhat
lower) with SIAL. Arithmetical/logical operations on
base types are much faster than those for SIAL.

The performance of real tools is more than adequate.
The first run is always slower than subsequent runs. For
example, running xportshow on a live kernel and emu-
lating “netstat -an”:

• first run 1.06s (real) 1.00s (CPU)

• second run 0.15s (real) 0.13s (CPU)

2.6 Packaging And Usage

Building PyKdump from sources is described at
http://pykdump.wiki.sourceforge.net/
Building. It is recommended to build from SVN
using the “testing” branch instead of “trunk”. “testing”
is where we copy recent versions when they are more or
less tested; “trunk” is much more experimental. There
are some prebuilt packages on SF site (they are rather
old).

To use PyKdump, you need just a single extension file.
It usually has a name mpykdump64.so on 64-bit hosts
but you can rename it as you wish. You start your crash
session as usual and after that load the extension by do-
ing

crash32> extend /tmp/mpykdump32.so
/tmp/mpykdump32.so: shared object loaded

The extension file contains all needed components:

• embedded Python interpreter

• an interface module to crash internals

• a subset of Python Standard Library

• some standard tools built on top if PyKdump, such
as xportshow and crashinfo

The extension file is constructed as a shared library with
ZIP-archive appended. It is acceptable to to add your
own programs directly to the extension file by using
zip command. This is mainly useful for distribution;
normally you develop and run programs directly from
Python files. For example:

-----------hello.py--------------
This is a basic PyKdump program
from pykdump.API import *

print "Hello PyKdump"

crash32> epython hello.py
Hello PyKdump
crash32> epython hello
Hello PyKdump

2009 Linux Symposium • 259

3 XPORTSHOW

xportshow is a tool written using PyKdump. It is in-
teresting that in addition to using it for general trou-
bleshooting (e.g. HP Linux support organizations) it has
been deployed by computer security experts such as
“Volatile Systems.”

The tool uses short options similar to those of netstat
plus many long options. You can use multiple ’-v’ to
increase the verbosity, up to ’-vvv’. xportshow -h
lists all options and there is additional documenta-
tion at http://pykdump.wiki.sourceforge.
net/xportshow

You can find some examples of xportshow outputs at the
end of this paper.

References

[1] http:
//people.redhat.com/anderson/

[2] http://www.python.org

[3] http://www.llnl.gov/linux/slurm/
coding_style.pdf

260 • Programmatic Kernel Dump Analysis On Linux

crash32> xportshow -at
tcp 0.0.0.0:42691 0.0.0.0:* LISTEN
tcp 127.0.0.1:9161 0.0.0.0:* LISTEN
tcp 0.0.0.0:8010 0.0.0.0:* LISTEN
tcp 127.0.0.1:9165 0.0.0.0:* LISTEN
tcp 0.0.0.0:111 0.0.0.0:* LISTEN
tcp6 :::22 :::* LISTEN
tcp 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 15.236.177.25:52414 16.236.16.79:5223 ESTABLISHED
tcp 15.236.177.25:53004 69.159.122.174:22 ESTABLISHED
tcp 15.236.177.25:35015 15.37.113.20:143 ESTABLISHED
tcp 127.0.0.1:47939 127.0.0.1:9165 ESTABLISHED
tcp 127.0.0.1:9165 127.0.0.1:47939 ESTABLISHED
tcp 127.0.0.1:9161 127.0.0.1:54388 TIME_WAIT
tcp 127.0.0.1:9161 127.0.0.1:54387 TIME_WAIT

crash32> xportshow -atv
--
<struct tcp_sock 0xf62c8000> TCP
tcp 0.0.0.0:42691 0.0.0.0:* LISTEN
family=PF_INET
backlog=0(16)
max_qlen_log=5 qlen=0 qlen_young=0
--
<struct tcp_sock 0xf7580980> TCP
tcp 15.236.177.171:51095 16.236.16.79:5223 ESTABLISHED
windows: rcv=63480, snd=32767 advmss=1398 rcv_ws=0 snd_ws=0
nonagle=0 sack_ok=0 tstamp_ok=0
rmem_alloc=0, wmem_alloc=0
rx_queue=0, tx_queue=0
rcvbuf=87380, sndbuf=16384
rcv_tstamp=7.8 s, lsndtime=10.2 s ago
--
<struct tcp_sock 0xf7954e40> TCP
tcp 127.0.0.1:9161 127.0.0.1:54393 TIME_WAIT
tw_timeout=15000, ttd=1730

crash32> xportshow -ltvv
<struct sock 0xd5c6c600> TCP
tcp 0.0.0.0:7778 0.0.0.0:* LISTEN

family=PF_INET
backlog=129(128)
max_qlen_log=10 qlen=69 qlen_young=1

--- Accept Queue <struct open_request 0xf001e600>
laddr=128.8.61.4 raddr=10.148.6.13
laddr=128.8.61.4 raddr=10.148.2.101
laddr=128.8.61.4 raddr=10.149.6.7

--- SYN-Queue
laddr=128.8.61.4 raddr=128.8.11.24
laddr=128.8.61.4 raddr=10.148.16.12
laddr=128.8.61.4 raddr=10.152.0.45
laddr=128.8.61.4 raddr=10.149.4.8

Figure 1: TCP Connections Info

2009 Linux Symposium • 261

crash32> xportshow -uav
--
<struct udp_sock 0xf791b280> UDP
udp6 ::1:123 :::* st=7

rx_queue=0, tx_queue=0
rcvbuf=110592, sndbuf=110592
pending=0, corkflag=0, len=0

--
<struct udp_sock 0xf791b000> UDP
udp6 :::123 :::* st=7

rx_queue=0, tx_queue=0
rcvbuf=110592, sndbuf=110592
pending=0, corkflag=0, len=0

--

crash32> xportshow -ax
unix State I-node Path

unix LISTEN 17667 /var/run/acpid.socket
unix LISTEN 17996 @/var/run/hald/dbus-eYQQ7ZQwSxe
unix LISTEN 17928 /var/run/dbus/system_bus_socket
unix LISTEN 19733 /dev/gpmctl

crash32> xportshow -awv
--
<struct raw_sock 0xe7678600> RAW
raw 0.0.0.0:1 0.0.0.0:* st=7

rx_queue=0, tx_queue=0
rcvbuf=131072, sndbuf=2048

Figure 2: Other Protocols Info

crash32> xportshow --summary
TCP Connection Info

ESTABLISHED 7
TIME_WAIT 2

LISTEN 7
NAGLE disabled (TCP_NODELAY): 1

UDP Connection Info

13 UDP sockets, 0 in ESTABLISHED

Unix Connection Info

ESTABLISHED 331
CLOSE 12

LISTEN 21
Raw sockets info

CLOSE 1
Interfaces Info

How long ago (in seconds) interfaces trasmitted/received?

Name RX TX
---- ---------- ---------
lo 1.9 7467.3

eth0 4.2 7.2
wmaster0 7467.3 57.3
eth1 7467.3 7467.3
tun0 7.2 7.2

Figure 3: Summary

262 • Programmatic Kernel Dump Analysis On Linux

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

