Step two in DCCP adoption: The Libraries

Leandro Melo de Sales, Hyggo Oliveira, Angelo Perkusich
Embedded Systems and Pervasive Computing Lab
{leandro, hyggo, perkusic}@embedded.ufcg.edu.br

Abstract

Multimedia applications are very popular in the Internet.
The use of UDP in most of them may result in network
collapse due to lack of congestion control. DCCP [4]
is a new protocol to deliver multimedia in congestion
controlled unreliable datagrams.

This paper presents discussions and results in enabling
DCCEP in open source libraries, as part of our efforts in
disseminating the DCCP protocol to developers.

At OLS’08 we presented experimental results [9] using
the DCCP implementation in the Linux kernel, where
it was shown that DCCP behaves better than UDP in
congested environments, while being fair with respect
to TCP. This is a work in progress and nowadays DCCP
is supported in libraries such as GNU CommonCPP,
CCRTP, GNU uCommon, in the GStreamer framework
and on Farsight 2.

1 Introduction

The Datagram Congestion Control Protocol (DCCP) is
a message-oriented Transport Layer protocol that imple-
ments reliable connection setup, teardown, ECN, con-
gestion control, and feature negotiation [11]. It was pub-
lished as RFC 4340 [4] in March of 2006 by Internet En-
gineering Task Force (IETF) with the main propose of
be an Internet protocol for transport multimedia content.
In the Linux kernel, the first DCCP implementation was
released in version 2.6.14.

The firstly versions of DCCP in the Linux kernel, con-
sidering the application developers point of view, was
implemented to be used by a very small set of appli-
cations, simplest ones based on DCCP socket and not
for that advanced multimedia applications. For instance,
it was possible to use the socket API to implement a
DCCP application to send characters between two hosts.

Arnaldo Carvalho de Melo
Red Hat, Inc.

acme@redhat .com

The developers was able to use the common socket func-
tions such as connect, bind and accept in a very similar
TCP fashion. By the end of 2007, the DCCP implemen-
tation in the Linux kernel became stable and developers
began to required DCCP in real development libraries
and frameworks.

In the OLS’08 we published a paper and gave a talk dis-
cussing about experimental results on the performance
of DCCP against UDP and TCP over a wireless net-
work [2]. In that year, we presented that DCCP data
flows are fair with respect to others TCP flows, while
UDP was very aggressive in terms of network conges-
tion, where in some situations both TCP and DCCP
could not transmit any data. This occurs because TCP
and DCCP implements congestion control, while UDP
does not.

Considering the multimedia application developers re-
quests for providing DCCP in the user space, we have
concentrated our efforts on enabling it in a set of se-
lected well-known open source multimedia frameworks.
In this paper we present the experiences on enabling
DCCEP in these frameworks with two goals:

e enable DCCP in the user space to provide the de-
velopers an alternative for UDP;

e provide feedback to DCCP developers to improve
the DCCP implementation in the Linux kernel.

It is a work in progress and for the first phase we have
selected the following libraries: GNU CommonCPP,
CCRTP, GNU uCommon, GStreamer framework and
Farsight 2. By providing DCCP on these libraries, we
aim at disseminating DCCP and making it useful in
any Internet applications, while effectively make use of
DCCP implementation provided in the kernel — it does
not make sense provide DCCP in the Linux kernel and
nobody use it.

e 239 o

240 e Step two in DCCP adoption: The Libraries

This paper is organized as follow: in Section 2 are pre-
sented overview and background as a base for the rest of
the paper. In Section 3 are provided an overview about
DCCEP and its main features. In Section 4, it is discussed
our efforts on enabling DCCP in a set of open source li-
braries. The current and future works about enabling
DCCEP in these libraries are described in the Section 7.
In Section 8, the conclusions are presented.

2 Overview and Background

The motivation for DCCP is based on the growth of
Multimedia applications over the Internet in the last few
years. The multimedia applications have receive spe-
cial attention due to the popularization of high-speed
residential Internet access and wireless connections,
considering also new standards such as IEEE 802.16
(WiMax). This enables network applications that trans-
mit and receive multimedia contents through the Inter-
net to become feasible once developers and industry
invest money and software development efforts in this
area.

Industry and the open source community have devel-
oped specialized multimedia applications based on tech-
nologies such as Voice over IP (e.g., Skype, GoogleTalk,
Gizmo), Internet Radio (e.g., SHOUTcast, Rhapsody),
online games (e.g., Half Life, World of Warcraft), video
conferencing. These applications offer sophisticated so-
lutions that can approximate a face-to-face dialog for
people, although they can be physically separated by
hundreds or thousands of miles in distance.

These applications have different requirements when
compared with application such as HTTP and E-Mail
(connection oriented applications). The multimedia ap-
plications are delay sensitive, while they make a inten-
sive use of the network bandwidth and tolerate occa-
sional packet loss. Based on the behaviour of the multi-
media data flows, this may lead to changes on the design
principles of the multimedia application development.

Non-functional requirements such as end-to-end delay
(latency) and the variation of the delay (jitter) must
be taken into account, regardless the network topology
considered [7]. Usually, multimedia applications use
TCP and UDP as their transport protocol, but they may
present many drawbacks regarding these non-functional
requirements, and hence decrease the quality of the mul-
timedia content transmitted.

The developers of multimedia applications usually
choose to use the UDP protocol for transport the mul-
timedia data. The massive choice for UDP by the mul-
timedia application developers are explained by the fact
that UDP introduces less delay in the data transmission
in comparison with TCP, for example.

TCP is a connection oriented protocol that provides flow
control, congestion control and retransmission of lost
packets, which make the protocol appropriate for appli-
cations that require reliability during that transmission.
Together, these TCP features increase the end-to-end de-
lay during data transmission. Depends on the level of
the delay, use TCP is not a best choice.

On the other hand, UDP is a very simple protocol, it
does not provide any kind of congestion control, con-
nection hand-shake and packet retransmission in case a
packet is lost during the transmission. Together, these
features — or the absence of them — in UDP can lead to
high levels of network congestion. As a consequence,
the network can collapse. In this circumstance, even
those TCP (reliable) transmission can become imprac-
ticable.

In order to deal with those types of requirements, IETF
standardized the Datagram Congestion Control Protocol
(DCCP) [4], which appears as an alternative to transport
congestion controlled flows of multimedia data, mainly
for those applications focusing on the Internet. DCCP
provides a way to gain access to congestion control
mechanisms without having to implement them at the
Application Layer. It allows for flow-based semantics
like in TCP, but does not provide reliable in-order deliv-
ery.

3 A Bit About DCCP

DCCP was first introduced by Kohler [4] in July,
2001, at the IETF transport group. It provides spe-
cific features designed to fulfil the gap between TCP
and UDP protocols for multimedia application require-
ments. It provides a connection-oriented transport layer
for congestion-controlled, but unreliable data transmis-
sion. DCCP provides a framework that enables addition
of new congestion control mechanism, which may be
used and specified during the connection handshake, or
even negotiated in already established connections. In
addition, DCCP provides a mechanism to get connec-
tion statistics, which contain useful information about

2009 Linux Symposium e 241

packet loss, a congestion control mechanism with Ex-
plicit Congestion Notification (ECN) support, and Path
Maximum Transmission Unit (PMTU) discovery [4].

From TCP, DCCP provides the connection-oriented and
congestion-controlled features, and from UDP, DCCP
provides an unreliable data transmission. The main rea-
sons to specify a connection-oriented protocol is to fa-
cilitate the implementation of congestion control algo-
rithms and enable firewall traversal. This is a UDP
limitation that motivated network researchers to specify
the STUN [8] (Simple Traversal of UDP through NATSs
(Network Address Translation)). STUN is a mechanism
that helps UDP applications to work over firewalled net-
works. An important feature of DCCP is the modular
congestion control framework. The congestion control
framework was designed to allow extending the conges-
tion control mechanism, as well as to load and unload
new congestion control algorithms based on the appli-
cation requirements. Each congestion control algorithm
has an identifier called Congestion Control Identifier
(CCID). Nowadays there are two standardized conges-
tion control algorithms: CCID 2 [5] and CCID 3 [6].

DCCEP is useful for applications with timing constraints
on the delivery of data that may become useless to the
receiver if reliable in-order delivery combined with con-
gestion avoidance is used. Such applications include
streaming media, multiparty online games and Inter-
net telephony. Primary feature of these applications is
that old messages quickly become stale, so that getting
new messages is preferred than resending lost messages.
Currently, such applications have often either settled for
TCP or used UDP and implemented their own conges-
tion control mechanisms.

While being useful for these applications, DCCP can
also be positioned as a general congestion control
mechanism for UDP-based applications, by adding, as
needed, a mechanism for reliable and/or in-order deliv-
ery on the top of UDP/DCCEP. In this context, DCCP
allows the use of different — but generally TCP-friendly
— congestion control mechanisms [10].

4 Libraries

Libraries is a collection of programming functions that
can be used to develop a software. A software invokes
these functions and, as a result, they provide to the soft-
ware a return value or take an action. One of the main

characteristic of a library is that it provides generic func-
tions that can be shared by a set of software, and each of
them combines the library functions with its functions
to take actions. By allowing sharing of source code, the
use of libraries avoid source code duplication.

In the context of what it is discussed in this paper, the
Twinkle [20] soft-phone and Telepathy are two exam-
ples of software that adopted the concept explained be-
fore. Both projects are free software, one for Voice over
IP and the other a library for developing videoconfer-
ence applications. In the case of Twinkle, it provides
many features for communicating: peer-to-peer, confer-
ence calls, call redirection, voice mail and instant mes-
saging, all provided by the SIP protocol. The last Twin-
kle version available provides support for both TCP and
UDP, while using Real-Time Protocol (RTP) [3] for sig-
naling audio and video contents. The Figure 1 illus-
trates two examples of the library sharing. On the top of
the stack the Twinkle uses CCRTP, that uses Common-
CPP2 and Telepathy, that uses Farsight2 and GStreamer.
Both uses the common file socket.h, the standard socket
library provided by the operating system. It is the
main socket header, where it is found the prototype for
the well-known socket functions such as connect, bind,
send, recv and accept.

Telepathy is a framework that can be used to develop
communication software, such as VoIP, instant messag-
ing, chat or videoconferencing. It is an open source
software, applications use it as a library to simplify the
process of developing multimedia applications. Empa-
thy [14], Ekiga [13] and Tapioca [19] are examples of
applications that use Telepathy on some of its multime-
dia service.

The Figure 1 shows a hierarchy of libraries that are used
by applications Twinkle and Telepathy. The stack is di-
vided in groups comprising the libraries according to
the functionality. Despite the Twinkle and Telepathy are
different applications in purpose and use of different li-
braries, they are at the top of the stack, indicating that
they are classified at the highest level for transmitting
media streams. The second level of the stack presents
the libraries responsible for effectively process the ap-
plication data, passed though Twinkle or Telepathy, and
wrapper them into specific packets based on the protocol
used to transport the data.

242 e Step two in DCCP adoption: The Libraries

Twinkle Telepathy
CCRTP Farsight 2
CommonCPP 2 GStreamer

Linux Socket API (socket.h)

Figure 1: Library usage/sharing between Twinkle and
Telepathy

S Enabling DCCP on Libraries

After evaluating the performance of DCCP and pre-
sented the results in the OLS’ 08, we have started the use
of DCCP in the multimedia applications, where Twinkle
and Telepathy being considered our starting point. Both
of them have a set of libraries dependency and also we
also had to change somehow these dependency libraries
to accommodate DCCP.

We decided to start the changes in order to enabling
DCCP in the selected applications considering the
bottom-up approach. In this way, considering the pyra-
mid illustrated in Figure 1, we started from the closest
library from the pyramid base to the top of the pyra-
mid. After finishing the work in a specific library, we
started to implement DCCP support in the library imme-
diately above and the process was repeated until there is
no Twinkle or Telepathy dependencies without DCCP
available.

For each libraries modified to make it support DCCP,
we have implemented a corresponding example appli-
cation to test and exploit the features of data transmis-
sion using DCCP between pairs. In addition to guide
our implementation of DCCP for a given library, this
application can be used as a documentation for enabling
developer to understand the concepts of the library be-
ing used. The example developed in each step was a
implementation of a “hello world” application, where
the sender application sends the “’hello world” message
and the receiver application receives it.

During the process of changing a certain library, the
example application to test the progress of the imple-

mentation was continuously executed. This character-
ized a kind of test-driven development. Once the nec-
essary changes to the libraries were applied, we run the
example application and use wireshark [21] to investi-
gate the DCCP traffic transmitted in the network. The
Figure 2 shows an example of the DCCP traffic while
using DCCP with CommonCPP2. By verifying this, it
was possible to certify the the application, through the
library that we have provided DCCP support, was in-
deed transmitting DCCP flows.

5.1 Sockets Libraries—First Layer of the Stack

The libraries GStreamer and Commoncpp2, that are in
the first layer considering the base stack shown in Fig-
ure 1, invokes operating system socket functions. They
offer basic functionalities for transmitting data through
the connected sockets between a client and a server. In
this case, both libraries had to be changed in order to
support DCCP, once these libraries only supported TCP
and UDP sockets.

The strategy adopted was to add a structure for the
DCCP client and server, so that define a connection-
oriented sockets. Since GStreamer and CommonCPP
uses TCP sockets, we started by coping the TCP im-
plementation, since DCCP and TCP shares the same
concept of connection-oriented sockets. Based on
TCP implementation, we adapt the code to DCCP pa-
rameters passed to the socket functions, such as the
socket function provided by the operating system. In
the next section, we show by using some parts of
the code added how we implemented DCCP support
in GStreamer and in CommonCPP. Between lines 1-
7 of Listing 1, it is shown a set of definitions used
to provide DCCP support in the CommonCPP and
GStreamer. Between lines 4-7 of Listing 1, it is the
constants to read or write DCCP parameters defined by
the DCCP implementation in the Linux Kernel. This
values are read or written through the functions get-
sockopt and setsockopt. For example, the constant
DCCP_SOCKOPT_AVAILABLE_CCIDS is passed to
getsockopt to get the list of CCIDs available in the Linux
Kernel. The constant DCCP_SOCKOPT_TX_CCID
can be passed either to getsockopt or to setsockopt to
get or set the current CCID, respectively.

In the line 9, it is illustrated how to create a new DCCP
socket. Note, IPPROTO_DCCP assumes value 33 be-
cause it is the id defined by IANA [18] to DCCP. This

e 243

2009 Linux Symposium

© =
0

o o on Protoco o

2 0.000007 127.0.0.1 127.0.0.1 DCCP 7000 = 37468 [Response] Seq=220107230092480 (Ack=2Z
3 0.000011 127.0.0.1 127.0.0.1 DCCP 37468 = 7000 [Ack] Seq=220106529232511 (Ack=220107
4 0.000038 127.0.0.1 127.0.0.1 DCCP 37468 = 7000 [Datahck] Seq=220106529232512 (Ack=2Z
5 0.000047 127.0.0.1 127.0.0.1 DCCP 7000 = 37468 [Ack] Seq=2201072309952481 (Ack=220106
6 0.000080 127.0.0.1 127.0.0.1 DCCP 7000 = 37468 [Datahck] Seq=220107230992452 (Ack=2Z
7 0.000097 127.0.0.1 127.0.0.1 DCCP 7000 = 37468 [CloseReq] Seq=220107230952483 (Ack=2
8 0.000101 127.0.0.1 127.0.0.1 DCCP 37468 = 7000 [Ack] Seq=2201068529232513 (Ack=220107
9 0.000198 127.0.0.1 127.0.0.1 DCCP 37468 = 7000 [Close] Seq=220106520232514 (Ack=2201
10 0.000207 127.0.0.1 127.0.0.1 DCCP 7000 > 37468 [Reset] Seq=220107230992484 (Ack=2201

P Frame 1 (82 bytes on wire, 82 bytes captured)
L

L Lo =

0000 0O 0D DO 0D OO OO OO OO 00 OD OO 0D 08 00 45 00 +ewervrs srraan E.
0010 00 44 01 ef 40 00 40 21 3a a8 7f 00 00 01 7f 0O D..@.@ :....... E
0020 00 01 92 Sc 1b 58 Oc 00 13 02 01 00 cB8 2f 8b 7c RN A
0020 d6 7e 0O 00 OO OO OO 00 29 06 53 3a 39 34 20 05 e }.5:94 .,
o = P = progre = P = D ed ed Fronle: De

Figure 2: Wireshark filtering DCCP traffic and outputting DCCP packets details.

value is used in the IP packet header to specify which
protocol is being used in the transport layer. The com-
mon values for this field are 1, 6 and 17 for ICMP, TCP
and UDP, respectively. For a complete list of protocol
identifier consult reference [17].

1#define SOCK_DCCP 6
2#define IPPROTO_DCCP 33
s#define SOL_DCCP 269
4#define DCCP_SOCKOPT_AVAILABLE CCIDS 12
s#define DCCP_SOCKOPT_CCID 13
s#define DCCP_SOCKOPT_TX_CCID 14
7#define DCCP_SOCKOPT_RX_CCID 15

8
9 socket (AF_INET, SOCK_DCCP, IPPROTO_DCCP)

Listing 1: Definition for DCCP

Before discuss each library that was modified to sup-
port DCCP, consider a basic example of DCCP socket
shown in the Listing 2. The example was implemented
in Python programming language.

1import socket

2

3socket .SOCK_DCCP = 6

4socket .IPPROTO_DCCP = 33

saddress = (socket.gethostname(),12345)

6 server = socket.socket(socket.AF_INET,
7 socket .SOCK_DCCP,

8 socket .IPPROTO_DCCP)

9gserver .bind (address)

10server.listen (1)

1n1s,a = server.accept()

12 print s.recv(1024)

Listing 2: DCCP Server Socket in Python

1import socket

2

3socket.SOCK_DCCP = 6

4socket .IPPROTO_DCCP = 33

saddress = (socket.gethostname(),12345)
6 server = socket.socket(socket.AF_INET,
7 socket .SOCK_DCCP,

8 socket .IPPROTO_DCCP)
9server.bind (address)

10 server. listen (1)

11s,a = server.accept()

12 print s.recv(1024)

Listing 3: DCCP Client Socket in Python

Listing 3 shows the corresponding DCCP client in
Python. As it is possible to verify in both client and
server examples written in Python, the DCCP socket
programming is very simple as TCP socket program-
ming. Basically the unique difference is socket func-

244 e Step two in DCCP adoption: The Libraries

tion parameters, where it is necessary to specify IP-
PROTO=33 (DCCP), as explained before.

The example illustrated in Listing 2 implements a
DCCP server that accept a DCCP client connection on
port 12345. After connecting, the DCCP server reads
1024 bytes from the DCCP client and exit.

5.1.1 GNU CommonCPP 2

In order to provide DCCP support in CommonCPP, we
started by implementing a TCP application to under-
stand CommonCPP API. After making the test appli-
cation and understand how the CommonCPP works,
we investigated the code of the library and located the
source codes responsible of handling the sockets by in-
voking the kernel socket functions. Once located, the
TCP implementation code was copied, basically a class
named TCPSocket, and modified to create the DCCP-
Socket class. Listing 4 shows fragments of the DCCP-
Socket class implemented in the file src/socket.cpp of
CommonCPP 2 library. The complete code can be found
in the CommonCPP repository referred in [15].

After implementing DCCP support for CommonCPP,
we have modified the TCP application to make it a
DCCEP application. Next, we ran the test application and
by using wireshark we have validated the implementa-
tion by filtering DCCP data packets sent by the test ap-
plication using the DCCPSocket class.

1 \\ Socket class
2 (...)

3\\ TCPSocket class
4 (...)

s DCCPSocket:: DCCPSocket(const [PV4Address

6 &ia ,

7 tpport_t port,

8 unsigned backlog)

9 Socket (AF_INET, SOCK_DCCP, IPPROTO_DCCP) {
10 struct sockaddr_in addr;

1

12 memset(&addr, 0, sizeof (addr));

13 addr.sin_family = AF _INET;

14 addr.sin_addr = getaddress(ia);

15 addr.sin_port = htons(port);

16 family = IPV4;

17 (...)

18 bool DCCPSocket :: setCCID (int ccid) {

19 (...)

20 return (setsockopt(so, SOL_DCCP,

implementation

implementation

21 DCCP_SOCKOPT_CCID,
2 (char x)&ccid ,
23 sizeof (ccid)) >= 0);

24 }
25
26 int DCCPSocket :: getTxCCID () {

27 int ccid, ret;

28 socklen_t ccidlen;

29

30 ccidlen = sizeof(ccid);

31 ret = getsockopt(so, SOL_DCCP,
32 DCCP_SOCKOPT _TX_CCID,

33 (char *)&ccid ,

34 &ccidlen);

35 if (ret < 0) return —1;

36 return ccid;

37 }

38

30 int DCCPSocket:: getRxCCID () {

4 int ccid, ret;

41 socklen_t ccidlen ;

42

43 ccidlen = sizeof(ccid);

44 ret = getsockopt(so, SOL_DCCP,
45 DCCP_SOCKOPT_RX_CCID,

46 (char *)&ccid ,

47 &ccidlen);

48 if (ret < 0) return —1;
49 return ccid;
50 }

st (...)

Listing 4: Fragments of DCCPSocket class imple-
mented in CommonCPP 2 (src/socket.cpp)

5.1.2 Gstreamer

GStreamer [16] is an open source multimedia frame-
work that allows the programmer to write many types
of streaming multimedia applications. Many well-know
applications use GStreamer, such as Kaffeine, Amarok,
Phonon, Rhythmbox, and Totem. The GStreamer
framework facilitates the process of writing multimedia
applications, ranging from audio and video playback to
streaming multimedia content.

The work initiated by studying the mechanism of data
transmission implemented in GStreamer and its con-
cept of plugin-based framework. GStreamer is a plugin-
based framework, where each plugin contains elements.
Each of these elements provides a specific function —
such as encoding, displaying, or rendering data — as well
as the ability to read from or write to files. By combining
and linking those elements, the programmer can build a
pipeline for performing more complex functions. For
example, it is possible to create a pipeline for reading

ELEMENT 3

ELEMENT 1 ELEMENT 2
File reader MP3 parser

DCCP transmitter

SINK

Figure 3: GStreamer Pipeline with three elements: a file
reader, an MP3 encoder, and a DCCP transmitter.

from an MP3 file, decoding its contents, and playing the
MP3.

Figure 3 represents a GStreamer pipeline composed by
three elements. Data flows from Element 1 to Element
2 and finally to Element 3. Element 1 is the source el-
ement, which is responsible for providing data to the
pipeline, whereas Element 3 is responsible for consum-
ing data from the pipeline. Between the source ele-
ment and the sink element, the pipeline is permitted to
use other elements, such as Element 2 (shown in Fig-
ure 3). These intermediary elements are responsible for
processing and modifying the content as the data passes
along the pipeline.

Based on similar methodology adopted while imple-
menting DCCP support for CommonCPP, we developed
the DCCP plugin [9] for GStreamer to deal with data
transmission using the DCCP protocol. This plugin
has four elements: dccpserversrc, dcepserversink, dccp-
clientsrc, and dccpclientsink. The source elements (dc-
cpserversrc and dccpclientsrc) are responsible for read-
ing data from a DCCP socket and pushing it into the
pipeline, and the sink elements (dccpserversink and dc-
cpclientsink) are responsible for receiving data from the
pipeline and writing it to a DCCP socket.

The dccpserversrc and the decpserversink elements be-
have as the server, but only dccpserversink can trans-
mit and only dccpserversrc can receive data. When the
server element is initialized, it stays in a wait mode,
which means the plugin is able to accept a new con-
nection from a client element. The dccpclientsink el-
ement can connect to dccpserversrc, and dccpclientsrc
can connect to dccpserversink.

If a developer wants to send data from the server to the
client, you need to use dccpclientsrc and decpserversink
elements. To send data from the client to server, you
need to use the dccpclientsink and dccpserversrc ele-
ments. GStreamer’s gst-launch command supports the
creation of pipelines, and it is also used to debug plug-
ins.

2009 Linux Symposium e 245

1 gst—launch [!<element> <element params>]+

Listing 5: GStreamer gst-launch syntax

Listing 5 illustrates the basic syntax for gst-launch. The
gst-launch command get a list of GStreamer elements
with its parameters separated by a exclamation charac-
ter. Note the ! character, it links the plugin elements,
which is similar to the pipe character (“I”) very used in
the Linux shell prompt. This means that the output of an
element is the input to the next specified plugin element.

As an example of the gst-launch command, consider two
pipelines to transmit an MP3 stream over the network
with DCCP: One works as a DCCP server that streams
an MP3 audio file, and the second pipeline is associated
with a DCCP client that connects to the remote DCCP
server and reproduces the audio content transmitted by
the server. To make the example work, you must install
GStreamer. In this case, you need the GStreamer-Core,
Gst-Base-Plugins, and Gst-Ugly-Plugins packages. Do
not worry about the GStreamer installation; GStreamer
is a widely used framework available in many Linux
package systems for a variety of distributions, such as
Debian, Gentoo, Mandriva, Red Hat, and Ubuntu. Once
you perform the GStreamer installation, the last step is
to compile and install the DCCP Plugin for GStreamer.
The Listing 6 shows the command that you can run to
install DCCP Plugin for GStreamer, after download it
from [12].

1 ./ autogen —prefix=/usr
2 make
3 make install

Listing 6: Installing DCCP Plugin for GStreamer

Listing 7 shows a gst-launch example that runs a server
accepting DCCP connections. Once a client connects,
the server starts to stream the audio file named your-
music.mp3. Note that you can specify the CCID with
the ccid parameter. This pipeline initializes the server
in DCCP port 9011. The server will be waiting for a
client to connect to it. When the connection occurs, the
server starts to transmit the MP3 stream using CCID-2.
The mp3parse element is responsible for transmitting a
stream. To see more information about mp3parse and
the other parameters that are available, run gst-inspect
dccpserversink.

1 gst—launch filesrc \
2 location=yourmusic.mp3 ! \

246 e Step two in DCCP adoption: The Libraries

3 mp3parse !
4 ccid=2

dccpserversink port=9011 \

Listing 7: Gst-Launch example starting a DCCP server
to stream an mp?3 file

Next, start the corresponding client as shown in List-
ing 8. This GStreamer pipeline initializes the client and
connects to the host localhost in port 9011. Once con-
nected, the client starts to receive the MP3 stream, de-
codes the stream using the decodebin element, and pipes
the stream to the alsasink element, which reproduces the
multimedia content in the default audio output device.

1 gst—launch —v dccpclientsrc host=localhost
2 port=9011 ccid=2 ! decodebin ! alsasink

Listing 8: Gst-Launch example starting a DCCP client
to receive an mp3 stream

After implementing the DCCP GStreamer plugin by us-
ing socket programming in a similar way done for Com-
monCPP and validate it using gst-launch and wireshark,
we developed a set of example applications, where
client and server applications can stream multimedia
content reading from several data sources. For instance,
we implemented an application that capture audio from
the microphone or from a mp3 file and stream the con-
tent to a remote host using DCCP sockets.

The next example shows how to use the GStreamer API
to embed DCCP plugin into applications. The appli-
cation will do the same example explained using gst-
launch, but this time through the C programming lan-
guage and GObject, a programming library available for
GStreamer application and plugin development. The ap-
plication creates the same pipeline of the previous exam-
ples.

Start by initializing the GStreamer settings, as shown in
Listing 9. Note that Listing 9 also defines GstElements
filesrc, mp3parse, and dccpserversink.

1#include <string.h>
2#include <math.h>
s#include <gst/gst.h>
4

sint main(int argc,
6 GMainLoop *loop;
7 GstElement xpipeline ,
8 GstElement smp3parse,
9 GstBus xbus;

char =xxargv) ({

xfilesrc;
xdccpserversink ;

11 gst_init(&arge, &argv);

12 loop = g_main_loop_new (NULL, FALSE);

4 if (arge != 3) {

15 g_print("Usage: %s port mp3_location",
16 argv [0]);
17 return —1;

18}

19 return 0;

Listing 9: Initializing GStreamer Pipeline

The next step is to instantiate a bus callback function to
listen to GStreamer pipeline events. A bus is a system
that takes care of forwarding messages from the pipeline
to the application. The idea is to set up a message han-
dler on the bus that leads the application to control the
pipeline when necessary. Put the function shown in List-
ing 10 above the main function defined in Listing 9.

1 static gboolean bus_event_callback (

2 GstBus *xbus, GstMessage *msg,

3 gpointer data) {

4

5 GMainLoop *loop = (GMainLoop #*) data;
6 switch (GST_MESSAGE TYPE (msg)) {

7 case GST MESSAGE_EOS:

8 g_print ("End—of—stream\n");

9 g _main_loop_quit(loop);

10 break ;

11 case GST MESSAGE_ERROR:

12 gchar xdebug;

13 GError xerr;

14 gst_message_parse_error (msg, &err,
15 &debug);
16 g_free (debug);

17 g_print("Error: %s\n",

18 err —>message);

19 g_error_free(err);

20 g_main_loop_quit(loop);

21 break ;

2 default:

23 break ;

24 }
25 return TRUE;
2 }

Listing 10: Defining GStreamer Bus Event Callback

Every time an event occurs in the pipeline, GStreamer
calls the gboolean bus_call function. For example, if
you implement a GUI interface for your application, you
can show a message announcing the end of the stream
or deactivate the GUI stop button when the type of
the GStreamer bus message is GST_MESSAGE_EOS.
Now comes the most important part of this example—
defining the elements and building the GStreamer

pipeline. Insert the code shown in Listing 11 into the
main function, after checking the parameter count.

1 pipeline = gst_pipeline_new

2 ("dccp—audio—sender");

3 filesrc = gst_element_factory_make

4 ("filesrc", "file —source");

5 mp3parse = gst_element_factory_make

6 ("mp3parse", "mp3parse");

7 dccpserversink = gst_element_factory_make
8 ("dccpserversink ",

9 "server—sink");

Listing 11: Defining GStreamer Elements

Listing 11 first instantiates a new pipeline, dccp-audio-
sender, which can be used for future references in the
code. Then the code instantiates the filesrc element with
the name file-source. This element will be used to read
the specified MP3 file as an argument of the applica-
tion. Use the same process to instantiate the elements
mp3parse and dccpserversink. Once all the necessary
elements are instantiated, certify that all are properly
loaded. For this case, proceed as shown in Listing 12.

1 if (!pipeline Il !filesrc Il

2 !mp3parse || !dccpserversink) {

3 g_print("Element(s) not instantiated");
4 return —1;

s}

Listing 12: Checking GStreamer Elements

The next step is to set the respective element parameters,
as shown in Listing 13. For this application, we need
to set two parameters: the port, where the server will
listen and accept client connection from, and the audio
file path represented by the parameter location.

1 g_object_set (G_OBJECT (dccpserversink),
2 "port", atoi(argv[1l]), NULL);

3 g_object_set (G_OBJECT (filesrc),

4 "location", argv[2], NULL);

Listing 13: Setting Elements Parameters

Once all the elements are instantiated and the parame-
ters are defined, it is time to attach the bus callback de-
fined in Listing 10 to the bus of the pipeline. Also, it is
need to add the elements to the pipeline and link them,
as shown in Listing 14.

1 bus = gst_pipeline_get_bus
2 (GST_PIPELINE (pipeline));
3 gst_bus_add_watch (bus,
4

bus_event_callback , loop);

2009 Linux Symposium e 247

5 gst_object_unref(bus);

6 gst_bin_add_many (GST_BIN (pipeline),

7 filesrc , mp3parse, dccpserversink ,
8 NULL) ;

9 gst_element_link _many (filesrc , mp3parse,
10 dccpserversink , NULL);

Listing 14: Linking GStreamer Elements (Server)

Listing 15 shows how to execute the pipeline. Note that
GStreamer runs in a main loop (line 5). This means that
when this main loop finishes—for example, when the
user types Ctrl+C—it is necessary to do some clean up
(lines 6 and 10).

g_print (" Setting to PLAYING\n");
gst_element_set_state

(pipeline , GST _STATE PLAYING);
g_print ("Running\n");
g _main_loop_run (loop);
g_print ("Returned, stopping playback\n");
gst_element_set_state

(pipeline , GST_STATE NULL);
g_print("Deleting pipeline\n");
gst_object_unref (GST_OBJECT (pipeline));

N - T SO UV I R

S

Listing 15: Executing the GStreamer Pipeline (Server)

The easiest part is to compile the server application—
just run the command, which will link the GStreamer
libs with the example application, that is in Listing 16.
To run the DCCP GStreamer Server execute the com-
mand in the line 4 of the Listing 16.

$ gcc —Wall $(pkg—config —cflags \
—1libs gstreamer —0.10) \
—o gst_dccp_server gst_dccp_server.c
$./gst_dccp_server 9011 yourmusic.mp3

$ gcc —Wall $(pkg—config —cflags
—1libs gstreamer —0.10)
gst_dccp_client.c —o gst_dccp_client

1
2
3
4
5
6
7
8
9 $./gst_dccp_client localhost 9011

Listing 16: Compile and run server and client examples

Note that the example uses port 9011, which the server
will use to open the DCCP socket and transmit the
stream through the network to the remote DCCP client.
Now it is time to build a corresponding client application
that acts just like the gst-launch client command dis-
cussed previously. The DCCP client application is sim-
ilar to the server application (Listing 17). Basically, you
must initialize GStreamer, check command-line param-
eters, instantiate the necessary elements, and link them
to build the GStreamer pipeline. Finally, to compile and

248 e Step two in DCCP adoption: The Libraries

run the client application, execute the commands of the
line 6 and 9 of the Listing 16.

1#include <string .h>
2#include <math.h>
s#include <gst/gst.h>

sstatic gboolean bus_event_callback
6 (GstBus xbus, GstMessage =*msg,

7 gpointer data) {

8 GMainLoop *loop = (GMainLoop *) data;
9 switch (GST_MESSAGE TYPE(msg)) {

10 case GST MESSAGE EOS:

1 g_print ("End—of—stream\n");
12 g_main_loop_quit(loop);

13 break ;

14 case GST _MESSAGE ERROR:

15 gchar xdebug;

16 GError x*err;

17 gst_message_parse_error (msg, &err,
18 &debug);

19 g_free(debug);

20 g_print("Error: %s\n",

21 err —>message);

22 g_error_free(err);

23 g_main_loop_quit(loop);

24 break;

25 default:

26 break ;

27}

23 return TRUE;

29 }

31int main(int argc, char xargv) ({

32 GMainLoop x*loop;

33 GstElement xpipeline , *dccpclientsrc;
34 GstElement xdecodebin, xalsasink;

35 GstBus xbus;

37 gst_init(&arge, &argv);
33 loop = g_main_loop_new (NULL, FALSE);
39 if (arge != 3) {

40 g_print("Usage: %s host Port\n",

41 argv [0]);

42 return —1;

3}

44

45 pipeline = gst_pipeline_new (

46 "audio—sender");

47 dccpclientsrc = gst_element_factory_make
48 ("dccpclientsrc ",

49 "client —source");

50 decodebin = gst_element_factory_make

51 ("decodebin", "decodebin");
52 alsasink = gst_element_factory_make

53 ("alsasink", "alsa—sink");
s« if (!pipeline Il !alsasink II

55 !decodebin || !dccpclientsrc) ({

56 g_print(

57 "Element(s) not instantiated\n");

58 return —1;

59)
60
61 g_object_set (G_OBJECT(dccpclientsrc),

62 "host", argv[1], NULL);

63 g_object_set(G_OBJECT(dccpclientsrc),
64 "port", atoi(argv([2]), NULL);
65 gst_bin_add_many (GST_BIN(pipeline),

66 dccpclientsrc , decodebin ,

67 alsasink , NULL);

68 gst_element_link_many (dccpclientsrc ,
69 decodebin, alsasink , NULL);
70 bus = gst_pipeline_get_bus

71 (GST_PIPELINE (pipeline));
72 gst_bus_add_watch (bus,

73 bus_event_callback , loop);

74 gst_object_unref (bus);

75

76 g_print("Setting to PLAYING\n");

77 gst_element_set_state (pipeline ,

78 GST_STATE_PLAYING);

79 g_print("Running\n");

80 g_main_loop_run (loop);

81 g_print(

82 "Returned , stopping playback\n");
83 gst_element_set_state (pipeline ,

84 GST_STATE_NULL);

85 g_print("Deleting pipeline\n");

86 gst_object_unref (GST_OBJECT(pipeline));
87 return O;

88 }

Listing 17: DCCP Client source code

6 Contributions with the Open Source

In addition to the implementation of DCCP support in
the libraries mentioned before, we have also provided
some additional contributions while developing the sup-
port for DCCP in that libraries. For example, during the
development of the DCCP GStreamer plugin, we have
noticed that DCCP implementation in the Linux ker-
nel did not provide a mechanism for reading how much
bytes is available in the receiving buffer in a given mo-
ment of the DCCP connection. We have reported this
missing to the DCCP developers, while we contribute
with them by implementing and testing this feature in
the Linux Kernel. The summary of the patch and the
patch itself is available from [1].

We have also contributed to the GStreamer and Com-
monCPP projects by providing DCCP support patches.
Nowadays, both projects officially support DCCP pro-
tocol.

2009 Linux Symposium e 249

7 Current and Future works

Nowadays we are in a working in progress to provide
DCCEP support in Farsigh2 and CCRTP. We are develop-
ing a testing application for video conferencing between
hosts. For both APIs we have started the process of
adding the DCCP support for connection-oriented ser-
vices. We are in constant contact with the Farsight2 and
CCRTP developers. They are helping us to implement
DCCEP support on them.

For future works, we will provide DCCP support in
MPIlayer and finalize DCCP support in the Twinkle soft-
phone.

8 Conclusion

We have presented the basic concepts of DCCP, the
process of enabling DCCP in CommonCPP and in the
GStreamer and how to build a DCCP-based applica-
tion using the GStreamer DCCP plugin. The way how
DCCP was implemented in the Linux kernel allowed us
to rapidly implement DCCP support in the user-space
API, like GStreamer and CommonCPP. The contribu-
tions that we have provided in this work will enable new
DCCEP applications, enabling alternatives for UDP pro-
tocol based applications.

Network analysis and testing applications, such as
TTCP, tcpdump, and Wireshark already provide support
for the DCCP protocol, and multimedia tools such as the
open source VLC player accommodate DCCP stream-
ing. As multimedia developers become aware of its ben-
efits, it can expect to hear more about DCCP in the com-
ing years.

References

[1] Arnaldo Carvalho de Melo, Leandro Melo
de Sales, Ian McDonald, and David S. Miller.
Implement siocing/fionread.
http://git.kernel.org/?p=linux/
kernel/git/davem/net-2.6.git;a=
commitdif%f; h=

6273172el1772bf5ce8697bcaeld45£f0£2954£d159.

Last access on July 2009.

[2] Leandro Melo de Sales, Hyggo Oliveira
de Almeida, Angelo Perkusich, and
Arnaldo Carvalho de Melo. Measuring DCCP for

Linux Against TCP and UDP With Wireless
Mobile Devices. In Ottawa Linux Symposium
2008, volume 1, pages 163-177, 7 2008.

[3] J. Du, D. Putzolu, L. Cline, D. Newell, M. Clark,
and D. Ryan. An Extensible Framework for
RTP-based Multimedia Applications. In
Proceedings do 7th International Workshop on
Network and Operating System Support for
Digital Audio and Video, volume 1, pages 53-60,
1997.

[4] Eddie Kohler, Mark Handley, and Sally Floyd.
Datagram Congestion Control Protocol (DCCP),
3 2006. http://www.ietf.org/rfc/rfc4340.txt. Last
access on July 2009.

[5] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 2: TCP-like
Congestion Control, 3 2006.
http://www.ietf.org/rfc/rfc4341.txt. Last access on
July 2009.

[6] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 3: TCP-Friendly
Rate Control (TFRC), 3 2006.
http://www.ietf.org/rfc/rfc4342.txt. Last access on
July 2009.

[7] James F. Kurose and Keith W. Ross. Computer
Networks and the Internet: A New Approach.
Addison Wesley, 2 edition, 9 2005.

[8] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. STUN - Simple Traversal of User
Datagram Protocol (UDP) through Network
Address Translators (NATs), 3 2003.
http://www.ietf.org/rfc/rfc3489.txt. Last access on
July 2009.

[9] Leandro Sales, Hyggo Almeida, and Angelo
Perkusich. The DCCP Protocol in Three Steps.
Linux Magazine, (92):56-62, 12 2008.

[10] Leandro M. Sales, Hyggo O. Almeida, Angelo

Perkusich, and Marcello Sales Jr. An
Experimental Evaluation of DCCP Transport
Protocol: A Focus on the Fairness and Hand-off
over 802.11g Networks. In Consumer

Communications and Networking Conference
Proceedings, pages 1149-1153, 1 2008.

250 e Step two in DCCP adoption: The Libraries

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Leandro M. Sales, Hyggo O. Almeida, Angelo
Perkusich, and Marcello Sales Jr. On the
Performance of TCP, UDP and DCCP over
802.11g Networks. In In Proceedings of the SAC
2008 23rd ACM Symposium on Applied
Computing Fortaleza, CE, pages 2074-2080, 1
2008.

E-Phone Team. Dccp plugin for gstreamer.
https://garage.maemo.orqg/
projects/ephone. Last access on July 2009.

Ekiga Team. Ekiga - open source voip and video
conferencing application.
http://ekiga.org/. Last access on July
2009.

Empathy Team. Empathy - instant-messaging.
http://live.gnome.org/Empathy. Last
access on June, 2009.

GNU CommonCPP Team. Commoncpp source
code repository. http://savannah.gnu.
org/projects/commoncpp. Last access on
July 2009.

GStreamer Team. Gstreamer - library for
constructing graphs of media-handling
components.

http://www.gstreamer.net /. Last access
on July 2009.

IANA Team. Iana - assigned internet protocol
numbers. http://www.iana.org/
assignments/protocol-numbers/. Last
access on July 2009.

IANA Team. Iana - internet assigned numbers
authority. http://www.iana.org/. Last
access on July 2009.

Tapioca Team. Tapioca - provides a set of
convenience libraries to easily integrate voip and
im.
http://tapioca-voip.sourceforge.
net/wiki/index.php/Tapioca. Last
access on July 2009.

Twinkle Team. Twinkle - softphone for your
voice over ip and instant messaging
communcations using the sip protocol.
http://www.twinklephone.com/. Last
access on July 2009.

[21] Wireshark Team. Wireshark - the world$ foremost

network protocol analyzer.

http://www.wireshark.org/. Last access
on July 2009.

Proceedings of the
Linux Symposium

July 13th—17th, 2009
Montreal, Quebec
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP

Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron

Chris Dukes, workfrog.com
Jonas Fonseca

John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

