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Abstract

There has been an increasing interest into virtualiza-
tion in the HPC community, as it would allow to eas-
ily and efficiently share computing resources between
users, and provide a simple solution to checkpointing.
However, virtualization raises a number of interesting
questions, on performance and overhead, of course, but
also on the fairness of the sharing. In this work, we eval-
uate the suitability of KVM virtual machines in this con-
text, by comparing them with solutions based on Xen.
We also outline areas where improvements are needed
to provide directions for future works.

1 Introduction and motivations

Operating System Virtualization, and all its variants, al-
ready largely proved their usefulness in the context of
traditional servers. However, in the area of High Per-
formance Computing (HPC), for computing clusters or,
on a larger scale, grid or cloud computing, virtualization
still has to convince most end users and system admin-
istrators of its benefits. The use of virtualization in the
context of HPC offers several immediate advantages.

First, any computing center or large scale computing
infrastructure under-uses a non-negligible number of
physical resources. This is for example due to the fact
that all the computing applications are not perfectly
embarassingly-parallel. Using virtualization would al-
low to dynamically allocate resources to jobs, allowing
to match their exact performance needs.

Next, many processing jobs do not take full advantage
of the multicore architecture available on processing
nodes. Deploying several Virtual Machines (VM) per

node (e.g., 1 VM per core) would provide an easy way
to share physical resources among several jobs.

On most computing grids, a user books a number of re-
sources for a given period of time (also called lease).
This period of time is generally a rough estimation made
by the user of the time required for his application to
complete. When the lease expires, results will be lost
if the job did not have enough time to finish, and if
no checkpointing mechanism is implemented. Good
checkpointing mechanisms are difficult to implement,
and virtualization provides an easy way to implement it,
by freezing and migrating virtual machines.

Finally, the software configuration of computing plat-
forms is generally static, which might be a problem for
users with specific needs. Virtualization could allow to
deploy customized user environments on the computing
nodes, thus allowing users with specific software needs
to customize the operating system on which their appli-
cation will be executed.

Given the arguments listed above, virtualization seems
to be an attractive solution for the HPC community.
However, using virtualization in this context also has
drawbacks.

Indeed, the overhead caused by the additional layers is
not well known and controlled, mainly due to a lack
of understanding of the underlying virtualization infras-
tructure.

Another issue is the physical resource sharing. Virtual
machines need to access concurrently the physical de-
vices, and it is possible that this sharing mechanism im-
pacts the performance. This raises also the question of
the scalability of the number of VMs it is possible to
host on a physical machine.
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The following section proposes a reminder about the
common virtualization solutions currently available. It
may help readers to set up the vocabulary in this do-
main and get familiar with Xen [3] and KVM [9]. Sec-
tion 3 details our experimental testbed. This section is
followed by an evaluation with several micro benchmark
(CPU, disk, network) (Section 4) and then with classic
HPC benchmarks (Section 5). Finally, before conclud-
ing (Section 7) we propose a brief state of the art (Sec-
tion 6).

2 Virtualization

In this section, we describe the different virtualization
techniques, and then introduce more specifically Xen [3]
and KVM [9].

2.1 Virtualization approaches

The goal of virtualization is to partition one physi-
cal node (or system) into several independent virtual
machines. Common applications of virtualization are
server consolidation, and testing and development envi-
ronments.

One common technique is OS-level virtualization where
a single kernel is shared by containers which represent
the VMs (e.g. VServer). An other approach would be to
allow several OS with distinct kernels to run on a sin-
gle physical machine inside the VMs to give the user a
maxium reconfiguration facility.

To manage several of these reconfigurable VM running
on a physical node and sharing de facto the same hard-
ware, we need a layer acting as a supervisor (a sort of
arbiter to access hardware resources). However, as VM
include already a supervisor, we call this layer a hyper-
visor (i.e., a supervisor of supervisors) also called VMM
(Virtual Machine Monitor).

The hypervisor manages the requests of VMs and their
access to the resources (i.e., IRQ routing, time keeping
and message passing between VMs).

Hypervisor virtualization can be divided in two types,
Full Virtualization (FV) and Paravirtualization (PV),
which can be both combined with hardware-assisted vir-
tualization.

2.1.1 Full virtualization

Full virtualization (FV) allows the execution of unmod-
ified guest operating systems by emulating the real sys-
tem’s resources. This is especially useful to run pro-
prietary systems. One pioneer was VMware providing
a full virtualization solution. However, providing the
guest system with a complete real system interface has
an important cost. This cost can be mitigated by us-
ing Hardware-assisted virtualization discussed in sec-
tion 2.1.3. KVM takes advantage of this evolution. Cur-
rently, in the x86 architecture, the hardware assistance
is available in the CPU only, not in the other parts of the
computer (like network or video adapters). The gap is
then filled by emulation, having an impact on the per-
formance. An alternative solution called hybrid [12] ap-
proach consists in using specific paravirtualized drivers
which is more efficient than emulation (in terms of CPU
consumption) and reaches better performances.

2.1.2 Paravirtualization

Paravirtualization (PV) is also based on a hypervisor,
but the devices are not emulated. Instead, devices are ac-
cessed through lightweight virtual drivers offering better
performance.

The drawback is that guest kernels must be upgraded
to provide new system calls for the new services. At
the lowest level the syscalls are interrupts (0x80) with a
function number, which allows to switch from the user
mode to the privileged mode in former Linux system
call. The newest Linux system uses now a faster method
with the syscall/sysenter opcodes (in x86 architecture).
In the same way in Xen [3], the OS executes hypercalls
with the interrupt 0x82. Like in the Linux system, the
use of interrupts is deprecated and replaced by the use
of hypercall pages [18], a similar mechanism in Linux
called vDSO used to optimize the system call interface.1

vDSO chooses between int 0x80, sysenter or syscall op-
codes (the choice is made by the kernel at boot time).

2.1.3 Adding hardware virtualization support

Virtualization software techniques consisting in do-
ing binary translation to trap and virtualize the execu-

1http://www.trilithium.com/johan/2005/08/
linux-gate/



2009 Linux Symposium • 223

tion of some instructions are very cost inefficient (ex:
VMware). Running a VM on a common architecture
(ex: IA32 PC) for which it has not been designed is dif-
ficult. The original x86 architecture does not comply
with the base conditions for being virtualized (equiva-
lence, resource control (safety), efficiency) [15]. In par-
ticular, there are some unprivileged instructions chang-
ing the state of the processor that can not be trapped.

In 2007, Intel and AMD designed (independently) some
virtualization extensions for the x86 architecture [13]
(VMX for Intel, Virtual Machine eXtension; and AMD-
V/Pacifica for AMD). Each one allows the execution of
a hypervisor in order to run an unmodified operating
system while minimizing the overhead due to emulation
operations.

The kernels can run in privileged mode on the processor,
which means on ring 0. Ring 0 is the most privileged
level. On a standard system (i.e, not virtualized) this is
where the operating system is running. The rings strictly
over 0 run instructions in a processor mode called un-
protected. Without specific hardware virtualization sup-
port, the hypervisor is running in ring 0, but the VM’s
operating system can not reach this level of privilege
(they access ring 1, at best). Thus, in full-virtualization,
privileged instructions are emulated, and in paravirtu-
alization the kernel is modified in order to allow those
instructions to access ring 0. The hardware assisted vir-
tualization not only proposes new instructions, but also a
new privileged access level, called “ring -1”, where the
hypervisor can run. Thus, guest virtual machines can
run in ring 0.

Despite these advantages, using an untouched/
unmodified operating system means a lot of VM traps
and then a high CPU consumption used by the emula-
tion of hardware (network manager, video adapter, . . . ).
An alternative solution, called hybrid [12], consists in
using paravirtualized drivers in combination with the
hardware-assisted virtualization.

2.2 Introducing Xen and KVM

In this article, we limit our study to free and open
source virtualization solutions. Thus, we chose to study
and evaluate exclusively the latest releases of Xen and
KVM [9] at the time of writing, that are Xen 3.3.1 and
KVM 84.

2.2.1 Xen

Xen started as a research project by Ian Pratt at Cam-
bridge University. The very first public release of Xen
was delivered in October 2003. Then, Ian Pratt created
the XenSource company, which develops the project in
an open source fashion and distributes customized Xen
versions (Xen Enterprise). Major releases 2.0 and 3.0
were delivered respectively in 2004 and 2005. The lat-
est current release available is 3.3.1 (2009). Xen is
compatible with x86 processors (Intel or AMD), x86_64
since 3.0, SMP architectures, HyperThreading technol-
ogy, IA64, PPC. ARM support should also be available
soon.

Xen is a hypervisor and has the ability to run guest op-
erating systems, called domains. There are two types
of domains. Unprivileged domains (called DomU) are
the guest systems, while the privileged domain (called
Dom0) is a special guest with extended capabilities, that
contains the applications to control the other guests.
Dom0 is running above the Xen hypervisor when the
physical machine starts. It runs a modified Linux kernel,
and is generally the only domain able to interact directly
with the hardware through the linux kernel drivers. It
also allows DomUs to communicate with hardware de-
vices using their virtual drivers.

When a virtual machine hosted in a domU previously
described wants to use hardware devices, e.g. the net-
work interface or the block device, the data has to go
to dom0 which is than in charge of transmitting it to
the physical device. Several mechanisms are invoked to
make the transfer between domU and dom0 and to min-
imize overhead. However, the data path is longer than
without virtualization, as shown in Figure 1.

Figure 1: Network path in Xen.
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In this example where domU uses the physical network
interface to send packets to a remote physical station,
packets go through the domU TCP/IP stack, then are
transferred to dom0. To make this transfer, dom0 in-
vokes a grant to domU’s memory page to fetch the data
by page flipping. The other way around, during packet
reception on domU, dom0 copies the data into a shared
memory segment so that domU can get it [6]. This
copy and page flipping mechanisms offer security but
are heavy for the performance.

From a technical point of view, on the x86 architecture
(with no hardware support), the Xen hypervisor is run-
ning in ring 0, kernels in ring 1 and finally applications
in ring 3. On the x86_64 architecture, the hypervisor
is running in ring 0, and guest domains (Dom0 and do-
mUs) and applications run in ring 3 (i.e., rings 1 and 2
have been removed).

Moreover, the x86 Intel architecture proposes two levels
of memory protection. One is based on a segmentation
mechanism and the other on page management. Each
of these protections may be used to isolate virtualized
systems. (NB: Two modes are currently available on
x86 architectures: 32 bit mode and 64 bit mode. Only
x86 64 bit system architectures (a.k.a IA32e or AMD64)
may use both modes). In the 32 bit mode, segment man-
agement is fully operational and is used for the memory
protection.

In 64 bit mode, segment management almost disappears
(for example there is no more segment base and limit
management), memory protection through segments is
not possible anymore, thus protection through memory
page management is used (via the MMU unit)[7]. How-
ever, with this mechanism, there are only two levels
of protection called normal mode and supervisor mode.
Xen must then manage protection through the page level
which is the most CPU intensive. Without forgetting
that context switching introduced by virtualization is
time consuming and so impacts the guest systems per-
formances.

Finally, the inclusion of different parts of Xen in the
Linux kernel has been the subject of animated discus-
sions. DomU support is already included, but the in-
clusion of Dom0 support faced a lot of opposition. In
addition to that, Linux distributions use the XenSource-
provided patch for 2.6.18, and forward-port this patch
to the kernel releases they want to ship in their stable
release. The process of forward-porting those patches

is difficult, and not supported by the upstream author,
leading some distributions to choose to stop supporting
Xen recently.

2.2.2 KVM

KVM (Kernel based Virtual Machine) is an open source
Linux kernel virtualization infrastructure2 which relies
on the hardware virtualization technologies, fully in-
tegrated in the Linux kernel. Its first version was
introduced in the 2.6.20 Linux kernel tree (released
in February 2007). KVM developers are primarily
funded by a technology startup called Qumranet, now
owned by RedHat. Developers had an original ap-
proach. Instead of creating major portions of an op-
erating system kernel themselves, they choose to use
the Linux kernel itself as a basis for a hypervisor.
Thus, KVM is currently implemented as loadable ker-
nel modules. kvm.ko, that provides the core virtual-
ization infrastructure and a processor specific module,
kvm-intel.ko or kvm-amd.ko. The code is rela-
tively small (about 10,000 lines) and simple. This orig-
inal approach has several benefits. The virtualized envi-
ronment takes advantage of all the ongoing work made
on the Linux kernel itself.

Figure 2: Path of I/O requests in KVM

KVM makes use of hardware virtualization to virtual-
ize processor states (an Intel processor with VT (vir-
tualization technology) extensions, or an AMD proces-
sor with SVM extensions (also called AMD-V)). With
KVM, each virtual machine is a regular Linux process,
scheduled by a standard Linux scheduler. Memory man-
agement of the VM is handled from within the kernel
but I/O in the current version is handled in user space

2http://www.linux-kvm.org
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through a userspace component also used to instanti-
ate the virtual machines. This component is actually
a modified version of QEMU handling I/O hardware
emulation: as shown in figure 2, when a process in a
guest system issues an I/O request, the request is trapped
by KVM, then forwarded to the QEMU instance in the
host system’s userspace, that issues the real I/O request.
KVM emulates virtual devices, such as network inter-
faces or hard disks. In order to improve performance,
recent KVM versions propose a hybrid approach called
virtio [16]. Virtio is a kernel API that improves the
performance of communications between guest systems
and the host system by providing a simpler and faster in-
terface than the emulated devices from QEMU. Virtio-
based devices exist both for network interfaces and hard
disks.

2.2.3 Conclusion

Hardware Assisted Full Virtualization (FV) is of-
ten believed to be the best virtualization solution,
performance-wise. However, this is not true: paravir-
tualization approaches may be much better in terms of
performance, especially in the context of the IO. In the
following sections, we perform several benchmarks out-
lining the performance differences of the different vir-
tualization techniques and explain why there are such
differences.

3 Evaluation

In the following experiments, we compare four different
virtualization solutions:

Xen FV : Xen using full hardware-assisted virtualiza-
tion (also called Xen HVM for Hardware Virtual
Machine)

Xen PV : Xen using paravirtualization

KVM FV : standard KVM, using the I/O devices emu-
lated by QEMU

KVM PV : KVM using the virtio I/O devices

All the experiments were performed on a cluster of Dell
PowerEdges 1950 with two dual-core Intel Xeon 5148
LV processors with 8 GB of memory, 300 GB Raid0 /

SATA disks and interconnected by 1 Gb/s network links.
We used Xen 3.3.1 and KVM 84 for all tests, except
when specified otherwise.

We first evaluate all solutions with a set of micro-
benchmarks, to evaluate the CPU, the disk accesses and
the network separately, then use the HPC Challenge
benchmarks, a set of HPC-specific benchmarks.

4 Evaluation with micro-benchmarks

In this section, we evaluate the different virtualization
solutions with a set of micro-benchmarks.

4.1 CPU

In our first experiment, we focused on CPU-intensive
applications. We evaluated the overhead caused by us-
ing a virtualization solution for such applications, which
are obviously crucial for HPC.

Both Xen and KVM support SMP guests, that is, giving
the ability to a guest system to use several of the host’s
processors. We executed a simple application scaling
linearly on hosts with four CPUs, then inside guests to
which four CPUs had been allocated.

Figure 3: Influence of virtualization on CPU-intensive
applications: the same application is executed on a 4-
CPU system, then on guests allocated with 4 CPUs.

Figure 3 shows the difference between our host system
running Linux 2.6.29, used for KVM, and several other
configurations. In all cases, the overhead was minimal
(lower than 2%). However, it is worth noting that run-
ning the application in the Xen dom0 is slightly slower
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than on Linux 2.6.29 (maybe because of improvements
in Linux since the 2.6.18 kernel used as Dom0), and that
both KVM and Xen guests suffer from a small slow-
down.

4.2 Disk

While disks can now be considered slow devices (com-
pared to high-speed NICs, for example), it can still be
difficult to fully exploit their performance for virtualiza-
tion solutions.

In this experiment, we compare the different solutions
by writing large files using dd, using different block
sizes. This allows to measure both the influence of
per-I/O overhead (for small block sizes) and available
I/O bandwidth. We also confirmed our results using
bonnie++.

Figure 4: Disk write performance

Results are presented in Figure 4. Each test was run 10
times, and the vertical bars indicate the 95% confidence
interval. We used file-backed virtual machines for all
tests. Our test systems allowed a maximum write speed
of about 120 MB/s on the host system, thanks to the
RAID-0 disks setup.

In our tests, Xen PV reported write speeds much higher
than the write speed that we obtained from the host sys-
tem, with a very high variability. While we were not
able to confirm that, it seems that Xen reports write com-
pletions before they are actually completely committed
to disk.

While KVM provided good performance (close to the
host system) in full virtualization mode, virtio provided

more disappointing results. In fact, we identified with
blktrace that a lot of additional data was written to
disk with virtio: writing a 1 GB-file resulted in about
1 GB of data written to disk without virtio, versus
1.7 GB of data written with virtio. This is very likely to
be a bug. Since our tests were originally performed with
KVM 84, we also re-ran the tests with a version from the
KVM git tree, very close to the KVM 85 release date.
This more recent version provided better performance,
but still far from the one obtained with the other config-
urations.

It is also worth noting that, while the size of block sizes
clearly affects the resulting performance (because of the
influence of latency on the performance), it affects all
solutions in a similar way.

4.3 Network

In this section, the network performance in virtual ma-
chines with KVM is compared to Xen network per-
formance using either hardware virtualization or para-
virtualization techniques.

To measure throughput, the iperf [17] benchmark is
used sending TCP flows of 16 kByte messages on the
virtual machines. The corresponding CPU cost is mea-
sured with the Linux sar utility on KVMs and with
xentop on Xen. Each result is the average of 10 runs
of 60 seconds of each test. To each virtual machine, one
of the 4 physical CPUs is attributed. The different do-
mains are scheduled in Xen to use the CPUs with default
credit-scheduler [19]. In KVM, virtual machines use
the emulated e1000 driver for hardware virtualization
and virtio for paravirtualization. The virtual machines
communicate using virtual tap interfaces and a soft-
ware bridge interconnecting all virtual machines and the
physical network interface. Xen virtual machines under
paravirtualization use the virtual split device driver and
Xen HVMs use the emulated Realtek 8139 driver. They
communicate also using a software bridge in host do-
main 0.

4.3.1 Inter virtual machine communication

In this first experiment, network performance between
virtual machines hosted on the same physical machine
is evaluated not invoking the use of the physical network
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interface and allowing to evaluate the network speed al-
lowed by the CPU under the virtualization mechanisms.
This setup is represented on Figure 5.

Figure 5: Test setup with two communicating virtual
machines hosted on the same physical machine.

The two virtual machines communicate using different
mechanisms according to the virtualization technique.
In Xen, packets go to the virtual or emulated driver to
reach dom0, than to dom0’s backend driver to reach the
destination virtual machine. On KVM, the packets use
also an emulated or virtual interface and are than han-
dled by the kvm module to be sent to the destination
virtual machine.

The results in terms of TCP throughput in the four con-
figurations are represented in Table 1.

FV PV
KVM 648.3 813.2
Xen 96.05 4451

Table 1: Average TCP throughput in Mbit/s between
two virtual machines hosted on a single physical ma-
chine under full virtualization (FV) or paravirtualization
(PV).

The best throughput is obtained on Xen paravirtualized
guests which can communicate in a very lightweight
way achieving nearly native Linux loopback through-
put (4530 Mb/s) to the cost of an overall system CPU
use of around 180% while native Linux CPU cost is
about 120%. However with hardware assisted virtual-
ization, Xen has very poor throughput with even more
CPU overhead (about 250% of CPU use) due to the net-
work driver emulation. KVM achieves a throughput be-
tween 14 and 18% of native Linux loopback throughput
generating a CPU cost between about 150 and 200%.

4.3.2 Communication with a remote host

For communications between virtual machines hosted
by distinct physical servers, the packets need to use the

physical network interfaces of the hosts. This exper-
iment evaluates the resulting performance. As sending
and receiving do not invoke the same mechanisms, send-
ing throughput is evaluated separately from receiving
throughput as represent the two configurations on Fig-
ure 6.

Figure 6: Test setup with a virtual machine communi-
cating with a remote physical host.

Figure 7 shows the throughput obtained on the different
types of virtual machines.

Figure 7: TCP throughput on a virtual machine sending
to or receiving from a remote host.

Para-virtualization shows much better results in terms
of throughput than hardware virtualization like in the
previous experiment, with KVM and Xen. While with
Xen para-virtualization, the theoretical TCP throughput
of 941 Mb/s is reached, with KVM and the paravirtual-
ized driver, throughput reaches only about 80% of native
Linux throughput. In Xen, the network interface is the
bottleneck as loopback throughput reaches 4451 Mb/s.
In KVM paravirtualization, the virtualization mecha-
nism is the bottleneck, as the same throughput is ob-
tained, whether the network interface card is used or
not. With hardware-virtualization, the network perfor-
mance is very poor, especially with Xen HVM and in
the case of sending. This shows that the sending mech-
anism from the Xen HVM is obviously the bottleneck
also in the previous experiment. KVM FV uses about
100% of the CPU, which is assigned to it and can not
achieve better throughput, needing more CPU capacity.
In the case of paravirtualization with virtio, KVM needs
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less CPU, about 76% for sending and 60% for receiving
while the physical host system is performing a part of
the work to access the physical NIC. The overall sys-
tem CPU usage is still about 100% of one CPU, but the
resulting bandwidth more than doubles in the case of
sending.

4.3.3 Scalability

This experiment evaluates the impact on throughput
while scaling up to either 2, 4 or 8 virtual machines
hosted on a single physical host. Figure 8 shows an ex-
ample with 4 VMs.

Figure 8: Test setup with 4 virtual machines communi-
cating with 4 remote physical host.

As in the previous experiment, sending an receiving
throughput is evaluated separately.

The aggregated TCP throughput obtained on the virtual
machines for sending and receiving is represented re-
spectively on Figures 9 and 10 in each configuration
(KVM and Xen, with para- or full-virtualization).

Figure 9: TCP sending throughput on a set of up to 8
VMs.

In both configurations, KVM and Xen, paravirtualiza-
tion achieves better throughput, like before. Observ-
ing the evolution of the aggregate throughput with an

Figure 10: TCP receiving throughput on a set of up to 8
VMs.

increasing number of virtual machines, it can be seen
that a bigger number of VMs achieve a better overall
throughput than a single virtual machine. In the case of
KVM, this might be related to an important CPU over-
head necessary for networking. With a single virtual
machine sending a single TCP flow, KVM consumes
the capacity of an entire CPU whether it uses the em-
ulated e1000 driver or virtio. Using two virtual ma-
chines sending two flows, they can each one use one
CPU which actually happens for KVM full virtualiza-
tion where throughput still not reaches the maximum
value allowed by the NIC. Paravirtualization needs less
instructions making KVM use only between 130 and
165% of the 4 CPU cores and achieving nearly maxi-
mum TCP throughput.

Xen HVM has the most important CPU overhead, es-
pecially with 4 or 8 virtual machines, and achieves the
poorest throughput. Only dom0 uses almost 250% of the
CPUs to forward the traffic of 4 virtual machines. This
means that it uses at least 3 CPUs simultaneously and
need to share them with the domUs. This sharing needs
more context switches. With Xen paravirtualization the
overall system CPU utilization does not exceed 160%
for dom0 and 8 domUs, allowing to achieve maximum
TCP throughput.

In each experiment, the different virtual machines
achieve almost the same individual throughput. For this
reason, only the aggregated throughput is represented.
Per virtual machine throughput corresponds to the ag-
gregated throughput to the number of VMs. This means
that the resource sharing is fair between the different vir-
tual machines.

For inter-VM communications on a same physical host
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and also for communications using the physical inter-
face, despite its virtualization overhead, Xen paravirtu-
alization achieved the best network throughput having
the lowest CPU overhead compared to hardware vir-
tualization and KVM. However, KVM with the virtio
API and the paravirtualized drivers can achieve similar
throughput if it has enough CPU capacity. This solu-
tion could be a good tradeoff between performance and
isolation of virtual machines.

5 Evaluation with classical HPC benchmarks

In this section, we report on the evaluation of the var-
ious virtualization solutions using the HPC Challenge
benchmarks [10]. Those benchmarks consist in 7 dif-
ferent tools evaluating the computation speed, the com-
munication performance, or both, like the famous LIN-
PACK/HPL benchmark used to rank the computers for
the Top500.3

The following results were obtained with HPCC 1.3.1
on a cluster of 32 identical Dell PowerEdge 1950 nodes,
with two dual-core Intel Xeon 5148 LV CPUs and 8 GB
of RAM. The nodes are connected together using a Gi-
gabit ethernet network. The benchmarks were run on
several configurations:

• the host system used to run KVM virtual machines
(using Linux 2.6.29);

• the host system used to run Xen virtual machines
(Xen dom0, using Linux 2.6.18);

• 32 KVM virtual machines allocated to 4 CPUs
each, using virtio for network and the classic emu-
lated driver for disk;

• 128 KVM virtual machines allocated to 1 CPU
each, using virtio for network and the classic emu-
lated driver for disk;

• 32 Xen paravirtualized virtual machines allocated
to 4 CPUs each;

• 128 Xen paravirtualized virtual machines allocated
to 1 CPU each;

• 32 Xen virtual machines using full virtualization,
allocated to 4 CPUs each;

• 128 Xen virtual machines using full virtualization,
allocated to 1 CPU each.

3http://www.top500.org

Figure 11: PTRANS benchmark: aggregate network
bandwidth

5.1 PTRANS benchmark

PTRANS (parallel matrix transpose) excercises the
communication network by exchanging large messages
between pairs of processors. It is a useful test of the
total communications capacity of the interconnect. Re-
sults shown in Figure 11 indicate that:

• The setup using four KVM VMs per node per-
forms better than the one using 1 VM per node, and
provides performance that is close to native. This
might be explained by the fact that having several
virtual machines allows the load to be better spread
across CPUs;

• Xen setups perform very poorly in that benchmark.

5.2 STREAM benchmark

STREAM is a simple benchmark that measures the per-
node sustainable memory bandwidth. As shown in Fig-
ure 12, all configurations perform in the same way (dif-
ferences are likely to be caused by measurement arti-
facts).

5.3 Latency and Bandwidth Benchmark

The latency and bandwidth benchmark organizes pro-
cesses in a randomly-ordered ring. Then, each process
receives a message from its predecessor node, then send
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Figure 12: STREAM benchmark: per-node memory
bandwidth

Figure 13: Average node-to-node latency

Figure 14: Average node-to-node bandwidth

Figure 15: LINPACK benchmark: overall performance

a message to its successor, in a ping-pong manner. 8-
byte and 2-MB long messages are used.

Figure 13 presents the latency results. Results for Xen
with full virtualization are not included, as the average
is 11 ms (1 VM with 4 CPU case) or 8 ms (4 VM with
1 CPU), probably because of the much lower available
bandwidth. Xen with paravirtualization performs much
better than KVM (146 or 130 µsvs 286 µs).

Figure 14 presents the bandwidth results, which are sim-
ilar to those of the PTRANS benchmark.

5.4 LINPACK/HPL Benchmark

The LINPACK benchmark combines computation and
communications. It is used to determine the annual
Top500 ranking of supercomputers. Figure 15 shows the
LINPACK results (in GFlop/s) for our configurations.

The best configuration is the Xen setup with 4 virtual
machines per node, which reaches 235 GFlops, com-
pared to 222 for the host system. This might be caused
by the fact that splitting a physical host into four vir-
tual machines allows for better scalability, compared to
when the same kernel is used for the four processes.
Also, as we showed in Section 4.3.1, the inter-VM band-
width is 4.4 Gbps, leading to no performance degrada-
tion compared to the host system case.

KVM results show more overhead, likely to be caused
by the important communication latency between vir-
tual machines (Section 5.3), which is not compensated
by the inter-VM bandwidth. Contrary to what happens
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with Xen, both KVM configurations (4 VMs with 1
CPU, and 1 VM with 4 CPU per node) give similar per-
formance.

6 Related work

I/O performance is a critical point in virtual machines,
and it depends on the kind of virtualization. Previ-
ous evaluations compared para-virtualization and full-
virtualization like Xen and VMware to OS-level virtu-
alization like VServer4 and UML.5 This showed best
network and disk access performance for Xen and
VServer [5].

Between these two solutions, oftenly VServer perform-
ing only control plane virtualization is preferred as in
VINI [4] in order to maximise performance. However
this offers less isolation, security and reconfigurability,
virtualizing at the OS level and so sharing a single OS,
while our goal is to have completely isolated systems
for more flexibility and security. This lead to concen-
trate on full- or para-virtualization solutions rather than
container based ones.

Xen is probably the most evaluated virtualization so-
lution. Since its appearance in 2003, Xen I/O and es-
pecially network virtualization has been constantly im-
proved achieving growing network performance with
its successive versions [2] to reach today native Linux
throughput on para-virtual machines. Offloading fea-
tures have been added to virtual NICs in Xen 2.0
and page flipping has been changed to copying to
lightweight the operations [11]. Unfairness problems
have been corrected in the Credit-Scheduler and the
event channel management [14].

Detailed Xen I/O performance has been examined [8]
rejecting the Xen data-plane paravirtualization for its
performance overhead but proposing Xen virtualization
as a viable solution on commodity servers when using
direct hardware mapped virtual machines. However,
this would not offer the same flexibility requiring ded-
icated hardware for each virtual machine. Having this
isolation and flexibility goal in mind, this paper shows
that Xen data-plane virtualization achieves better perfor-
mance compared to other techniques. In fact, it seems
that KVM did not yet reach the same maturity than Xen
in I/O management with paravirtualization.

4http://linux-vserver.org
5http://user-mode-linux.sourceforge.net

Studies on Xen para-virtualization in the HPC context
showed that Xen performs well for HPC in terms of
memory acces, and disk I/O [21] and communication
and computation [20]. To know if it was due to the
paravirtualized driver or to specific Xen implementa-
tions, we also compared Xen performance ton KVM
performance which is a very recent KVM solutions of-
fering the same isolation features (data-plane virtualiza-
tion and full isolation) offering also full and paravirtual-
ization.

7 Conclusion and future work

In this work, we evaluated different aspects of KVM and
Xen, focusing on their adequacy for High Performance
Computing. KVM and Xen provide different perfor-
mance characteristics, and each of them outperforms the
other solution in some areas. The only virtualization
solution that consistently provided bad performance is
Xen with full virtualization. But both Xen with paravir-
tualization, and the KVM approach (with paravirtualiza-
tion for the most important devices) clearly have their
merits.

We encountered problems when setting up both solu-
tions. Our choice to use Xen 3.3 implied that we had to
use the XenSource-provided 2.6.18 kernel, and couldn’t
rely on an easier-to-use and up-to-date distribution ker-
nel. This brought the usual issues that one encounters
when compiling one’s own kernel and building software
from source. KVM proved to still be a relatively young
project (especially its virtio support) and also brought
some issues, like the unsolved problem with virtio_disk.

Finally, while we aimed at providing an overview of
Xen and KVM performance, we voluntarily ignored
some aspects. The first one is Xen’s and KVM’s sup-
port for exporting PCI devices to virtual machines (PCI
passthrough ). This is important in the context of HPC
to give virtual machines access to high-performance net-
works (Infiniband, Myrinet), but also raises questions on
how those devices will be shared by several virtual ma-
chines. Another aspect that can be useful in the field of
HPC is VM migration, to be able to change the mapping
between tasks and compute nodes. In our performance
results, we ignored the problem of fairness between sev-
eral virtual machines: the execution of a task in one VM
could have consequences on the other VM of the same
physical machine.
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Finally, it would be interesting to explore the new vir-
tualization possibilities known as Linux Containers [1].
By providing a more lightweight approach, they could
provide a valuable alternative to Xen and KVM.
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